An Ecological Robustness Oriented Optimal Power Flow for Power Systems’ Survivability

Hao Huang*, Student Member, IEEE, Zeyu Mao*, Student Member, IEEE, Astrid Layton †, Katherine R. Davis, Senior Member, IEEE*

Abstract—Traditional optimal power flow (OPF) ensures power systems are operated safely at minimum cost. Recent disasters have highlighted that a focus on minimizing cost can result in a fragile system, such as the immense economic loss and adverse societal impacts after the 2021 Texas Winter Storm. Resilience objectives must also be considered to guide power system operation through unexpected non-ideal conditions. The long-term survivability of ecosystems against various unexpected catastrophes has been quantified by ecologists using the metric R_{ECO}. The metric depends on a system’s network structure and energy flows, enabling its application to power systems to investigate the impact of a bio-inspired power system to address resilience needs. This paper formulates an ecological robustness oriented OPF (R_{ECO}-OPF) problem to optimize power systems for reliability and survivability under unexpected contingencies. Six power system cases, ranging from 24- to 500-buses are optimized, comparing the reliability and cost of the R_{ECO}-OPF with an economics-driven OPF and a security-constrained OPF (SCOPF). The results show the ecologically-inspired method is able to improve the reliability of the power systems with fewer violations and unsolved scenarios during unexpected disturbances. The results also support the potential to use R_{ECO} to control power flow distribution for improved survivability and resilience.

Index Terms—Optimal Power Flow, Power System Reliability, Power System Resilience, Ecosystems

I. INTRODUCTION

Power systems are critical infrastructure that deliver electric energy over long distances to support daily life. Their operation requires careful consideration of both the environment and economics, for which there are optimal power flow analysis approaches that consider each individually. The economic-driven optimal power flow (OPF) [1] minimizes operational costs while meeting reliability requirements. The security-constrained optimal power flow (SCOPF) has been used to ensure the safety of power systems with postulate contingencies while minimizing operational costs [2]. SCOPF focuses on specific contingencies, so unexpected contingencies can still cause system stress and a loss of load. The 2021 Texas Winter Energy Crisis [3] caused large-scale blackouts due to unexpected extreme weather, leading to generator unavailability. A 2017 grid resilience report by the US National Academies calls for enhanced power system abilities to prepare for, endure, and recover from severe hazards [4]. Hazards of the scale and type to impact the grid are becoming more common, posing a critical question: can existing economics-driven power system operation support survival under unexpected extreme disturbances?

Resilience is a property of systems that describes their ability to operate during and recover from adverse situations to resume normal operations. Resilience depends on the system’s elements, configuration, interactions with the surrounding environment, and threats [5]. Resilience metrics based on a multi-phase resilience trapezoid for power system operational and infrastructure resilience [6] and sequential Monte-Carlo-based time-series simulation models to assess power system resilience [7] have been used to help quantify this characteristic. Another availability-based engineering resilience metric uses a dynamic Bayesian network evaluation methodology [8]. These metrics proactively quantify power system resilience under specific threats with historical data and suggest corresponding enhancement methods. While they do provide guidance, they are not sufficient to support power system operations for survivability under unexpected contingencies.

SCOPF is an essential function in power system operation that calculates a secure operating state where demand is met without reliability violations in either the base case or under a set of postulated contingencies. The SCOPF problem can be modeled as a mixed-integer nonlinear problem, where predefined contingencies can integrate with the OPF problem through discrete variables [9]. The system size and number of contingencies makes the SCOPF problem nontrivial [2] and so a DC SCOPF model can help improve the efficiency of iterative AC SCOPF algorithms [10]. Approaches to obtain SCOPF solutions under conflicting contingencies are proposed in [11]. Consideration of corrective actions within the SCOPF problem have also been proposed [12], including voltage and frequency control to deal with transients during contingencies [13]. Although SCOPF can efficiently and effectively deal with postulated contingencies, the conventional SCOPF only considers N-1 contingencies. Unexpected contingencies and those where multiple elements malfunction are not considered and still threaten the security of power system operation.

Several resilience-oriented preventive approaches against extreme weather events have been studied by considering the stochastic nature and fragility curve of power system elements. Wang et al. [14] propose a resilience-oriented hourly unit commitment and resilience-constraint economic power dispatch, respectively, to improve power system resilience. Trakas et al. [15] formulate a tri-level optimization problem to economically dispatch power flow against the worst scenario from the extreme weather. Zhao et al. [16] formulate a two-stage distributionally robust and robust optimization

1This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
problem to mitigate the adverse impact of the worst load forecasting and line failure scenario for day-ahead market \cite{17}. Several robustness-oriented methods are also proposed for power system operations considering cascading failures from cyber and physical adversaries \cite{18–21}. An entropy-based robustness metric is proposed in \cite{18} to predict the cascading failures in power systems based on the network topology and power flow distribution. Xiang et al. extend the traditional SCOPF considering attacks in power systems, which improves the system’s robustness with less loss of load under attacks \cite{19}. Lai et al. propose a robustness-oriented economic dispatch model for battery management systems to improve the energy supply in microgrids under attacks \cite{20}. Lai et al. also propose both deterministic and stochastic coupling strategies for cyber-physical power systems to improve its robustness against cyber attacks \cite{21}. Various specialized remedial actions against specific events have been developed and employed by utilities to ensure power systems’ safety and security after the adverse events \cite{22}. For example, corrective action schemes to provide countermeasures against unexpected contingencies as fast as possible \cite{23,24}.

Line outage distribution factors (LODFs) and group betweenness and centrality (GBC) were used to identify critical contingencies consisting of high-impact sets of multiple elements throughout the system \cite{25,26}. Such elements widely spread across the system making such contingencies statistically unexpected and adversely stress the system operation. These contingencies are treated as unexpected contingencies in the paper. The failure of such elements, e.g., from extreme weather or other threats as in \cite{27}, creates severe impact with violating operating limits. These unexpected contingencies can help approximate high-impact low-frequency (HILF) events. HILF events can be used to help measure the resilience of the power systems by analyzing how resilient the system is under all HILF events. HILF events are not traditionally considered in SCOPF, and stochastic based approaches \cite{14–17} only consider the worst scenario from particular HILF events. Thus, there is a research gap of how to operate power systems so that they can survive from unexpected contingencies for long-term resilience. This manuscript presents a novel approach based on long-term resilient ecosystems to fill this research gap.

Ecosystems however have evolved to be very good at surviving a wide variety of unexpected catastrophes, demonstrating both their resilience and sustainability. Focusing on energy transfers among species in an ecosystem (a food web model), ecologists have quantitatively connected survivability to network structural and functional characteristics \cite{28–30}. Previous work has translated ecosystem resilience (the ecological robustness metric R_{ECO}), to power systems by using R_{ECO} to guide the design of network structure with improved reliability and resilience \cite{31–34}. The formulation of R_{ECO} in power systems depends on both the network structure and its power flows. The optimized network structures were able to improve R_{ECO}, measured by their ability to absorb unexpected contingencies with fewer (and often no) violations. R_{ECO} is an information theory-based metric calculated from a steady-state directional graph of a network \cite{28–30}. The metric quantifies a balance between pathway efficiency (effectiveness at which energy is transferred from one node to another) and redundancy (energy has multiple pathway options to get from one node to another). Ecosystem have been found to occupy a narrow range of R_{ECO} values, representing a unique balance of these two measures, that suggests the window represents a evolutionarily-superior network design. An ecological robustness oriented optimal power flow (R_{ECO} OPF) problem is presented here to optimize R_{ECO} for a given power system, guiding the power flow dispatch for survivability and reliability.

Survivability is taken here to represent the resilience of power systems. Resilience and survivability are both terms used to describe the system’s ability to withstand disturbances, however resilience is commonly demonstrated using a time-series assessment \cite{6} that depends on operation and response strategies against disturbances at different stages. Survivability is measured as how a power system can immediately tolerate or absorb adverse impact a disturbance happens. Survivability is here treated as the preventative stage in resilience. Reliability is one aspect of resilience that is well-known and quantifiable; it is used here to help measure resilience and survivability improvements when disturbances adversely impact the system’s operating status. The inherent ability of the power system to absorb disturbances is quantified by R_{ECO}, where a better R_{ECO} means the system has an increased ability to absorb disturbances for better survivability and resilience.

The main contributions are as follows:

- This paper introduces a new resilience metric for power systems operation, R_{ECO}, to support their survival through unexpected contingencies. An OPF problem to optimize R_{ECO} for its operation (R_{ECO} OPF) is formulated and solved. The optimized cases are validated to test for any improvement in their inherent ability to absorb disturbances without human intervention.

- The feasibility and effectiveness of the proposed R_{ECO} OPF problem is investigated using six power system case studies, ranging from 24- to 500-buses. The cases are solved using Direct Current (DC), Quadratic-Convex relaxed Alternating Current (QCLS), and Alternating Current (AC) power flow models. The achieved optimal R_{ECO} varies under the different power flow models, but it is observed that higher R_{ECO} systems are more resilient against unexpected contingencies.

- Reliability improvements stemming from the R_{ECO} OPF are illustrated using a set of unexpected contingencies and compared to the tradition OPF and SCOPF for resilience improvements and cost-effectiveness. The results support the potential for using R_{ECO} OPF as a preventative method against unexpected contingencies.

- Analyses of network properties regarding the robustness and distribution of power flows show that the power flows in the R_{ECO} optimized cases are more homogeneously distributed, contributing to the measured improvement against cascading failures.

Section \[11\] reviews the background of R_{ECO} with respect to power systems and presents the proposed R_{ECO} OPF. Section \[III\] introduces the relaxation of R_{ECO} using a Taylor Series
Expansion and DC & Quadratic-Convex relaxed AC power flow models. Section IV solves the relaxed R_{ECO} OPF for six power system case studies ranging from 24- to 500-buses with different power flow models. Section V evaluates the R_{ECO} OPF to understand improvements in the bio-inspired network’s reliability, cost-effectiveness, and other network properties. Discussions of the various results can be found in Section VI.

