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Abstract—Contingency analysis is a critical activity in the
context of the power infrastructure because it provides a guide for
resiliency and enables the grid to continue operating even in the
case of failure. In this paper, we augment this concept by intro-
ducing SOCCA, a cyber-physical security evaluation technique to
plan not only for accidental contingencies but also for malicious
compromises. SOCCA presents a new unified formalism to model
the cyber-physical system including interconnections among
cyber and physical components. The cyber-physical contingency
ranking technique employed by SOCCA assesses the potential
impacts of events. Contingencies are ranked according to their
impact as well as attack complexity. The results are valuable in
both cyber and physical domains. From a physical perspective,
SOCCA scores power system contingencies based on cyber net-
work configuration, whereas from a cyber perspective, control
network vulnerabilities are ranked according to the underlying
power system topology.

Index Terms—Contingency analysis, cyber-physical systems, se-
curity, situational awareness, state estimation.

I. INTRODUCTION

S TATE estimation and contingency analysis are two of the
most fundamental tools for monitoring the power system.

State estimation is the process of fitting data from sensors in
the field to a system model and determining an estimate of the
power system state [1]. State estimation engines use techniques
such as the weighted least squares (WLS) algorithm to deter-
mine the state of the system based on the measurements [2].
Once the state estimator program determines a system estimate,
the estimate is used to run a series of “what if” scenarios referred
to as contingency analysis. Contingency analysis performs a se-
ries of power flow studies with various pieces of equipment out-
aged in the model, allowing operators to predict the state of the
system for such an event [3].
By its nature, state estimation depends on the communica-

tion infrastructure, commonly called the SCADA (supervisory
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control and data acquisition) system. These systems are cur-
rently undergoingmany upgrades as part of the smart grid initia-
tive. This initiative does not only affect the SCADA system but
also brings the telecommunication revolution to the entire en-
ergy delivery infrastructure, from control centers to generation,
transmission and distribution substations, and even to customer
homes. A direct consequence has been a significant increase
in the number of inter-connected cyber components. Manufac-
turers commonly add Ethernet or radio communication modules
to controllers, relays, and sensors, along with information report
and configuration functionalities such as embeddedweb servers.
The increased cyber connectivity of the infrastructure and the

interdependency of cyber and physical components introduces
a greater level of complexity, and securing power system opera-
tions against malicious compromise becomes more challenging.
Indeed, contingency analysis in the highly interconnected grid
should be expanded to include incidents of intentional nature
such as cyber attacks.
While the problem of detecting and mitigating cyber intru-

sions has been extensively studied over the past two decades in
the context of traditional IT systems, the requirements and con-
straints of the smart grid environment in terms of security are
different and usually more stringent. For example, power grid
components commonly have timing requirements that prevent
traditional security solutions from being deployed. The depen-
dencies due to cyber-physical interactions in the grid are not
yet well understood. Recently, there have been several attempts
to model and analyze the cyber-physical threats in an offline
manner [4]–[7]. Zonouz et al. [8] proposed an online frame-
work that fuses uncertain information from distributed power
system meters and cyber-side intrusion detectors to detect ma-
licious activities within the cyber-physical system. However, to
the best of our knowledge, there has been no efficient online so-
lution proposed for contingency analysis that considers cyber
adversary induced physical contingencies.
This paper introduces a cyber-physical contingency analysis

framework for analyzing the physical impacts resulting from
compromise in the cyber network. In particular, we presentSecu-
rity-Oriented Cyber-Physical Contingency Analysis framework
or SOCCA, which takes into account cyber- and power-side
network topologies, malicious cyber asset compromises, and
power component outages. During an offline process, SOCCA
analyzes the cyber network topology and the network firewall
rules to automatically generate a network connectivity map
as a directed graph encoding accessibility among different
hosts (e.g., computers and other cyber components). Then,
SOCCA uses the connectivity map to create a partial Markovian
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state-based model of the power-grid in an online manner. At any
time instance, SOCCA estimates the current security state using
the generated model and the set of cyber intrusion detection
sensor alerts. Using a new cyber-physical security index and
cyber-physical state notion, SOCCA measures the criticality
level of each system state and produces a ranked list of potential
cyber and/or physical contingencies that need to be addressed.
The proposed framework does not require any additionalmea-

surements than those already present in modern control centers
and does not impose additional communication requirements.
Specifically, cyber intrusion detection systems are already in use
inmodern control networks, and the sensor alerts from those sys-
tems are typically available from a network security event man-
ager (SEM) used to aggregate and manage security alerts. Sim-
ilarly, the needed power system state information is available
from the energy management system (EMS).
The contributions of this paper are threefold:
• Cyber-physical system formalism and automated model
generation: We propose a new formulation of cyber-phys-
ical failures and compromises and an algorithm to auto-
matically generate the corresponding models.