II. ECOLOGICAL ROBUSTNESS ORIENTED OPTIMAL POWER FLOW

A. Overview of Ecological Robustness in Power Systems

The input for calculating R_{ECO} is the Ecological Flow Matrix $[T]$, which is a square $(N+3) \times (N+3)$ matrix. The N is the number of actors, and the extra entries represent the system inputs, useful outputs, and dissipation [35]. For power systems, we model generators and buses as actors whose function is transferring energy in the network, system inputs are the energy generated from generators, useful exports are the load (consumption), and dissipation is the power losses [31] – [34]. The entries in $[T]$ are T_{ij}, representing the directed power flow from node i to node j. Fig. 1 shows the constitution of $[T]$ for power systems with real power flows. The system inputs are power from generators P_{gen}, the useful exports are the loads at each bus, P_{load}, Dissipation is P_{loss}, is the real power loss at Bus i. The generators are treated as lossless, so the dissipation column for generators is 0. The power loss at Bus i is the real power flows at the corresponding branch. If there is no interaction among buses and generators, the entry is zero.

![Fig. 1: An Ecological Flow Matrix $[T]$ for a grid with n generators and m buses and grid customers residing outside the system boundaries (modeled as useful outputs): The P_{gen} is the real power output from generator i, which locates at the input row and the flow between generator and corresponding bus. The generators are treated as lossless, so the dissipation column for generators is 0. The P_{load} is the real power consumption at Bus i. P_{loss} is the real power loss at Bus i. The P_{ij} is the real power flows at the corresponding branch. If there is no power flow interaction among buses and generators, the entry is zero.](image)

where s is one’s “surprisal” at observing an event that occurs with probability p, and k is a positive scalar constant.

Using surprisal, the indeterminacy of an event i can be described as the product of the presence of an event p_i and its absence s_i:

$$h_i = -k \times p_i \times \log(p_i)$$

(2)

where h_i is the indeterminacy of the event i.

The indeterminacy measures the potential for change with respect to an event i, where event i must both be likely enough to occur ($p_i >> 0$) and unlikely enough, such that the system is doing something else most of the time ($s_i >> 0$). The interpretation is as follows: for a given system, certain low probability events have a high potential for change or high impact to the system, but they happen rarely; high probability events possess a low impact because they occur often and the system adapts to them [27].

With surprisal and indeterminacy, R_{ECO} is able to quantify the ecosystem robustness considering prospective events (disturbances) in the system, with following metrics. The Total System Throughput ($TSTp$) [30] is the sum of all flows in $[T]$, capturing the system size:

$$TSTp = \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} T_{ij}$$

(3)

For power systems, it is the total energy circulated in the system.

The Ascendency (ASC) measures the scaled mutual constraint for system size and flow organization that describes the process of ecosystems’ growth and development [38] with Equation (4):

$$ASC = -TSTp \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} \left(\frac{T_{ij}}{TSTp} \log_2 \left(\frac{T_{ij}TSTp}{T_{i}T_{j}} \right) \right)$$

(4)

where T_i is the $\sum_{j=1}^{N+3} T_{ij}$.

The part of $\sum_{i=1}^{N+3} \sum_{j=1}^{N+3} T_{ij} TSTp \log_2 \left(\frac{T_{ij}TSTp}{T_{i}T_{j}} \right)$ is the average mutual information introduced in [38, 39], which is the average amount of uncertainty based on the knowledge of food web structure. The $T_{ij} TSTp$ considers the knowledge of source (i) and end (j) nodes for a given flow (ij) in the network. Following the indeterminacy in Equation (2), the average mutual information represents the aggregate amount of uncertainty accompanying each flow in the system with the knowledge of source and end nodes. Multiplying with $TSTp$, ASC gives a dimensional version of network uncertainty. A higher ASC for the same size system represents a network
The Development Capacity (DC) was introduced by Ulanowicz in [40] as the upper bound of ASC since there is a limit of ecosystems’ growth and development:

$$DC = -TSTp \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} \left(\frac{T_{ij}}{TSTp} \log_2 \left(\frac{T_{ij}}{TSTp} \right) \right)$$ \hspace{1cm} (5)

where the $\frac{T_{ij}}{TSTp}$ can be recognized as the probability of an event respect to the flows in the system. Let $H_{ij} = T_{ij} / TSTp \log_2 \left(\frac{T_{ij}}{TSTp} \right)$ with (2), and DC can be rewritten as

$$DC = -TSTp \times \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} H_{ij}$$ \hspace{1cm} (6)

Then, a system’s DC is its aggregate indeterminacy that describes its capacity to undergo change. It captures the aggregated impacts (uncertainty) from all events (surprisals).

With the above formulation, the ratio of ASC and DC reflects the pathway efficiency for a given network while its natural logarithm shows the network’s pathway redundancy [30]. With the power flows as input, the pathway efficiency and redundancy in power systems consider both the network structure and the amount of power flow distributed over the network. Then, the formulation of R_{ECO} is as follows,

$$R_{ECO} = -\left(\frac{ASC}{DC} \right) \ln \left(\frac{ASC}{DC} \right)$$ \hspace{1cm} (7)

where R_{ECO} has the ability to account for the presence unknown events, or interruptions, that can happen in the system.

Fig. [3] shows the comparison of R_{ECO} among food webs, original power networks, and bio-optimized power networks from [31]– [34]. The food webs include the food chains in a graphical representation among different species in ecosystems based on their prey-predator relationships. The graph captures the flow of energy and materials in ecosystems [41]. The ASC/DC is the ratio of ascendancy and development capacity for a given ecosystem, representing the system’s efficiency and redundancy. The R_{ECO} value of robust food webs has been shown to fall into a specific range respect to ASC/DC, called the Window of Vitality, that circumscribes sustainable behavior in ecosystems [30]. It reflects the beneficial balance of the food webs’ efficiency and redundancy of the network structure and energy flows for its survivability.

The calculation of R_{ECO} in power systems depends on both the network structure and its power flows. In this paper, the R_{ECO} OPF is hence proposed to improve power system’s robustness for better reliability and survivability against unexpected contingencies by optimizing its power flow distribution.

B. Ecological Robustness Oriented Optimal Power Flow

The proposed R_{ECO} OPF problem is formulated through Equation (8)-(22) under the assumptions of an AC power flow model. Its objective is to maximize the R_{ECO} of a given power system through adjusting the control variables of real (P_i) and reactive power (Q_i) injections, and bus voltages (magnitude V_i and angle θ_i). The problem uses R_{ECO} as the objective, to improve power system robustness for more resilient operation, with better reliability and survivability against disturbances.

Equation (9) is a function of real power flows, including generator real power outputs $P_{gen,i}$, real power flows P_{ij} in the network, power consumptions at each load $P_{load,i}$, and power losses $P_{loss,i}$ at each bus; these formulate T as in Fig [1]. Then, Equations (10)-(13) formulate R_{ECO}, ASC, DC, and TSTp, respectively. Equations (14)-(21) ensure satisfaction of power balance and power system operation constraints with AC power flow model for real and reactive power. We aggregate the branch losses for each bus as $P_{loss,i}$, with Equation (22).

Maximize R_{ECO} \hspace{1cm} (8)

subject to:

$$T = f(P_{ij}, P_{gen,i}, P_{load,i}, P_{loss,i})$$ \hspace{1cm} (9)

$$R_{ECO} = - \left(\frac{ASC}{DC} \right) \ln \left(\frac{ASC}{DC} \right)$$ \hspace{1cm} (10)

$$ASC = -TSTp \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} \left(\frac{T_{ij}}{TSTp} \log_2 \left(\frac{T_{ij}}{TSTp} \right) \right)$$ \hspace{1cm} (11)

$$DC = -TSTp \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} \left(\frac{T_{ij}}{TSTp} \log_2 \left(\frac{T_{ij}}{TSTp} \right) \right)$$ \hspace{1cm} (12)

$$TSTp = \sum_{i=1}^{N+3} \sum_{j=1}^{N+3} T_{ij}$$ \hspace{1cm} (13)

$$v_i^l \leq V_i \leq v_i^u \hspace{0.5cm} (\forall \ i \in \mathcal{M})$$ \hspace{1cm} (14)

$$s_{ij}^l \leq S_{ij} \leq s_{ij}^u \hspace{0.5cm} (\forall (i,j) \in \mathcal{B})$$ \hspace{1cm} (15)

$$s_{gen,i}^l \leq S_{gen,i} \leq s_{gen,i}^u \hspace{0.5cm} (\forall \ i \in \mathcal{G})$$ \hspace{1cm} (16)
\[S = P + iQ \]

\[P_{ij} = V_i^2[-G_{ij}] + V_iV_j[G_{ij}\cos(\theta_{ij}) + B_{ij}\sin(\theta_{ij})] \quad (\forall (i,j) \in \mathcal{B}) \]

\[Q_{ij} = V_i^2[B_{ij}] + V_iV_j[G_{ij}\sin(\theta_{ij}) - B_{ij}\cos(\theta_{ij})] \quad (\forall (i,j) \in \mathcal{B}) \]

\[P_i = P_{load_i} - P_{gen_i} = \sum_j P_{ij} \quad (\forall j \in \mathcal{M}) \]

\[Q_i = Q_{load_i} - Q_{gen_i} = \sum_j Q_{ij} \quad (\forall j \in \mathcal{M}) \]

\[P_{loss_i} = \frac{1}{2} \sum_j (P_{ij}^2 + Q_{ij}^2)/(B_{ij}V_i^2) \quad (\forall j \in \mathcal{M}) \]

where \(\mathcal{B}, \mathcal{M}, \) and \(\mathcal{G} \) are the sets of all branches, buses, and generators, respectively. \(v_i^l \) and \(v_i^u \) are the lower and upper bound of bus voltage magnitude, respectively; \(s_{ij}^l \) and \(s_{ij}^u \) are the lower and upper bound of branch limit, respectively; \(s_{gen}^l \) and \(s_{gen}^u \) are the lower and upper bound of generator output, respectively.

III. RELAXATIONS FOR PROPOSED \(R_{ECO} \) OPF

The \(R_{ECO} \) OPF problem in PowerModels.jl [42] is built here using Julia [43]. The formulation of \(R_{ECO} \) with Equation [10] - [13] uses power flows at each element based on their network index. The formulation contains the natural logarithm function, whose domain should be positive; its use would require flow directions of \(P_{gen_i}, P_{load_i}, P_{ij}, \) and \(P_{loss_i} \) to be fixed. However, the flow directions of all \(P_{ij} \) depend on \(V_i, \theta_i, P_{gen_i}, \) and \(Q_{gen_i}; \) hence, during the optimization process, they can reverse. Moreover, the logarithm function is a log-concave function [44], which makes the proposed \(R_{ECO} \) OPF challenging to solve. The logarithm function’s Taylor Series Expansion is first performed to relax the formulation of \(R_{ECO} \). Then, two relaxed schemes of power flow are considered using both a linearized DC power flow model and a Quadratic-Convex relaxed AC power flow model to solve the proposed \(R_{ECO} \) OPF problem.

A. Relaxation of \(R_{ECO} \) Formulation

There are several Taylor Series Expansions for the natural logarithm function. Considering the domain for the expansion, this paper utilizes the following relaxation with \(x > 0 \) [45]:

\[\ln(x) = 2 \sum_{n=1}^{\infty} \frac{(x - 1)/(x + 1)(2n - 1)}{(2n - 1)} = 2\left[\frac{x - 1}{x + 1} + \frac{1}{3}\left(\frac{x - 1}{x + 1}\right)^3 + \frac{1}{5}\left(\frac{x - 1}{x + 1}\right)^5 + \ldots\right] \]

For Equation [5] and [6], the logarithm function is with base of 2. With the property of logarithm function:

\[\log_2(x) = \frac{\ln(x)}{\ln(2)} \]

the Taylor Series Expansion of \(\log_2(x) \) can be expanded as:

\[\log_2(x) = \frac{2}{\ln(2)}\left[\frac{x - 1}{x + 1} + \frac{1}{3}\left(\frac{x - 1}{x + 1}\right)^3 + \frac{1}{5}\left(\frac{x - 1}{x + 1}\right)^5 + \ldots\right] \]

The above relaxation requires the input \(x \) not equal to -1. From Equations [10] - [12], the inputs for the logarithm function are \(\frac{T_{ij}^2}{T_{ij}^2}, \frac{T_{ij}T_{ij}^p}{T_{ij}}, \) and \(\frac{T_{ij}T_{ij}^p}{T_{ij}^2} \), respectively. The \(T_{ij} \) are power flows in the system. From Fig. 2, the \(\frac{T_{ij}^2}{T_{ij}} \) is always bounded within (0,1). Through Equation [11] and [12], \(\frac{T_{ij}T_{ij}^p}{T_{ij}} \) should be within (0,1). Since the power flow will change direction, \(\frac{T_{ij}T_{ij}^p}{T_{ij}^2} \) is bounded within (-1,1). With Equation [13], \(\frac{T_{ij}T_{ij}^p}{T_{ij}^2} \) is also bounded within (-1,1) since \(T_{ij} \) is always less than \(TST_p \). One extreme situation is when the system has only one actor that exports and intakes energy, where the above boundary will include \(\pm 1 \). However, that is impractical for power systems.

The formulation of \(R_{ECO} \) is based on the initial state. By adapting the first order Taylor Series Expansion of Equation [23] and [25] into Equation [10] - [12], so that it can take negative values without logarithm domain restriction during the solving process. A more strict formulation of \(R_{ECO} \) that needs to dynamically update during solving process would increase the complexity of the problem and thus adversely affect scalability to large and realistic systems, like the limitation encountered in [17].

B. Approximation of AC Power Flow Models

1) DC Power Flow Model: The basic linearized DC power flow model treats the system as lossless with \(G = 0 \) and voltage magnitudes of all buses are assumed constant at 1.0 per unit. The angle difference between two buses is assumed small such that the \(\cos(\theta_{ij}) = 1 \) and \(\sin(\theta_{ij}) = \theta_{ij} \) [46]. Thus, \(Q = 0 \), and Equation [19] and [21] can be removed from constraints Equation [18] simplifies as follows:

\[P_{ij} = B_{ij}(\theta_i - \theta_j) \quad (\forall (i,j) \in \mathcal{B}) \]

2) Quadratic-Convex AC Power Flow Model: Sundar et al. introduce several quadratic-convex (QC) relaxation schemes on AC power flow models based on the McCormick envelopes [47] for the square and products of variables [48]. The strengthened quadratic-convex relaxation (QCLS) are applied in this work to obtain the tightest voltage and phase angle difference bounds to efficiently solve the AC problems [48]. A simplified QCLS model from the QC relaxed AC OPF problem is also presented, a more detailed deduction and proof of which can be found in [48]. The non-convex equations of power flows for the QC relaxation can be relaxed with the non-convex sub-expressions using the bounds on voltage magnitude and angle variables. With the McCormick envelopes and Lifted Nonlinear Cuts [49], the sine and cosine function can be further relaxed and
bounded. The QCLS model is based on the QC relaxation using an extreme point representation. The definition of the extreme point is as follow: given a set \(X \), a point \(p \in X \) is extreme if there does not exist two other distinct points \(p_1, p_2 \in X \) and a non-negative multiplier \(\lambda \in [0,1] \), such that \(p=\lambda p_1 + (1-\lambda)p_2 \). Then, Sundar et al. introduced an extreme-point encoding of trilinear terms with a constraint to link the \(\lambda \) variables in multiple trilinear terms.

For example, let \(\phi(x_1, x_2, x_3) = x_1 x_2 x_3 \) denote a trilinear term with variable bounds \(x_1^a \leq x_1 \leq x_1^b \) for all \(i=1,2,3 \). Then, let \(\xi = \{x_1, x_2, x_3\} \) denote the vector of eight extreme points of \([x_1^a, x_1^b] \times [x_2^a, x_2^b] \times [x_3^a, x_3^b] \). The extreme points in \(\xi \) are given:

\[
\begin{align*}
\xi_1 &= (x_1^a, x_2^a, x_3^a), & \xi_2 &= (x_1^a, x_2^a, x_3^b), \\
\xi_3 &= (x_1^a, x_2^b, x_3^a), & \xi_4 &= (x_1^a, x_2^b, x_3^b), \\
\xi_5 &= (x_1^b, x_2^a, x_3^a), & \xi_6 &= (x_1^b, x_2^a, x_3^b), \\
\xi_7 &= (x_1^b, x_2^b, x_3^a), & \xi_8 &= (x_1^b, x_2^b, x_3^b).
\end{align*}
\]

(27)

Then, the tightest convex envelope of the trilinear term \(x_1 x_2 x_3 \) is given by the following,

\[
< x_1 x_2 x_3 > ^\lambda \equiv \frac{\sum_{k=1}^{8} \lambda_k \xi_k}{\sum_{k=1}^{8} \lambda_k} \forall i = 1, 2, 3
\]

(28)

where the \(\xi_k \) is the \(i \)-th coordinate of the \(\xi_k \), the \(\tilde{x} \) is the lifted variables representing the extreme points.

Then, for each branch \((i,j) \in B\), the sine and cosine functions in power flow equations are formulated as follows:

\[
v_i v_j \cos(\theta_{ij}) = < v_i v_j \tilde{c}_{ij}, \lambda_{ij} > \lambda_{ij} (\forall (i,j) \in B)
\]

(29)

\[
v_i v_j \sin(\theta_{ij}) = < v_i v_j \tilde{m}_{ij}, \lambda_{ij} > \lambda_{ij} (\forall (i,j) \in B)
\]

(30)

where \(\tilde{c}_{ij} \) and \(\tilde{m}_{ij} \) are the lifted variables for the cosine and sine functions respectively; the \(\lambda_{ij} \) and \(\lambda_{ij} \) are used for capturing the convex envelopes in the trilinear terms in the QC relaxations.

QCLS also includes a linking constraint to strengthen the relaxation. For each branch in the system, the linking constraint is as follow:

\[
\begin{pmatrix}
\lambda_{ij,1}^c - \lambda_{ij,2}^c - \lambda_{ij,3}^c \\
\lambda_{ij,1}^c - \lambda_{ij,4}^c - \lambda_{ij,3}^c \\
\lambda_{ij,5}^c - \lambda_{ij,6}^c - \lambda_{ij,5}^c \\
\lambda_{ij,7}^c - \lambda_{ij,8}^c - \lambda_{ij,7}^c
\end{pmatrix}^T
\begin{pmatrix}
v_i^c \cdot v_j^c \\
v_i^c \cdot v_j^u \\
v_i^u \cdot v_j^c \\
v_i^u \cdot v_j^u
\end{pmatrix} = 0
\]

(31)

QCLS ensures a tighter voltage and phase angle difference bounds for AC OPF problems to efficiently compute a local optimal solution. The QCLS model is in the PowerModels.jl [42] library, and it is used with the proposed \(R_{ECO} \) OPF for the following cases studies.

IV. OVERVIEW OF CASE STUDIES AND RESULTS

The proposed \(R_{ECO} \) OPF is next applied to six power system cases: the IEEE 24 Bus Reliability Test System (RTS) [50], the reduced Great Britain (GB) network [51], the 37 Bus case from [52], the IEEE 118 Bus System [50], and two synthetic grids, ACTIVSg200 and ACTIVSs500, from [53], [54]. The \(R_{ECO} \) OPF is modeled and solved with DC, QCLS, and AC power flow models for each case, respectively, to investigate the feasibility and effectiveness. The optimization problem is built in Julia [55], and the solver for the \(R_{ECO} \) OPF problem uses Ipopt [55] and Juniper [56]. A flat start is used to initialize the optimization problem [62]. All cases are solved in a laptop with a 2.4 GHz processor and 8 GB memory. It is important to note here that the proposed \(R_{ECO} \) OPF involves with several layers of logarithm functions (concave function) to formulate the objective function, \(R_{ECO} \). Even the relaxation through Taylor Expansion ensures the validity of the problem with the solver [55, 56]. It is not guaranteed to have a feasible solution or a global optimal for this nonlinear optimization problem.