• Cyber-physical security index for the power grid infra-
structures: We present a novel and scalable security index
for power grid contingency screening.

• Cyber-aware contingency analysis: We present a frame-
work for power grid contingency screening that uses the
security index to determine impact and criticality for each
state and then ranks contingencies that could be caused by
cyber attacks.

SOCCA is not designed to replace the traditional power
system contingency analysis solutions, which analyze acci-
dental failures that could occur at any part of the power system
due to natural causes. Instead, SOCCA presents a complemen-
tary framework that concentrates on potential contingencies
due to remote malicious attacks.
This paper is organized as follows. Section II reviews the

high-level architecture of the SOCCA framework and how its
components are logically interconnected. Section III discusses
how SOCCA models various security incidents and their po-
tential correlations. Section IV presents how the cyber-phys-
ical model probabilistically determines the current state given
the real-time sensory information. Section V describes the way
SOCCA explores and analyzes potential cyber-physical contin-
gencies according to the current cyber-physical state estimate
and provides a risk-based ranked list.

II. BACKGROUND

Power systemmodeling is used extensively in grid operations.
The most common types of models used are steady state power
flow models and sensitivities. These models are used to monitor
the state of the system and predict the effects of changes.
Steady state power systemmodeling consists of enforcing the

conservation of power. Given a set of power injections andwith-
drawals, the power flow finds the set of voltages and angles that
satisfy power balance. The system state may be written as

(1)

where is a vector of voltages, is a vector of voltage angles.
The vector of real power loads is and the vector of reac-
tive power loads is . Since generator outputs are controllable
(within limits), they are collected separately in a vector of con-
trols, .
The power flow problem can now be written as

(2)

where is a complex vector representing the injec-
tion at each node in the system. The function represents
the system model. It encapsulates factors like line impedances
and system topology. Breaking into real and reactive
parts gives

(3)

(4)

These equations represent the nonlinear problem that is com-
monly called the power flow in power systems literature. The
power flow is at the heart of most power systems analysis. It
provides the basis for many tools and sensitives that are used to
predict the state of the system in the event of an outage.
Because the power flow is a non-linear problem, it is typ-

ically solved using the Newton-Raphson method, an iterative
technique that requires multiple evaluations and factorizations
of a large sparse matrix of sensitivities, the Jacobian matrix .
The repeated factorizations can be a time consuming process,
so more efficient approximate methods have been developed.
These methods involve applying assumptions to the power flow
equations to arrive at a simplified system model [9].
A commonly used simplification reduces the power flow to

a linear problem, commonly called the DC power flow in the
power system literature [3]. A constant matrix relates system
angles and power injections. The DC power flow is the basis
for many sensitivities. For example, power transfer distribution
factors (PTDFs) estimate the changes in flow due to a transfer
across the power system, and line outage distribution factors
(LODFs) estimate the changes in flow on a line caused by the
outage of another line [3]. PTDFs and LODFs are frequently
used to predict the state of the system after an outage [10],
[11]. There are also efficient extensions of LODFs to calculate
changes in flow due to multiple outages [12].

III. CYBER-PHYSICAL SYSTEM SECURITY FORMALISM

In this section, we explain how we model power grid se-
curity attacks using a stochastic Markovian mechanism, and
how models are automatically generated given the power grid
cyber-physical topology.