All cases are solved with DC and QCLS models. Only ACTIVSg200 and ACTIVSs500 can be solved with AC model. The DC model linearizes the power flow constraints of \(R_{ECO} \) OPF, making it feasible to solve all cases. The QCLS model tightens the voltage and phase angle difference bounds, which makes the solver efficiently find the local optimal point. Under the original AC power flow boundaries, the flat start cannot guarantee the solution of \(R_{ECO} \) OPF since the voltage and phase angle difference have bigger range to search. The feasible boundaries of DC and AC OPF are different [57]. Thus, even though the problem can be solved with DC and QCLS \(R_{ECO} \) OPF, it cannot guarantee the feasibility for AC \(R_{ECO} \) OPF. The nonlinear objective \(R_{ECO} \) would require a better guess of initial point instead of flat start.

TABLE II gives the \(R_{ECO} \) OPF results for each case, showing the achieved optimal value of \(R_{ECO} \) (Achieved \(R_{ECO} \)), the Original \(R_{ECO} \), the computation time, and the solved status. Due to the relaxation of the Taylor Series Expansion, the value of optimal \(R_{ECO} \) from the solver is reduced from 0.3678 to 0.3431 for all cases. The Original \(R_{ECO} \) is based on the original power flows in each case, while the Achieved \(R_{ECO} \) is based on the \(R_{ECO} \) optimized power flows after the control vectors adapting back to the case adapting back to the case and solving it under AC power flow model. This paper adapts a hybrid approach to analyze and compare the effectiveness of different power flow models to \(R_{ECO} \) OPF, which is similar to the hybrid approach in [58, 59]. The solution from the solver provides the vectors of \(V_i, \theta_i, P_{gen} \), and \(Q_{gen} \) for all buses and generators. We adapt the control vectors back to the system and solve it with AC power flow model through Newton-Raphson method without error. It shows the \(R_{ECO} \) OPF under different power flow models are compatible with AC power flow model. Then, we calculate the \(R_{ECO} \) through Equation (9)-(13) as the Achieved \(R_{ECO} \) indicating the final power systems’ state based on the solution. The detailed control vectors and case information have been made publicly available at [60]. With increases in case size.
TABLE I: Results of Ecological Robustness Oriented Power Flow for 6 Power System Networks

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Power Flow Model</th>
<th>Solved Status</th>
<th>Computation Time (seconds)</th>
<th>Achieved R_{ECO}</th>
<th>Original R_{ECO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 24 Bus RTS [50]</td>
<td>DC</td>
<td>Solved</td>
<td>0.35</td>
<td>0.3391</td>
<td>0.3382</td>
</tr>
<tr>
<td>IEEE 24 Bus RTS [50]</td>
<td>QCLS</td>
<td>Solved</td>
<td>1.63</td>
<td>0.3395</td>
<td>0.3382</td>
</tr>
<tr>
<td>IEEE 24 Bus RTS [50]</td>
<td>AC</td>
<td>Infeasible</td>
<td>NA</td>
<td>NA</td>
<td>0.3382</td>
</tr>
<tr>
<td>Reduced GB Network [51]</td>
<td>DC</td>
<td>Solved</td>
<td>28.92</td>
<td>0.3600</td>
<td>0.3441</td>
</tr>
<tr>
<td>Reduced GB Network [51]</td>
<td>QCLS</td>
<td>Solved</td>
<td>44.77</td>
<td>0.3581</td>
<td>0.3441</td>
</tr>
<tr>
<td>Reduced GB Network [51]</td>
<td>AC</td>
<td>Infeasible</td>
<td>NA</td>
<td>NA</td>
<td>0.3441</td>
</tr>
<tr>
<td>37 Bus Case [52]</td>
<td>DC</td>
<td>Solved</td>
<td>0.27</td>
<td>0.2951</td>
<td>0.2846</td>
</tr>
<tr>
<td>37 Bus Case [52]</td>
<td>QCLS</td>
<td>Solved</td>
<td>22</td>
<td>0.2972</td>
<td>0.2846</td>
</tr>
<tr>
<td>37 Bus Case [52]</td>
<td>AC</td>
<td>Infeasible</td>
<td>NA</td>
<td>NA</td>
<td>0.2846</td>
</tr>
<tr>
<td>IEEE 118 Bus System [50]</td>
<td>DC</td>
<td>Solved</td>
<td>61.53</td>
<td>0.3296</td>
<td>0.3064</td>
</tr>
<tr>
<td>IEEE 118 Bus System [50]</td>
<td>QCLS</td>
<td>Solved</td>
<td>62.69</td>
<td>0.3201</td>
<td>0.3064</td>
</tr>
<tr>
<td>IEEE 118 Bus System [50]</td>
<td>AC</td>
<td>Infeasible</td>
<td>NA</td>
<td>NA</td>
<td>0.3064</td>
</tr>
<tr>
<td>ACTIVSg200 [53]</td>
<td>DC</td>
<td>Solved</td>
<td>103.16</td>
<td>0.2496</td>
<td>0.2510</td>
</tr>
<tr>
<td>ACTIVSg200 [53]</td>
<td>QCLS</td>
<td>Solved</td>
<td>401.07</td>
<td>0.2506</td>
<td>0.2510</td>
</tr>
<tr>
<td>ACTIVSg200 [53]</td>
<td>AC</td>
<td>Solved</td>
<td>1000.19</td>
<td>0.2503</td>
<td>0.2510</td>
</tr>
<tr>
<td>ACTIVSg500 [53]</td>
<td>DC</td>
<td>Solved</td>
<td>203.93</td>
<td>0.2236</td>
<td>0.2144</td>
</tr>
<tr>
<td>ACTIVSg500 [53]</td>
<td>QCLS</td>
<td>Solved</td>
<td>2140.76</td>
<td>0.2216</td>
<td>0.2144</td>
</tr>
<tr>
<td>ACTIVSg500 [53]</td>
<td>AC</td>
<td>Solved</td>
<td>296.83</td>
<td>0.2223</td>
<td>0.2144</td>
</tr>
</tbody>
</table>

and model complexity, solution time increases.

Except Reduced GB Network, the Achieved R_{ECO} is lower than 0.3431, the optimal R_{ECO}. That’s the error introduced by the change of flow direction and the solvers’ settings. For power systems, R_{ECO} depends on both network structure and power flows over the system. A more redundant network structure favors a higher value of R_{ECO}, thus the IEEE 24 Bus RTS and Reduced GB Network have higher original R_{ECO} and the Achieved R_{ECO} than other cases. Analyses of tradeoffs of R_{ECO} with respect to power flow models, system reliability and cost are presented in the following sections.

V. EVALUATION AND ANALYSES OF R_{ECO} OPF

Several evaluation metrics are introduced here into the case studies to analyze how the R_{ECO} OPF improves the power systems’ reliability as well as to study its cost effectiveness.

The results for all analyses are shown in Tables [I] - [V]. Table [I] and Table [II] compares reliability, Table [IV] compares cost-effectiveness, and Table [V] compares network properties. For simplification, the Use Case name in the tables is codefied by its Case Name, Power Flow Model (DC, QCLS, or AC), and use of R_{ECO} OPF. All analyses are done using the AC power flow model with the Newton-Raphson method, with the control vector obtained from Julia output. Power system operation feasibility is ensured by solving the AC power flow equations for a feasible operating solution. Once the R_{ECO} OPF problem is solved, no matter using AC, DC or QCLS power flow model, the control vectors are used for generators and bus voltage settings to solve the AC power flow without infeasibility.

A. Contingency Analysis

Contingency analysis is used to examine how the R_{ECO} OPF can improve systems’ inherent ability of absorbing disturbances. To compare network reliability, we perform N-x contingency analysis for each case with the original operating state and the R_{ECO} optimized operating state. The R_{ECO} OPF is expected to reduce violations under contingencies

The term N-x contingency analysis refers to a power system study where, among N total components, x are taken out of service. If the contingency causes operating stress, limit violations occur for different elements, such as branch power flows exceeding thermal limits or bus voltages out of bounds. If the contingency causes the power flow to be unable to be solved, we denote it as unsolved. The contingency analyses are performed considering each case’s control settings which are noted, such as droop control, automatic generator control, etc., if present. This modeling is consistent with ARPA-E’s requirements for work on grid optimization [61]. Under the same control settings, comparing the quantity of above violations and unsolved situations shows the effectiveness of proposed R_{ECO} OPF to improve power systems’ inherent ability of absorbing disturbances and survive from contingencies. It is also important to note that the same case under different operating points can have different levels of survivability against contingencies, and the same contingency can cause different operating violations with different levels of severity. To avoid the endless comparison and discussion of reliability, we use the number of violations and unsolved contingencies
TABLE II: Reliability Comparison of Ecological Robustness Optimal Power Flow (IEEE 24 Bus RTS, Reduced GB Network, 37 Bus, IEEE 118 System)