A. Cyber-Physical State Notion

Before discussing how the current state of the power grid will
be represented in SOCCA, a concise cyber-physical state notion
needs to be defined. The security state, , is the set of privileges
that an adversary (or group of adversaries) has obtained out of
the domain of possible privileges, , which encompasses all
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privileges on all cyber hosts in the system as well as all con-
nected physical power system devices.
The security state is used to indicate whether or not a specific

event (contingency)1 has occurred in the grid infrastructure. In
particular, we consider two types of contingencies. First, there
are cyber-side vulnerability exploitations, which are carried out
by an attacker to obtain specific privileges and improve his or
her control over the power network. Therefore, the information
in a state denotes the attacker’s privileges in that state, e.g., root
access on a mission-critical host system in power control room.
Those privileges are used to determine what further malicious
damage the attacker can cause in that state. Second, there are
consequences, which are caused by the adversary after he or
she obtains the required privileges. Specifically, consequences
are defined to be incidents which affect the physical operation of
the underlying power system. As a case in point, a transmission
line outage, whether due to lightening or a remote malicious
“open” command to a power relay, is a power-side consequence
which results in a redistribution of power flow. The intent is to
always operate the system such that the redistribution of power
flow does not affect the end-user consumers.

B. Modeling Power Failures and Cyber Compromises

Generally, every power grid attack path consists of an esca-
lating series of malicious actions by the adversary. The system’s
initial state is , in which no contingency has occurred and
the attacker does not yet have privilege in the system. Starting
from this state, the adversary aims to gain the set of privileges
required to reach his or her goals, e.g., causing a power trans-
mission line outage by opening the corresponding relay.
More specifically, every cyber-physical attack is in a finite

set of security states that cover all possible security condi-
tions that the system could be in. The system is in one of the
security states at each time instant. From the system’s current
state , there are two types of transitions, corresponding to 1)
adversarial vulnerability exploitations, and 2) malicious power
contingencies. Formally, the attacker can choose and take an
adversarial action admissible in , resulting in a state
transition to .
To enumerate all possible attack scenarios, we model the ad-

versarial actions as a discrete Markov decision process (MDP)
[13]. A discrete Markovian decision process is defined as a
tuple where is the security state space, as-
sumed to be an arbitrary non-empty set endowed with the dis-
crete topology. is the set of actions which consists of adver-
sarial vulnerability exploitations. For every , is
the set of admissible actions at state . The measurable function

is the susceptibility measure to attacks calculated
for each state, and is the transition probability function. That
is, if the present state of the system is and the attacker
takes an action , resulting in state transition to state
with probability , he or she obtains an immediate

reward of . The discounting factor is which is normal-
ized, i.e., . The discounting factor in control theory
is a coefficient that models the fact that a future reward is worth
less than the same amount of immediate reward.

1In this paper, we treat both cyber- and power side incidents as contingencies.

C. Automatic MDP Generation

SOCCA automatically generates the MDP model for the
power network given the control network topology, access
control policies, and cyber-physical interconnections within
the power grid. The power network’s access control policies,
such as firewall rulesets, are composed of rules about sources
(IP/port addresses) that are either allowed or not allowed to
reach a destination. SOCCA parses the rulesets and creates a
binary network connectivity matrix that is a Cartesian product
of host systems. The entry of the matrix takes on a true
value if traffic from host to host is allowed, and a false
value otherwise. The connectivity matrix always includes an
Internet node representing a group of hosts outside of the
network where attackers are assumed to initially reside.
The connectivity matrix incorporates all the possible accesses

allowed by the global access policies. However, an attacker,
with control over a particular host computer in the network,
needs a vulnerability in one of the accessible hosts to exploit
and improve his or her privileges. Therefore, SOCCA further
refines the matrix to encode only the adversarial paths that can
occur through vulnerability exploitations. In particular, SOCCA
analyzes the power grid topology input to find the set of known
system vulnerabilities in host systems. Given individual vul-
nerabilities, SOCCA determines their difficulty level through
the web-based national vulnerability database [14] that uses the
common vulnerability scoring system [15]. SOCCA converts
the reported high, medium, low format to numerical 0.25, 0.5,
0.75 values that represent the attacker’s success rates. Conse-
quently, the individual nonzero values in the connectivity ma-
trix are updated accordingly, i.e., SOCCA replaces them either
with zero if the corresponding hosts are not vulnerable or with
relevant success rates otherwise.
Note that, while we use specific numerical values for tran-

sition probabilities in the rest of this work to demonstrate and
evaluate SOCCA, a sensitivity analysis can be undertaken by
varying the transition probabilities to identify structural weak-
nesses that are agnostic to transition probabilities. Similarly,
while we focus on transition probabilities based on known vul-
nerabilities, the framework is flexible and zero-day attacks and
vulnerabilities can be accounted for by using a small non-zero
transition probability on all allowed connections.
To generate the MDP model, SOCCA traverses the connec-