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Achieved R_{ECO}</th>
<th>N-1 Branch</th>
<th>N-1 Generator</th>
<th>N-1 Bus</th>
<th>N-2 Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 24 Bus RTS</td>
<td>0.3582</td>
<td>4 violations</td>
<td>0</td>
<td>11 violations, 1 unsolved</td>
<td>294 violations, 1 unsolved</td>
</tr>
<tr>
<td>IEEE 24 Bus RTS DC R_{ECO} OPF</td>
<td>0.3591</td>
<td>4 violations</td>
<td>0</td>
<td>9 violations</td>
<td>252 violations, 1 unsolved</td>
</tr>
<tr>
<td>IEEE 24 Bus RTS QCLS R_{ECO} OPF</td>
<td>0.3599</td>
<td>4 violations</td>
<td>0</td>
<td>8 violations, 1 unsolved</td>
<td>215 violations, 2 unsolved</td>
</tr>
<tr>
<td>Reduced GB</td>
<td>0.3441</td>
<td>1802 violations, 8 violations</td>
<td>857 violations</td>
<td>228 violations, 14 unsolved</td>
<td>76581 violations, 47 unsolved</td>
</tr>
<tr>
<td>Reduced GB DC R_{ECO} OPF</td>
<td>0.3600</td>
<td>0</td>
<td>0</td>
<td>1 violation</td>
<td>6 violations</td>
</tr>
<tr>
<td>37 Bus Case</td>
<td>0.3581</td>
<td>1 violation</td>
<td>0</td>
<td>3 violations</td>
<td>98 violations</td>
</tr>
<tr>
<td>37 Bus Case DC R_{ECO} OPF</td>
<td>0.2951</td>
<td>4 violations</td>
<td>0</td>
<td>7 violations</td>
<td>274 violations</td>
</tr>
<tr>
<td>37 Bus Case QCLS R_{ECO} OPF</td>
<td>0.2972</td>
<td>7 violations</td>
<td>0</td>
<td>12 violations</td>
<td>495 violations</td>
</tr>
<tr>
<td>IEEE 118</td>
<td>0.3064</td>
<td>1 violation</td>
<td>0</td>
<td>10 violations</td>
<td>240 violations, 4 unsolved</td>
</tr>
<tr>
<td>IEEE 118 DC R_{ECO} OPF</td>
<td>0.3206</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20 violations</td>
</tr>
<tr>
<td>IEEE 118 QCLS R_{ECO} OPF</td>
<td>0.3201</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34 violations, 3 unsolved</td>
</tr>
</tbody>
</table>

Table II because for these larger realistic synthetic cases, the contingency list has been expanded to include the selected critical N-x contingencies from [25], [26].

The reliability improves for the IEEE 24 Bus RTS with the R_{ECO} OPF using both DC and QCLS power flow models. For N-1 bus contingencies, the DC R_{ECO} OPF removes the unsolved contingencies and reduces the violations from 11 to 9. For N-2 branch contingencies, the DC R_{ECO} OPF reduces 2 unsolved contingencies and 22 violations, while the QCLS R_{ECO} OPF reduces 1 unsolved contingency and 39 violations. R_{ECO} in the Reduced GB network improves using both DC and QCLS power flow models. The original Reduced GB Network is under stress, so the contingency analysis with N-1 and N-2 causes numerous violations and multiple unsolved situations. Thus, the reliability improvement from the R_{ECO} OPF for Reduced GB Network is significant. The DC R_{ECO} OPF removes all the N-1 contingencies with branches and generators. The violations are reduced under N-1 bus contingencies from 228 to 1. The violations under N-2 branch contingencies are also greatly reduced, from 76581 to 6. The QCLS R_{ECO} OPF removes all N-1 generator contingencies, reduces the N-1 branch violations from 1502 to 1, reduces the N-1 bus violations from 228 to 3, reduces the N-2 branch violations from 76581 to 98. All unsolved situations are resolved using both DC and QCLS R_{ECO} OPF.

The R_{ECO} for the 37-Bus case improves with the R_{ECO} OPF using both DC and QCLS power flow models. The QCLS R_{ECO} OPF has higher R_{ECO} and R_{CF} than DC R_{ECO} OPF. However, the reliability improvement of QCLS R_{ECO} OPF is less than DC R_{ECO} OPF. The DC R_{ECO} OPF reduces the violations of N-1 Branch and Bus Contingencies from 7 to 4 and from 15 to 7, respectively. It also reduces the violations of N-2 Branch Contingencies from 596 to 274. The QCLS R_{ECO} OPF only reduces the violations of N-1 Bus Contingencies from 15 to 12, and the violations of N-2 Branch Contingencies from 596 to 495.

The original IEEE 118 Bus System has no branch limits in the case, so we insert branch limits of 1000 MVA. For contingency analysis, these branch limits do not introduce line overload violations. All violations are voltage violations. The R_{ECO} improves with the R_{ECO} OPF using both DC and QCLS power flow models (Table I). The DC R_{ECO} OPF improves the reliability more, with higher R_{ECO} than QCLS R_{ECO} OPF. Both DC and QCLS R_{ECO} OPF absorb the impact of the N-1 contingencies. As for N-2 contingencies, DC R_{ECO} OPF reduces violations from 240 to 20 with no unsolved situations, and QCLS R_{ECO} OPF reduces violations from 240 to 34 with 3 unsolved situations.

The ACTIVSg200 results show that the R_{ECO} is reduced from R_{ECO} OPF with all models (Table I). The change is small, indicating that the system was already operating closer to the optimal R_{ECO} value in the base case. Correspondingly, the reliability is not improved as the other cases. However, the unsolved situations under the critical contingencies are reduced.

R_{ECO} for the ACTIVSg500 system improves under all the power flow models. The N-1 bus and substation contingency analysis show improvement of reliability with less violations.

to represent the reliability and survivability of each case under different operating states through the paper.

The comprehensive N-1 contingencies for each branch, generator, and bus are considered for the IEEE 24 Bus RTS, Reduced GB Network, 37-Bus Case, and the IEEE 118, as well as N-2 contingencies with the branches. Since these cases are relatively small, the N-2 contingencies can cause great impact to the system’s operation and security. The contingencies capture those systems’ ability of absorbing disturbances. For ACTIVSg200 and ACTIVSg500, we consider the N-1 contingencies for each branch, generator, bus, and substation, respectively. Since these are large cases, it is hard to perform a complete N-x contingency when $x \geq 2$. In [25], [26], the authors use graph theory and line outage distribution factors (LODFs) to identify critical N-x contingencies for ACTIVSg200 and ACTIVSg500 (multiple branches out of service) that cause the system operational stress. The value of x ranges from 3 to 8, and such branches are widespread. The number of compromised branches and the widespread locations make such contingencies statistically unexpected and adversely stress the system operation. These contingencies are remarked as critical contingencies. It is noted that for N-1 bus or substation contingencies, all connected devices are disconnected from the system, including the generators, load, and branches. In our case studies, substation outage causes up to 5 elements fail (N-5). These contingencies can cause generator unavailability, like the Texas Winter Energy Crisis [3]. A superset comprising all contingency lists as described above of branch, generator, bus, and substations (N-1, N-2, and critical contingencies) is used to examine each case’s inherent ability of absorbing large disturbances under the original and R_{ECO} optimized power flows.

Table II shows the reliability comparisons between R_{ECO} OPF and the original case for IEEE 24 Bus RTS, Reduced GB Network, 37 Bus Case, and IEEE 118 Bus systems. Table III shows the reliability comparisons for the ACTIVSg200 system and the ACTIVSg500 system. Table III differs from
TABLE III: Reliability Comparison of Ecological Robustness
Optimal Power Flow (ACTIVSg200, ACTIVSg500)

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Achieved R_{ECO}</th>
<th>N-x Branch</th>
<th>N-x Bus</th>
<th>N-x Substation</th>
<th>Critical Contingencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVSg200</td>
<td>0.2510</td>
<td>0</td>
<td>26 violations, 1 unsolved</td>
<td>19 violations, 2 unsolved</td>
<td>1030 violations, 47 unsolved</td>
</tr>
<tr>
<td>ACTIVSg200 DC</td>
<td>0.2496</td>
<td>1 violation</td>
<td>27 violations, 1 unsolved</td>
<td>19 violations, 2 unsolved</td>
<td>1741 violations, 13 unsolved</td>
</tr>
<tr>
<td>ACTIVSg500</td>
<td>0.2144</td>
<td>38 violations</td>
<td>75 violations, 66 unsolved</td>
<td>52 violations, 8 unsolved</td>
<td></td>
</tr>
<tr>
<td>ACTIVSg500 DC</td>
<td>0.2256</td>
<td>39 violations</td>
<td>73 violations, 65 unsolved</td>
<td>52 violations</td>
<td></td>
</tr>
<tr>
<td>ACTIVSg500 QCLS</td>
<td>0.2216</td>
<td>39 violations</td>
<td>71 violations, 61 unsolved</td>
<td>72 violations</td>
<td></td>
</tr>
<tr>
<td>ACTIVSg500 AC</td>
<td>0.2223</td>
<td>39 violations</td>
<td>74 violations, 65 unsolved</td>
<td>41 violations</td>
<td></td>
</tr>
</tbody>
</table>

However, the N-1 branch contingencies analysis shows that the optimized system has one more violation than the original state. The DC and AC R_{ECO} OPFs reduce the violations from 52 to 32 and 41, respectively, with no unsolved situations for the critical N-x contingencies. The QCLS R_{ECO} OPF has more violations, with no unsolved situations.

Except ACTIVSg200, all other cases' Achieved R_{ECO} have been increased from their Original R_{ECO}. With the improvement of Achieved R_{ECO}, the system's reliability has been improved from its original operating points with less violations and unsolved contingencies. Except 37 Bus case, the higher R_{ECO} is achieved, the operation scheme is more reliable. Thus, it can be observed that there is a positive relationship between R_{ECO} and reliability.