tivity matrix and concurrently updates the model following an
incremental process. First, the MDP’s initial state is cre-
ated and the MDP generation starts with the network’s entry
point (Internet) node in the connectivity matrix. Considering the
connectivity matrix as a weighted directed graph, a depth-first
search (DFS) is run on the graph. While the search is recur-
sively traversing the graph, it keeps track of the current state
in the MDP, i.e., the set of privileges already gained through the
path traversed so far. When the search meets a graph edge
that crosses over privilege domains to , a state transition

in the MDP is created if the current state in the MDP
does not include the privilege domain of the host to which the
edge leads, i.e., . The transition in the MDP is between the
current state and the state that includes exactly the same privi-
lege set as the current state plus the host directed by the graph
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Fig. 1. A power system control network and its corresponding MDP.

edge . The transition created is labeled with the appropriate
success rate (transition probability) from the connectivity ma-
trix. The MDP’s current state in the algorithm is then updated
to the latter state, and the algorithm proceeds until no further
updates to the MDP are possible according to the connectivity
matrix. Fig. 1 shows a simplified power network with vulner-
abilities and its corresponding MDP model. Connectivity ma-
trix elements are denoted as red arrows among pairs of network
component.
It is noteworthy that SOCCA’s MDP generation engine takes

the known system vulnerabilities into consideration while gen-
erating the models. To address possible vulnerabilities targeted
by zero-day attacks, the engine can incorporate those vulnerabil-
ities to facilitate worst-case system contingency analysis. Addi-
tionally, the algorithm can handle generation ofMDPmodels for
systems where an adversary or group of adversaries starts from
the Internet and can penetrate into the network from different
vulnerable entry points. Several attackers would be modeled as
a single “more powerful” attacker who can penetrate from any
of those entry points.
Finally, SOCCA enhances the MDP model to also consider

power contingencies using the power grid topology input that
encodes the cyber-power interconnections, i.e., which power
components are controlled by a particular host. In particular,
considering everyMDP state and the attacker’s privileges in that
state, SOCCA determines whether any malicious power contin-
gency could occur and creates the required states and transitions
accordingly. Those transitions will have the success rates of 1.0,
because once the attacker gains the required privileges, he or she
can cause a power contingency, by directly sending the corre-
sponding command and without exploiting a vulnerability.

IV. CYBER-PHYSICAL SECURITY INDEX

SOCCA uses a new power grid security index to evaluate the
security level of each MDP state. The proposed index takes into
consideration the severity of the potential malicious physical
consequences (i.e. percentage of line overload) and the diffi-
culty to penetrate into the power network. In particular, using a
defense-centric metric, SOCCA measures how susceptible the
power system is to cyber attack induced contingencies, e.g., line
outages, at every MDP state. As explained in the previous sec-
tion, states capture the set of contingencies that can occur due

to malicious actions. Then, SOCCA makes use of an adver-
sary-driven metric to quantify how the attackers can obtain the
required privileges to cause those physical contingencies. Note
that the physical contingencies considered here are steady-state
contingencies. Although not discussed, SOCCA could poten-
tially be modified to study transient contingencies as well.
Here, to measure the power system’s susceptibility to cyber

attack induced contingencies (e.g., line outages) for each state,
SOCCA updates the admittancematrix according to the line out-
ages encoded in that state, and solves the AC power flow equa-
tions using the iterative Newton-Raphson algorithm to calculate
the line flows. Alternatively, an approximate DC model may be
used, requiring only a linear solution, but potentially sacrificing
detail [16]. SOCCA estimates the susceptibility degree using a
modified version of the performance index [12] that assigns 0
to a state if there are no line flow violations and a positive value
otherwise, computed using the following equation:

(5)

Here, is the set of all lines, denotes flow on line in
state , and denotes the maximum flow allowed on
line . In the event that a power flow fails to converge, a severe
physical impact can be assumed which justifies setting to
a large number, the outage severity. The outage severity should
be much larger than any of the line severity measures.
To calculate the overall cyber-physical security index for

each state , SOCCA uses the above power system
performance index in the following dynamic programming
equation:

(6)
where (as the MDP’s value function) is formulated
as a function of difficulty levels of various cyber attack paths

and their physical impact .
To solve (6), SOCCA implements the value iteration algorithm.
As formulated, proximity of the attacker to a physical compo-
nent, existence of easy-to-traverse attack paths, and high final
physical impacts of the attacks improve the fitness of a system
state from the point of view of the adversary.