B. Resilience/Cost Tradeoff Analysis

The cost-effectiveness of using R_{ECO} to operate power systems is examined by comparing the cost and reliability against the traditional OPF and SCOPF. The reliability is quantified in terms of the total number of violations, unsolved contingencies, and contingencies with violations from different OPFs using each case’s contingency list from Section V-A which includes both expected N-1 and unexpected N-x contingencies. Cost (Eq. 2) is based on the generators’ real power output (P_i) and their cost function (C_i).

\[
\text{Cost} = \sum_{i=1}^{G} C_i(P_i) \tag{2}
\]

PowerWorld Simulator [52] is used to perform the OPF and SCOPF analysis for the power system cases. The unit of cost is converted to $/hr based on the marginal cost $/WMhr and generator’s output MW. The set of postulated contingencies for SCOPF are the contingencies performed in Section V-A for each case. The SCOPF solution provides a single dispatch against all specified contingencies without remedial actions. The SCOPF in PowerWorld Simulator is solved with three major steps: Initialize the SCOPF problem and control structures (generator and bus setpoints); Contingency analysis and storage of control sensitivity with each violation; SCOPF iteration for each contingency and control action until the maximum iterations [62]. The mitigation of some contingencies can often exacerbate others, thus PowerWorld Simulator handles these situations using penalty functions for unenforceable contingencies [52]. The penalty used here is $1000/hr. The SCOPF in PowerWorld Simulator uses a DC power flow model. Two types of SCOPF are compared to better investigate and compare the effectiveness from R_{ECO} OPF: a conventional SCOPF with N-1 branch contingencies and a more powerful SCOPF with the full N-x contingencies from Section V-A. They are labeled as SCOPF N-1 and SCOPF N-x in Table IV and Figure 3 respectively. The SCOPF N-x is expected to provide a more resilient operating state against the adversaries since all unexpected contingencies are selected. Thus, their comparison between SCOPF and R_{ECO} OPF is performed to compare the preventative approaches that explicitly and implicitly consider the contingencies under both expected and unexpected contingencies, respectively.

Similar to the previous analysis, after obtaining the solution from OPF and SCOPF, we perform the contingency analysis using the AC power flow model for each case. This ensures that all contingencies are considered and provides a clear comparison between OPF, SCOPF, and R_{ECO} OPF about their operating points for disturbances as well as their cost. The control settings of each case remains the same for the contingency analysis to examine the inherent ability of absorbing disturbances with different OPFs. Table [V] and Figure 3 [52] shows the cost and reliability comparisons under R_{ECO} OPF, OPF, and SCOPF. We compare the number of violations, unsolved contingencies, contingencies that cause operating violations (denoted as Violated Contingencies) under R_{ECO} OPF, OPF and SCOPF.

There are 12 and 86 unenforceable contingencies in SCOPF N-1 and SCOPF N-x, respectively for the IEEE 24 Bus RTS. There is 1 unenforceable contingency in SCOPF N-x for the Reduced GB Network. This means that the solution is unable to resolve those violations and contingencies under the DC model, and thus the operational cost is penalized with $1000 per unenforceable contingency. All contingencies are enforceable in SCOPF for the other cases, meaning the solution is able to resolve all violations by re-dispatching generators [52].

There are 12 unenforceable contingency constraints in the SCOPF N-1 for the IEEE 24 Bus RTS (Fig 3(a)) and each constraint has a cost of $1000/hr, resulting in the total cost of $109554.94/hr. Similarly, the total cost for SCOPF N-x, 139612.49/hr, also includes the 24 unenforceable contingency constraints. While cost for R_{ECO} OPF is about 15% higher than OPF, reliability improves under all contingencies. A major potential benefit of the proposed approach can be seen in its comparison to SCOPF, where the cost for R_{ECO} OPF is lower (74.945/hr for QCLS) than the cost for SCOPF N-1 (109554.94/hr) and SCOPF N-x (139612.49/hr), while much fewer violations also occur in QCLS R_{ECO} OPF. The R_{ECO} OPF reduces 15.6% violations, 75% unsolved contingencies, and 9.7% contingencies from the original operating point. The OPF reduces 4.8% violations, 25% unsolved contingencies, and 3.2% contingencies. Both SCOPF N-1 and N-x reduces 75% unsolved contingencies but introduces 400% violations and contingencies. The R_{ECO} OPF is more cost-

Fig. 3: Reliability Comparison of Ecological Robustness Optimal Power Flow for all Case Studies
TABLE IV: Cost Effectiveness Comparison of Ecological Robustness Optimal Power Flow

<table>
<thead>
<tr>
<th>Objective</th>
<th>Power Flow Model</th>
<th>Cost($/hr)</th>
<th>Total Violations</th>
<th>Total Unsolved</th>
<th>Violated Contingencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 24 Bus RTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>DC</td>
<td>80582.41</td>
<td>245</td>
<td>1</td>
<td>144</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>QCLS</td>
<td>74945.96</td>
<td>227</td>
<td>3</td>
<td>139</td>
</tr>
<tr>
<td>OPF</td>
<td>AC</td>
<td>63484.63</td>
<td>256</td>
<td>3</td>
<td>149</td>
</tr>
<tr>
<td>SCOPF N-1</td>
<td>DC</td>
<td>109554.94</td>
<td>1177</td>
<td>1</td>
<td>771</td>
</tr>
<tr>
<td>SCOPF N-x</td>
<td>DC</td>
<td>139612.49</td>
<td>1174</td>
<td>1</td>
<td>771</td>
</tr>
<tr>
<td>Reduced GB Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>DC</td>
<td>27805298</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>QCLS</td>
<td>23012925</td>
<td>102</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>OPF</td>
<td>AC</td>
<td>706664.41</td>
<td>10370</td>
<td>0</td>
<td>4945</td>
</tr>
<tr>
<td>SCOPF N-1</td>
<td>DC</td>
<td>7147613</td>
<td>11462</td>
<td>5</td>
<td>4942</td>
</tr>
<tr>
<td>SCOPF N-x</td>
<td>DC</td>
<td>7918555</td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>IEEE 118 Bus System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>DC</td>
<td>17350.07</td>
<td>285</td>
<td>0</td>
<td>202</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>QCLS</td>
<td>18182.07</td>
<td>514</td>
<td>0</td>
<td>223</td>
</tr>
<tr>
<td>OPF</td>
<td>AC</td>
<td>15809.58</td>
<td>618</td>
<td>0</td>
<td>272</td>
</tr>
<tr>
<td>SCOPF N-1</td>
<td>DC</td>
<td>15846.64</td>
<td>547</td>
<td>0</td>
<td>233</td>
</tr>
<tr>
<td>SCOPF N-x</td>
<td>DC</td>
<td>15813.99</td>
<td>519</td>
<td>0</td>
<td>224</td>
</tr>
<tr>
<td>ACTIVSg 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>DC</td>
<td>51479.93</td>
<td>1787</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>QCLS</td>
<td>50265.75</td>
<td>1401</td>
<td>18</td>
<td>44</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>AC</td>
<td>50850.08</td>
<td>1766</td>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>OPF</td>
<td>AC</td>
<td>48991.26</td>
<td>1076</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>SCOPF N-1</td>
<td>DC</td>
<td>49144.54</td>
<td>1076</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>SCOPF N-x</td>
<td>DC</td>
<td>50237.00</td>
<td>1066</td>
<td>19</td>
<td>43</td>
</tr>
<tr>
<td>ACTIVSg 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>DC</td>
<td>89447.79</td>
<td>207</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>QCLS</td>
<td>77159.61</td>
<td>243</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>R_ECOPF OPF</td>
<td>AC</td>
<td>77482.57</td>
<td>219</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>OPF</td>
<td>AC</td>
<td>66287.91</td>
<td>252</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>SCOPF N-1</td>
<td>DC</td>
<td>80025.06</td>
<td>238</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>SCOPF N-x</td>
<td>DC</td>
<td>94438.72</td>
<td>221</td>
<td>8</td>
<td>49</td>
</tr>
</tbody>
</table>

Even though the reliability of the Reduced GB Network (Fig3(b)) has the most improvement using R_ECOPF OPF, the cost (27805298 $/hr for QCLS) increases three times as compared to OPF (6826257 $/hr), SCOPF N-1 (7147613 $/hr) and SCOPF N-x (7918555 $/hr). The cost of the single unenforceable contingency constraint is included at $1000/hr for SCOPF N-x. The improvement from OPF and SCOPF N-1 is very small compared to R_ECOPF OPF and SCOPF N-1. Both R_ECOPF OPF and SCOPF N-x reduce 99% of violations and contingencies respect to the original operating point and all unsolved contingencies are resolved. For this case, the SCOPF N-x appears to be a better option than R_ECOPF OPF. However, the SCOPF depends on postulated contingencies. With more contingencies considered, the SCOPF can prepare a better power dispatch against the contingencies. While the value of R_ECOPF is its ability to deal with all potential contingencies based on its surprisal model, which includes the unexpected ones.

The cost for R_ECOPF OPF ($17350.07/hr for DC) for the 37 Bus Case (Fig3(c)) is slightly higher than OPF ($15809.58/hr), SCOPF N-1 ($15846.64/hr), and SCOPF N-x ($15813.99/hr). The reliability improvement with R_ECOPF OPF is much greater than OPF and SCOPF. The cost of R_ECOPF OPF is around 10% higher than other OPFs. The R_ECOPF OPF reduced 58% violations and 26% contingencies with respect to its original operating point. SCOPF only reduces 16% violations and 18% contingencies and there is no improvement from OPF. This case exhibits significant cost-effectiveness of the R_ECOPF OPF to improve the reliability of power system operation against unexpected contingencies.

Since the original IEEE 118 Bus System doesn’t have branch limits and the inserted 1000 MVA for branch limit is very large, the system won’t experience any overflow violations under all contingencies. Thus, the result of SCOPF (DC power flow model) and OPF are the same. For the IEEE 118 Bus System (Fig3(d)), the cost for R_ECOPF OPF ($48414.2/hr for DC) is slightly higher than OPF and SCOPF ($47268.54/hr). However, the improvement of reliability with R_ECOPF OPF is much greater than OPF and SCOPF. The increased cost is $1145/hr, which is 10% compared to DC R_ECOPF OPF. However, the reduced violations are 231, which is more than 90% violations reduced. The violated contingencies is also reduced from 228 to 10. With the similar cost, DC R_ECOPF OPF achieves the much better improvement than SCOPF. This case also shows significant cost-effectiveness of using R_ECOPF OPF to improve the reliability of power system operation against unexpected contingencies.