V. CONTINGENCY SCREENING

Algorithm 1 shows the pseudo-code for the algorithm that
SOCCA employs to evaluate and rank individual cyber-phys-
ical contingencies. Briefly, SOCCA calculates an ordered list of
single contingencies first, and investigates multiple contingen-
cies ordered by adversarial preferences until either all the con-
tingencies are analyzed or a predefined deadline has passed.
The cyber-physical contingency selection algorithm receives

the generatedMDP, the current state of the power grid and a hard
deadline for the online analysis, and returns the contingency list
(Algorithm 1). SOCCA starts off with initializing a temporal
buffer list and a FIFO (first in, first out) queue (Lines 1, 2). Each
state is assigned an initial color value (white, indicating the state
has not yet been checked), as well as the corresponding physical
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performance and cyber-physical security indices as discussed
in Section IV (Lines 3–6). At any time instant, the algorithm
keeps several states active that are denoted by the gray color and
stored in the initialized queue, where the power grid’s current
state is the first one (Lines 8, 9). SOCCA updates the queue with
respect to the most important state from the attacker’s point of
view, i.e., the worst-case scenario, which is the state with the
highest expected degree of cyber-physical damage. From any
state, calculates the overall cyber-physical security index
based on .
During an iterative process, the algorithm removes one state
at a time from the queue (Lines 11) and explores all pos-

sible immediate contingencies from that state, identified by
(Lines 12). In particular, for each immediate contingency,

SOCCA calculates an expected value of the state from the point
of view of the adversary, assuming that all his or her actions in
the future are optimal except the immediate next one. The re-
sults of these predictions are saved in the buffer list (Lines 13,
14). indicates the benefits of taking malicious action
from state . Once done with all the immediate contingencies
from the state , SOCCA sorts the results according to
and appends a copy of the ordered buffer to the contingency list
output (Lines 16, 17). To update the data structures, SOCCA
checks the individual elements in the buffer, and colors the des-
tination states (assuming successful transitions) as gray
if they are still white and adds them to the FIFO queue (Lines
18–21). Finally, to prepare for the next iteration, SOCCA clears

the temporal buffer list and colors the analyzed state as black
so that it will not be checked again if encountered in future anal-
ysis due to the directed loops within the MDP (Lines 24, 25).
It is important to clarify that SOCCA can consider multiple

power line outages. In particular, as explained, the proposed
framework considers all possible attack paths, each of which
often consists of many attack steps, namely several cyber asset
vulnerability exploitations as well as one or more maliciously
induced physical contingencies such as a power line outage.
However, the attack steps cannot grow arbitrarily and are lim-
ited by the initial attack point (where the attacker initially re-
sides), i.e., the Internet in our implementations, as well as the
network global access policy rules and the system vulnerabili-
ties.
Algorithm 1 can also be employed as an online solution

to provide power grid security officers with predictive situ-
ational awareness capabilities. Indeed, SOCCA can monitor
how future actions by attackers could globally impact the
power grid given the current system state. This information is
extremely valuable for proactive intrusion prevention systems
which reconfigure the system such that the maximum possible
damage to the system caused by the attackers’ potential next
action is minimized. SOCCA enables the officers to decide
which critical components should be monitored more closely
in order to detect potential exploitations of known or unknown
vulnerabilities. As the algorithm focuses on contingencies
originating from malicious cyber attacks, initial contingencies
are usually all remote cyber-side vulnerability exploitations.
This is because physical devices are almost never directly
accessible from a remote machine, unless the attacker has
already penetrated deep into the control network. SOCCA takes
into consideration possible physical contingencies once states
with required set of privileges (compromised host systems) for
physical consequences have been reached by the algorithm.
The algorithm considers the path traversal difficulty and the

final impact in calculation of the ultimate security index. There-
fore, the less likely, yet large impact contingencies may not be
fully evaluated during the analysis of Algorithm 1 as they would
be ordered further behind while considering the deadline limit
of on-line application. To address this point, the algorithm can
be updated to always consider the contingencies with high im-
pact and low likelihood. In particular, if the difficulty level of
all the cyber-side attacks (i.e., vulnerability exploitations) is set
to 0, SOCCA sorts the contingencies only based on their impact
level. Consequently, the modified algorithm could partially de-
vote its time to analyze the contingencies based on only their
final physical impact.
The description of the contingency screening algorithm

so far assumes that its input set including the current system
MDP state (set of compromised hosts) and power system state
are correct. However, an attacker with the required privilege
levels could potentially mislead SOCCA by corrupting the
input system state that results in incorrect overall contingency
rankings. As a cyber-physical solution against the false data
injection attacks against power system state, we have proposed
security-oriented cyber-physical state estimation (SCPSE)
in [17]. SCPSE takes into account both cyber-side intrusion
detection system (IDS) alerts as well as power system sensor
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Fig. 2. Experimental power grid testbed architecture (with compromised asset IDs). (a) IEEE 24-bus system; (b) power network topology.

measurements to identify corrupted measurements and ignore
them during the power system state estimation process to obtain
an accurate system state despite false data injection attacks.
SOCCA can be extended to leverage SCPSE algorithms to deal
with false data injection attacks on power system state. For
false data injection against MDP state, our cyber-side system
state (MDP) estimation algorithm can handle bad or false
IDS alarms to the extent captured by their false positive and
negative rates. However, verifying IDS alerts themselves is
outside the scope of this work. That said, the issue of IDS alert
verification (e.g., [18]–[20]) and IDS trust management has
received considerable research attention over the years (e.g.,
[21]–[24]).

VI. EVALUATION

In this section, we discuss the implementation of SOCCA and
present experimental evaluation results. All our experiments
were performed on a 32-bit system with an Intel Core 2 2.16
GHzCPU, 3.00 GB ofmemory, and theWindows 7 Professional
operating system.
Implementations: A unified XML [25] format was used to

describe the power system control network topology and net-
work access policy rules (e.g., firewall rules). During the offline
phase, SOCCA uses the NetAPT tool [26] to perform a com-
prehensive security analysis of the access policy rules and to
produce the network connectivity matrix according to the con-
trol network topology input. The matrix is later translated to the
corresponding MDP model. On the power side, we used Power-
World Simulator [27] to simulate the underlying power system
and solve the power flow equations to calculate the cyber-phys-
ical security index. In particular, we used the SimAuto toolbox
to set up a real-time connection to PowerWorld.

In our experiments, we evaluated SOCCA on a simulated
power grid infrastructure. The underlying power system was
the IEEE 24-bus reliability test system [28] [Fig. 2(a)]. The
power system consisted of 38 transmission lines, and was moni-
tored and controlled by two control networks with identical net-
work topologies and access control policies. The control net-
work models were built based on topology of a real power con-
trol network which is kept anonymous due to non-disclosure
agreement. Fig. 2(b) shows the topology of a single control net-
work that has 59 nodes, e.g., host systems and firewalls. The
first control network monitors and controls buses 1–12 in the
power system [Fig. 2(a)], and the second network monitors and
controls buses 13–24. In particular, each power bus is monitored
and controlled by a single host system in the corresponding con-
trol network.
MDP Generation: Given the power network topology and

the access policy rules, i.e., about 100 firewall rules, SOCCA
constructed the network connectivity matrix and generated
the corresponding MDP model. It is noteworthy that because
the MDP models may not be scalable specially for large-scale
power-grid infrastructures, SOCCA makes use of the envelope
algorithm [29], where the MDP is generated partially, and
hence, not every individual state needs to enumerated and
analyzed. More technically, given the current system state, only
reachable states up to some finite horizon are explored and
used for the contingency analysis. Fig. 3 illustrates a simplified
version of the generated MDP in which states with contin-
gencies that are exclusively cyber are drawn in white, while
states with physical consequences are in gray. The first number
on each state represents its ID. Table I maps each state ID to
the IDs of the compromised assets (shown in Fig. 2) in each
state. As shown on the generated MDP, the attacker initially
resides remotely in the internet with no privilege on the power
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Fig. 3. Automatically generated MDP for the power grid.