The cost for R_ECOPF OPF ($59265.75/hr for QCLS) for the ACTIVSg200 case (Fig3(e)) is slightly higher than OPF ($49144.26/hr), SCOPF N-1 ($49144.54/hr), and SCOPF N-x ($50237/hr). As discussed in Section V-A, the R_ECOPF of ACTIVSg 200 is not optimized by the proposed R_ECOPF OPF, the reliability is not improved regarding the violations. However, all OPFs do not reduce the violations or violated contingencies respect to the original operating point. Meanwhile, the R_ECOPF OPF reduces the unsolved contingencies with 20% respect to its original operating point, but SCOPF N-x only reduces 5%. The SCOPF N-1 and OPF have no improvement. Thus, the R_ECOPF OPF can provide more observability to the system when unexpected contingency happen.

The cost for R_ECOPF OPF ($89447.79/hr for DC) for the ACTIVSg500 case (Fig3(f)) is higher than OPF ($66287.91/hr) and SCOPF N-1 ($80025.06/hr) but lower than SCOPF N-x ($94438.72/hr). All R_ECOPF OPF solutions have better reliability regarding total violations and unsolved situations. The R_ECOPF OPF reduces 10% violations, 20% unsolved contingencies, and 31% contingencies respect to its original operating point; while the SCOPF reduces 5% unsolved contingencies but introduces 3% violations. The OPF even worsens the reliability. From the...
cost perspective, the R_{ECO} OPF achieves a lower operating cost than SCOPF $N-x$ with a more reliable state. This case also shows the cost-effectiveness of using R_{ECO} OPF for power system operation.

The analysis shows that the improvement of reliability using SCOPF depends on the postulated contingencies. The SCOPF $N-x$ is generally more reliable than SCOPF $N-I$ because more contingencies are included in the postulated contingency list. The conventional SCOPF $N-I$ is not as reliable as the SCOPF $N-x$ and proposed R_{ECO} OPF. For all cases, except the Reduced GB Network, the operational cost of R_{ECO} OPF is slightly higher or even less than the DC SCOPF and OPF. The increased cost has also been justified with much less violations and unsolved contingencies, contributing to much better reliability. The IEEE 24 RTS, 37 Bus case, IEEE 118 Bus System, and ACTIVSg500 cases show the improvement of reliability from R_{ECO} OPF are much better than SCOPF $N-x$.

C. Power Network Robustness (R_{CF}) and Power Flow Distribution Properties

Koç et al. introduced an entropy-based network robustness metric (R_{CF}) in [18]. The R_{CF} is used to identify the potential of cascading failures in power systems, which depends on the network topology and power flow dispatch over the system. A more homogeneous power flow distribution across lines has been shown to increase robustness with respect to cascading link overload failures, while a relatively heterogeneous power flow distribution increases the chance of link overload failure spread [14, 15, 18]. Hence, a system with higher R_{CF} may be less likely to experience cascading failures. The comparison with R_{CF} can also capture how likely the system will experience cascading failures with R_{ECO} optimized power flow.

The calculation of R_{CF} is as follows,

$$R_{CF} = \sum_{i=1}^{N} R_{n,i} \delta_i$$

(33)

$$R_{n,i} = -\sum_{i=1}^{L} \alpha_i p_i \log(p_i) \text{ and } \delta_i = \frac{P_i}{\sum_{j=1}^{N} p_j}$$

(34)

where α_i is the ratio between the maximum capacity and the load of corresponding line i; p_i is the normalized flow values on the out-going links; P_i is the total power distributed by node i and N is the number of nodes in the network.

The optimal R_{ECO} OPF should guide a more balanced pathway efficiency and redundancy for power flows. Thus, we would expect the power flows to be more equally distributed over the system. Hence, we also compute and compare the distribution of power flows over the system by analyzing the Mean and Standard Deviation (STD) of the apparent power (MVA) and the line percentage (MVA%) in all branches. The MVA is the apparent power, and the MVA% is the MVA divided by the branch limit. Equation (35) shows the calculation of Mean and STD, respectively, where x_i is each branch’s MVA, and x_i is the i^{th} branch’s MVA%.

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \text{ ; } s(x) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2}$$

(35)

Table V shows the network property comparisons between R_{ECO} OPF and the original operation status for all cases. For the IEEE 24 Bus RTS, the R_{ECO} OPF improves the robustness R_{CF} with respect to the original state. This result is reinforced by results from the analysis of flow distribution properties using MVA and MVA%. The R_{ECO} optimized power flow has a decreased Mean and STD of MVA and MVA% from the original state. The flow is more equally distributed in a more homogeneous power flow distribution after the optimization. It is observed that the DC R_{ECO} OPF has a higher R_{CF} of 1.330, compared to 1.289 for QCLS (Table V), but a slightly lower R_{ECO} of 0.3391 compared to 0.3395 (QCLS) (Table I). The difference comes from the perspectives of these two metrics. The R_{ECO} analyzes power system robustness from an ecological perspective to examine the pathway efficiency and redundancy, while the R_{CF} focuses on the power flow ingress and egress from each node. Similarly, it is observed the Mean(MVA) and Mean(MVA%) of DC R_{ECO} OPF is smaller (more homogeneous) than the QCLS R_{ECO} OPF, while the STD(MVA) and STD(MVA%) of DC R_{ECO} OPF is larger (less homogeneous) than the QCLS R_{ECO} OPF.

Table V: Network Property Comparison of Ecological Robustness Optimal Power Flow

<table>
<thead>
<tr>
<th>Use Case</th>
<th>R_{CF} Mean(MVA)</th>
<th>STD(MVA)</th>
<th>Mean(MVA)%</th>
<th>STD(MVA)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 24 Bus RTS</td>
<td>1.121</td>
<td>124.07</td>
<td>84.84</td>
<td>32.36</td>
</tr>
<tr>
<td>IEEE 24 Bus RTS DC</td>
<td>1.330</td>
<td>106.80</td>
<td>68.13</td>
<td>28.54</td>
</tr>
<tr>
<td>Reduced GB</td>
<td>1.289</td>
<td>110.36</td>
<td>67.97</td>
<td>29.27</td>
</tr>
<tr>
<td>Reduced GB DC</td>
<td>1.058</td>
<td>1356.94</td>
<td>1127.53</td>
<td>60.68</td>
</tr>
<tr>
<td>Reduced GB QCLS</td>
<td>4.311</td>
<td>394.74</td>
<td>361.08</td>
<td>16.48</td>
</tr>
<tr>
<td>Reduced GB QCLS DC</td>
<td>3.423</td>
<td>450.14</td>
<td>401.44</td>
<td>18.64</td>
</tr>
<tr>
<td>37 Bus Case</td>
<td>1.246</td>
<td>45.73</td>
<td>34.06</td>
<td>34.06</td>
</tr>
<tr>
<td>37 Bus Case DC</td>
<td>1.386</td>
<td>36.36</td>
<td>26.79</td>
<td>30.26</td>
</tr>
<tr>
<td>37 Bus Case QCLS</td>
<td>1.452</td>
<td>38.3</td>
<td>25.07</td>
<td>29.67</td>
</tr>
<tr>
<td>IEEE 118</td>
<td>6.866</td>
<td>55.76</td>
<td>66.92</td>
<td>5.7</td>
</tr>
<tr>
<td>IEEE 118 DC</td>
<td>8.532</td>
<td>38.51</td>
<td>39.71</td>
<td>4</td>
</tr>
<tr>
<td>IEEE 118 QCLS</td>
<td>5.602</td>
<td>55.07</td>
<td>75.42</td>
<td>5.61</td>
</tr>
<tr>
<td>ACTIVSg200</td>
<td>1.565</td>
<td>39.08</td>
<td>57</td>
<td>18.01</td>
</tr>
<tr>
<td>ACTIVSg200 DC</td>
<td>1.535</td>
<td>38.77</td>
<td>56.21</td>
<td>17.55</td>
</tr>
<tr>
<td>ACTIVSg200 QCLS</td>
<td>1.552</td>
<td>38.53</td>
<td>58.42</td>
<td>17.18</td>
</tr>
<tr>
<td>ACTIVSg200 AC</td>
<td>1.541</td>
<td>38.44</td>
<td>56.89</td>
<td>17.44</td>
</tr>
<tr>
<td>ACTIVSg500</td>
<td>2.116</td>
<td>54.17</td>
<td>77.1</td>
<td>22.53</td>
</tr>
<tr>
<td>ACTIVSg500 DC</td>
<td>2.433</td>
<td>48.29</td>
<td>57.91</td>
<td>21.47</td>
</tr>
<tr>
<td>ACTIVSg500 QCLS</td>
<td>2.455</td>
<td>48.87</td>
<td>59.94</td>
<td>21.63</td>
</tr>
<tr>
<td>ACTIVSg500 AC</td>
<td>2.393</td>
<td>49.41</td>
<td>67.41</td>
<td>21.52</td>
</tr>
</tbody>
</table>

The calculation of R_{CF} is as follows,
For the Reduced GB Network, the R_{ECO} OPF improves the R_{CF} from the original state. The R_{ECO} optimized power flow distribution has smaller Mean and STD of MVA and MVA% than the original state. The DC R_{ECO} OPF has a higher R_{CF} of 4.311, compared to 3.423 for QCLS (Table V), and its R_{ECO} is 0.36, which is also higher than 0.3518 for QCLS (Table IV). The Mean and STD of MVA and MVA% of DC R_{ECO} OPF are smaller than QCLS R_{ECO} OPF. Thus, the DC R_{ECO} OPF provides a more robust state whose power flows are more equally distributed.

For the 37 Bus Case, QCLS R_{ECO} OPF has higher value of R_{CF} (1.452) and R_{ECO} (0.2972) than their values in DC R_{ECO} (1.386 and 0.2951, respectively). However, DC R_{ECO} OPF has smaller Mean(MVA) and STD(MVA%) than QCLS R_{ECO} OPF. In particular, the STD(MVA%) of DC R_{ECO} OPF is much smaller than QCLS R_{ECO} OPF, which contributes to its reliability improvement as the power flow is more homogeneous.