network (MDP’s state 0) and can then traverse different attack
paths to access a particular host in the power network. Each
MDP edge represents an access (i.e., possibly a vulnerability

exploitation) allowed from a source to a destination host in the
power network.
Performance: To validate SOCCA’s efficiency on various

networks with different sizes and topologies, we measured how
long it takes to generate the MDP model for randomly-gener-
ated power networks. One important parameter that affects the
model generation complexity is the vulnerability factor. This
factor is defined as the number of host computers that could be
accessed and compromised from a particular host in the power
control network. Figs. 4(a) and 4(b) show the MDP genera-
tion time requirement and the model’s size for vulnerability
factor 1, i.e., once the attacker compromises any host system,
he or she can always find one other vulnerable machine to com-
promise. The results were averaged over 1000 runs. As illus-
trated, for large-scale power networks with 330 K host com-
puters, SOCCA analyzed the inputs and generated the MDP
model within 24 milliseconds.
For cases with the vulnerability factor of 2, SOCCA gener-

ated the corresponding MDP graph within 400 milliseconds for
a network with 37 nodes [Figs. 4(c) and 4(d)]. Fig. 5 shows the
time taken to solve the security index of individual states. A vul-
nerability factor of two means that from every host, two other
host computers are both accessible (i.e., access control policies
allow that) and vulnerable to exploitations. We believe this is
very pessimistic and not a very common scenario in industrial
control infrastructures due to the extremely strict global access
control policies and system security patching within real-world
power control networks. The main intention in doing this ex-
periment in the paper was to evaluate, under such pessimistic
assumptions, how the increasing network size affects size of
the power grid’s MDP model. We continued the experiment
for cases with even higher (and much less realistic) vulner-
ability factors. The model generation for a network with 18
and vulnerability factor of 3 (4) nodes took 74 (5521) millisec-
onds on average. As expected, for a fixed network topology, the
generated model size, and hence the overall performance over-
head increases exponentially with the increasing vulnerability
factor, which acts as a graph-theoretic branching factor in the
MDP model generation procedure (Section III-C). To increase
the SOCCA’s scalability for such cases, we implemented the en-
velope approximation algorithm [29] that, briefly, is based on
the control theoretic finite look-ahead optimization technique
and considers the next finite set of contingencies while gener-
ating the corresponding MDP model. Figs. 4(e) and 4(f) show,
respectively, how long SOCCA takes, using the envelope algo-
rithm, to generate the MDP model of the power grid network of
different sizes with the vulnerability factor of 4, and the gener-
ated MDP model size.
Metrics: In our experiments, we pessimistically assumed that

all the hosts include security vulnerabilities in order to perform
a worst case performance analysis. SOCCA calculates the per-
formance and security indices for individual states in the gen-
erated MDP (i.e., shown as second and third number on each
state in Fig. 3, respectively). In an MDP, there are usually many
states with an identical set of physical contingencies that result
in equal performance index values. To accelerate the metric cal-
culation and minimize the number of connections to and cal-
culations by PowerWorld, which is a time-consuming step due
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TABLE I
MAPPINGS BETWEEN MDP STATE IDS (FIG. 3) AND COMPROMISED ASSET IDS

Fig. 4. Offline automated MDP graph generation. (a) Generation overhead (vulnerability factor 1); (b) graph size (vulnerability factor 1); (c) generation overhead
(vulnerability factor 2); (d) graph size (vulnerability factor 2); (e) Generation overhead (vulnerability factor 4); (f) graph size (vulnerability factor 4).

Fig. 5. Online index calculation.

to the AC power flow solution procedures, SOCCA employs a
caching solution to calculate the performance index value for
each physical contingency set only once.
Contingency Ranking: SOCCA implements Algorithm 1 to

rank various security incidents that could occur according to the
system’s current state and the generated MDP model once the
performance and security indices are calculated for the power
grid’s correspondingMDPmodel. Table II shows the ranked list
of cyber-physical contingencies for each state in our case study
power grid. It is important to mention that the reported results
are for the case in which the attacker has not yet caused any
contingency in the power grid, i.e., the current state is
with ID 0. As shown, the edge is ranked as the most

critical contingency as it allows the attacker to get to the most
impactful physical consequence with the least amount of cyber
exploitation effort.