For the IEEE 118 Bus System, the DC R_{ECO} OPF has smaller Mean and STD of both MVA and MVA% than the original operating point, with a higher value of R_{CF} (8.532) and R_{ECO} (0.3296). However, the STD(MVA) and STD(MVA%) of QCLS R_{ECO} OPF are higher than the original case and have a lower value of R_{CF} (5.602) but a higher value of R_{ECO} (0.3201). Since the MVA limits are the same for all branches, the calculation of R_{CF} only depends on the power flow. For QCLS R_{ECO} OPF, the decrease of R_{CF} (from 6.866 to 5.602) shows that the power flow is less equally distributed than the original case, but the R_{ECO} increases (from 0.3064 to 0.3201), which shows the power flow is more balanced between pathway efficiency and redundancy. The improvement of reliability for the IEEE 118 Bus System suggests that a power system with a more balanced pathway efficiency and redundancy can improve the system’s inherent ability of absorbing disturbances even the power flow is distributed less homogeneous.

The R_{CF} for the optimized ACTIVSg200 systems are also reduced by a small amount, suggesting that the system is more inclined to have cascading failures. However, the smaller Mean(MVA%) and STD(MVA%) suggest the power flow is more equally distributed. All the comparisons suggest that power systems with a more balanced pathway efficiency and redundancy operating state have better reliability and resilience under contingencies. As mentioned earlier, the proposed R_{ECO} OPF includes the relaxation of R_{ECO}. From the analysis with ACTIVSg200 system, whose reliability and R_{ECO} worsen after the optimization, it appears that this case was already closer to its true theoretical optimal R_{ECO} than our solution using the relaxation was able to achieve.

For the ACTIVSg500 system, the R_{ECO} optimized systems have more equally distributed power flow as well as increased R_{CF}. Thus, the system is less likely to have cascading failures. The improvements under different models are close, but there are some discrepancies among the analyses with R_{CF}, R_{ECO} and the Mean and STD of MVA and MVA% about their improvement in the system. This shows that the R_{ECO} can provide a new perspective to assess the system’s resilience to unexpected extreme events.

From all cases, there is a correlation between R_{ECO} and R_{CF} where a higher R_{ECO} corresponds to a higher R_{CF}. It indicates that the R_{ECO} optimized system provides a more homogeneous power flows that contributes to its improvement of survivability and resilience.

VI. DISCUSSION

The effectiveness and cost-effectiveness of the proposed R_{ECO} OPF is observed using these case studies and analyses. The optimized system has better reliability against different levels of contingencies, the power flow is more equally distributed, and they are less likely to experience cascading failures. Compared with traditional OPF and SCOPF, the operation cost induced by R_{ECO} OPF has been validated by its improvement of reliability with less violations and unsolved situations under unexpected contingencies.

The R_{ECO} OPF for the four small cases presented cannot be solved under an AC power flow model. The other two larger cases can be solved using the AC model. Thus, how to guarantee the feasibility of the problem and solve the problem with AC power flow model need to be analyzed. One way to obtain the AC power flow solution is to relax the formulation of AC power flow. This paper utilizes a quadratic-convex relaxation on the power flow model (QCLS) for obtaining tighter bounds for voltage and phase angle difference, and it has been successfully solved with all cases. Other approaches of obtaining a valid solution for AC power flow model can also be explored in future work, such as formulating the problem for a better nonlinear program solver, determining a better start point for the local optimal, and using a data-driven approach to solve the problem more efficiently.

The ACTIVSg200 and the IEEE 24 Bus RTS QCLS solutions are better than their DC solutions, with overall fewer violations and violated contingencies (Table IV), as seen from the reliability comparison among the different power flow models’ R_{ECO} OPF. The rest of the cases’ DC R_{ECO} OPF solutions improve the system’s reliability more than their AC or QCLS solutions. The improvement of survivability against contingencies depends on both the R_{ECO} OPF and the system’s devices control mechanisms. Considering each system’s control mechanisms, whether the AC or DC power flow model is used, and the system’s reactive power characteristics will also influence the system’s improvement with R_{ECO} OPF.

The economic-driven OPF and SCOPF are used for the cost-effectiveness analysis as benchmarks to investigate how much the reliability improvement can be and how much it will cost for R_{ECO} OPF at the operation planning stage. Advantages of R_{ECO} OPF against SCOPF have been observed, with larger reliability improvements for the IEEE 24 RTS, 37 Bus, IEEE 118 Bus System, and ACTIVSg 500 cases. The effectiveness between R_{ECO} OPF and SCOPF N-X for the Reduced GB network is very close, but R_{ECO} OPF is still much better than the conventional SCOPF N-1. Even though the number of violations and contingencies is almost the same of R_{ECO} OPF and SCOPF N-X in the Reduced GB network studies, the severity of contingencies are different. As we mentioned in Section V-A, the same contingency can
cause different operating violations with different levels of severity. However, with six cases in the paper it is preferred to use one specific standard, the number of violations and contingencies, to demonstrate the effectiveness for R_{ECO} OPF. A more in-depth analysis regarding severity of contingency can be discussed in future work.

Two types of SCOPF are compared with R_{ECO} OPF with regards to cost and reliability. The SCOPF N-1, representing the conventional SCOPF, considers N-1 contingencies in the postulated contingency list, and the SCOPF N-x considers all N-x contingencies (Section VA), which should greatly increase SCOPF’s ability to deal with all contingencies. The results show that the SCOPF N-x is generally more reliable than the SCOPF N-1. This also proves that SCOPF depends on the postulated contingencies, so it targets specific contingencies; by contrast, the R_{ECO} OPF optimizes the power flow dispatch against unseen potential contingencies. The comparison between SCOPF N-x and R_{ECO} OPF in this paper is thus the comparison of explicitly and inexplicably considering potential contingencies. Even with these additions to SCOPF, we still observe that most R_{ECO} optimized cases are more reliable with less violated contingencies, violations, and unsolved contingencies. This exhibits the great potential for replacing SCOPF with R_{ECO} OPF to help achieve long-term power system resilience.

The purpose of R_{ECO} OPF is to help improve power system planning against unknown hazards by designing in operational resilience. The economics-driven OPF and SCOPF are useful for comparing our method with what is done now with respect to reliability and economics in power system planning. The choice of whether and how to implement the R_{ECO} OPF, either as an alternative to SCOPF or with SCOPF, depends on how stakeholders understand the underlying benefits of R_{ECO} OPF against all potential contingencies and how much they are willing to pay in operational cost. SCOPF and R_{ECO} OPF can be used in a way that is complementary. Modern power systems consist of cyber and physical networks that are exposed to different levels of threats and contingencies, including from extreme weather, aging infrastructure, and coordinated attacks. The decision to use R_{ECO} OPF and/or another planning approach depends on the stakeholders and outside information, such as: how much the stakeholders are willing to pay for expected contingencies, how much they are willing to pay for unexpected contingencies, and how accurately they can predict the expected contingencies decide when to use the R_{ECO} OPF or SCOPF. Both methodologies help toward improve power system resilience against hazards, and future work can design how this would look.

Even though five cases show the effectiveness of using R_{ECO} to improve the system’s reliability, there is one case (ACTIVSg200) that results in a reduced R_{ECO} after the optimization. R_{ECO} depends on both network structure and power flows in the system. Due to the relaxation of R_{ECO} as we build the optimization model, the effectiveness may be reduced in certain for ACTIVSg200 where the R_{ECO} is already close to its optimal value. This emphasizes the need of constructing a more strict objective function for R_{ECO}. However, the analysis of ACTIVSg200 case also shows the relationship between R_{ECO} and power system reliability: for each case’s operating status, the improved Achieved R_{ECO} improves the reliability; while the worsened Achieved R_{ECO} impairs the reliability. Additionally, the proposed R_{ECO} OPF algorithm does not include economic factors in the formulation. Even though the cost-effectiveness is observed from four cases in the paper, the R_{ECO} OPF can be further developed with direct consideration of operational cost to ensure and improve its R_{ECO} as well as cost-effectiveness.

VII. Conclusion

Inspired from ecosystems, whose long-term survivability against disturbances benefits from its unique network structure and energy flow pathways, this paper presents a R_{ECO}-oriented OPF problem. It provides a new objective for resilient power system operation. The proposed R_{ECO} OPF guides the power flow dispatch to achieve a balance of power flow pathway efficiency and redundancy for a more resilient state. In this way, the system can enhance its inherent ability of absorbing disturbances without remedial actions. Due to the complexity of R_{ECO}’s formulation, we apply a Taylor Series Expansion for the logarithm function. In this way, we have successfully solved the proposed R_{ECO} OPF with six standard power system cases under different power flow models. With case studies, we observe the effectiveness of using R_{ECO} to represent and improve power systems’ inherent resilience against unexpected disturbances. With comparisons to OPF and SCOPF, this paper also shows the cost-effectiveness of using R_{ECO} to guide the power flow dispatch. With the analysis of R_{CF} and the Mean and STD of power flows, the R_{ECO} OPF makes the power flow more equally distributed over the system. This also improves the system’s resilience against cascading failures.

As the first effort to use the inspiration of ecosystems to guide power systems operation for improved resilience, the future work can be developed in following directions: (1) To validate the feasibility and efficiency of the proposed R_{ECO} OPF for different cases with different solvers and start points; (2) To formulate a more strict R_{ECO} for the objective function and ensure its feasibility for large systems; (3) To formulate operational algorithms that consider both state-of-the-art SCOPF and R_{ECO} OPF against expected and unexpected contingencies for power system resilience; (4) To propose an enhanced R_{ECO} OPF with economic factors that ensure its cost-effectiveness while finding a balance of operational cost and long-term survivability against unexpected contingencies; and (5) To consider high penetration of renewables and the stochastic nature of renewable energy with the R_{ECO} OPF model, to better power systems’ operation for economy, environment, and survivability.

Acknowledgment

The authors would like to acknowledge the US Department of Energy Cybersecurity for Energy Delivery Systems program under award DE-OE0000895 and the National Science Foundation under Grant 1916142 for their support of this work.
REFERENCES