VII. RELATED WORK

We review the related literature and highlight particular
aspects wherein they fall short. Furthermore, we discuss how
SOCCA addresses those issues.
There have been several research efforts for computer

network contingency analysis, which could be used to enu-
merate the set of next possible adversarial actions. Static
adversary-driven security assessment techniques [30]–[32]
explore potential malicious technical actions (contingencies)
for every system state before the system goes operational.
For instance, ADVISE [30] creates an executable state-based
security model of a system and an adversary that represents
how the adversary is likely to attack the system and the results
of such an attack. As modeling and accurate prediction of the
attacker’s behavior are very hard if not impossible in practice,
defense-centric security assessment approaches have also been
explored recently [33]–[36]. These techniques use manually
filled knowledge bases of alert applicability, system configu-
ration, or target importance to associate a context with each
alert and to provide security assessment accordingly. The main
barriers for real-world deployment of those techniques are the
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TABLE II
RANKED (R) LIST OF CYBER-PHYSICAL CONTINGENCIES (MDP EDGES)

high human involvement required and the lack of awareness for
future adversarial actions and social factors. However, static
exploration of the whole state space is infeasible in practice
due to the state explosion problem and furthermore, phys-
ical system contingencies are not accounted for. By design,
SOCCA considers attacks consisting of power and/or cyber
contingencies and explores a remarkably reduced search space
by dynamic generation of the next possible states given the
current probabilistic state estimate.
Contingency analysis in power systems has been explored

by many researchers in the past (see [37] for a comprehen-
sive survey). The initial efforts were based on first-order per-
formance index sensitivities to rank contingencies, Ejebe et al.
[38]. There have been several follow-up attempts to improve the
ranking quality by considering higher order sensitivities [39],
[40]. Furthermore, there has been an increasing interest in the
analysis of multiple contingencies [41], [42] after the introduc-
tion of new NERC standards [43]. Davis et al. [44] propose a
linear sensitivity-based approximate measure of how close the
power system is brought to islanding by a particular outage con-
tingency. The authors use the metric to categorize various line
outages and show that it outperforms similar metrics because of
taking care of precisely islanding singularities.
Almost all of the past contingency analysis techniques con-

sider natural incidents to be root causes of the power system
contingencies. As a result, they ignore cyber side events and, in
particular, contingencies due to deficient or compromised cyber

components. To deal with those issues, SOCCA introduces a
cyber-physical security formalism that takes into account failure
scenarios due to compromised cyber and/or power components.
During the last decade, several researchers have approached

the problem of hybrid cyber-physical security modeling for the
power-grid from different angles. Mo et al. [4] reviews a series
of security challenges and possible intrusions in power-grid in-
frastructure. However, a unified modeling framework is not pro-
vided. Pasqualetti et al. [6] model a power system under cyber-
physical attack as a linear time-invariant descriptor system with
unknown inputs, and design a dynamic detection and identifi-
cation scheme using geometric control theoretic tools. It is not
clear from the paper how the cyber network topology affects
the way attacks occur in the modeled cyber-physical system.
Sridhar et al. [7] review how traditional intrusion tolerance tech-
niques could be applied in cyber-physical settings, and intro-
duce a layered approach to evaluate risk based on the current
state of the power-grid. The authors do not discuss how the
state is determined, and additionally, accidental failures are not
accounted for. Zonouz et al. [8] proposed a framework that
fuses uncertain information from different types of distributed
sensors, such as power system meters and cyber-side intrusion
detectors, to detect the malicious activities within the cyber-
physical system. Specifically, they presented a security-oriented
cyber-physical state estimation (SCPSE) system, which, at each
time instant, identifies the compromised set of hosts in the cyber
network and the maliciously modified set of measurements ob-
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tained from power system sensors. However, to our knowledge
SOCCA is the first framework to consider cyber adversary in-
duced physical contingencies.

VIII. CONCLUSIONS

In this paper, we presented SOCCA, a security-oriented
cyber-physical contingency analysis framework that identifies
contingencies possible through cyber attacks (e.g., malicious
vulnerability exploitations), given the current cyber security
state of the power system control network. SOCCA provides
the power grid security officers with predictive situational
awareness capabilities to assess the global impact of different
adversarial actions on the power grid. Thus, it enables op-
erators to decide upon appropriate deployment of proactive
intrusion prevention solutions. Our experimental results show
that SOCCA complements the traditional power contingency
analysis methods that consider physical power component
failures due only to accidental failures and other natural causes.
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