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A B S T R A C T   

Power systems incur considerable operational and infrastructural damages from high impact low probability 
events such as natural disasters. It therefore becomes imperative to quantify the impact of these disruptive events 
on power system performance so that adaptive actions can be effectively applied. This impact can be evaluated 
using resilience metrics which should be able to assess the transitions between the different phases in which a 
power system resides when subjected to an extreme event. Also, the metrics can aid in the evaluation of the 
effectiveness of the power system adaptive strategies. However, challenges exist since developed metrics do not 
proceed with a standardized framework, and due to the vast variety of existing metrics, it becomes ambiguous for 
researchers and power utilities to find converging information pertinent to their work. In an effort to address 
these challenges, this paper provides a comprehensive review of quantitative power system resilience metrics 
which are standardized and evaluated with diverse categorizations. The review methodology employs the 
Axiomatic Design Process that utilizes the axiomatic design theory and design structure matrix to decompose 
resilient power system functional requirements into metric design parameters. By integrating the Axiomatic 
Design Process, we provide a standard for comparison and analysis of the adequacy of reviewed quantitative 
metrics in power systems resilience quantification, while the categorizations aim to identify the specifications of 
these metrics. This aids in directing further studies towards resilience requirements that have received less lit-
erary attention. In addition, the paper furnishes statistical analysis of reviewed metrics in venues and years of 
publication by percentage, recurring resilience indicators, and power system levels/stages in which the metrics 
are applicable. Finally, this paper presents common requirements for resilience quantification, discusses gaps and 
challenges related to power system resilience metrics as well as implications posed by these challenges, while 
making recommendations towards filling these gaps, and posing pertinent questions to the power system resil-
ience community.   

1. Introduction 

Power system infrastructure suffers substantial damages due to 
natural disasters, creating widespread and prolonged electricity outage 
for millions of customers [1]. In the United States, estimates show that 
weather-related power outages cause $25-$70 billion in economic losses 
annually [2]. The Derecho storm in June 2012 left approximately 4.2 
million customers across 11 mid-atlantic states without electricity for 10 
days [3]. In October 2012, hurricane Sandy caused electricity outage to 
more than 9.3 million customers across 20 states in the U.S. [4]. In 
September 2017, hurricane Maria struck Puerto Rico destroying 80% of 

the island’s power infrastructure which led to 3.6 million residents 
loosing power for several months [5]. In May 2018, a 6.9 magnitude 
earthquake caused power outages to more than 14,000 customers in 
Hawaii [6], while in 2019 and 2020, the cost of natural disasters have 
approximated $48 billion with more than 74 deaths [7]. These devas-
tating impacts on power infrastructure, and subsequently on the 
socio-economic activities of communities, call for methods and metrics 
to quantify the resilience of the power grid against disruptive events. As 
emphasized in the U.S. presidential policy directive 21 [8], these 
quantitative power grid resilience metrics would also guide utilities and 
policy makers towards informed decisions for resilience enhancement. 
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This is however challenging because there are still different perceptions 
of resilience and, its systematic and effective quantification. 

1.1. Power systems resilience 

The concept of resilience was first introduced by Holling as a mea-
sure to determine the ability of an ecological system to absorb changes to 
its state and driving variables [9]. Specifically, resilience is defined as a 
system’s ability to withstand and minimize the impact of disruptions 
provoked by an external event, as well as the ability of the system to 
satisfy or maintain its performance after the disruption [10]. Resilience 
is typically characterized by three main components: (a) the magnitude 
of shock that the system can absorb and remain within a given state, (b) 
the degree to which the system is capable of self-organization, and (c) 
the degree to which the system can build capacity for learning and 
adaptation [11]. Since then, resilience has been extended to power 
systems where it has been defined as “The ability to withstand and 
reduce the magnitude and/or duration of disruptive events [12], which 
includes the capability to anticipate, absorb, adapt to, and/or rapidly 
recover from such an event” [13]. Specifically, in power systems, resil-
ience is defined as the ability of the grid to prepare for and adapt to 
changing operating conditions, as well as withstanding and recovering 
rapidly from major disruptions caused by naturally occurring threats 
and incidents or deliberate cyber-physical attacks [8,14]. 

1.1.1. The resilience trapezoid 
Resilience can be analyzed in different phases [15], in which the 

system resides when exposed to a disruptive event as shown in Fig. 1. 
Although interchangeable terminologies could be found in literature for 
these phases, the concept of the resilience trapezoid remains the same. 
As illustrated by the resilience trapezoid in Fig. 1, the disruption tran-
sition phase is between the time of event occurrence to the end of the 
disruptive event impact (te − td), the outage phase is that in which the 
system is degraded following the end of the disruptive event until 
restoration efforts commence (td − ts), while the recovery transition 
phase begins from the time of commencement of restoration to full or 
satisfactory functionality (ts − tr). Hence, enhancing grid resilience in-
volves conducting several preventive, corrective and restorative actions 
in these phases. 

As shown in Fig. 1, in the pre-event phase, preventive actions are 
applied before the disruptive event to prepare the system response. 
During the disruption phase, corrective actions are utilized in an effort 
to mitigate the impact of the external shock, and initiate the procedures 

for restoring the degraded system. In the recovery phase, restorative 
actions are applied to quickly restore power to disconnected customers, 
and repair/replace damaged infrastructure. 

1.1.2. Resilience actions 
A way to integrate these preventive, corrective, and restorative ac-

tions into power systems operation is via smart grid technologies such as 
advanced telecommunication and control techniques that could increase 
preventive and corrective operational flexibility, as well as distributed 
energy resources (DERs), e.g., solar/wind energy and energy storage, for 
restorative actions. For instance, distributed energy resources local to 
customers could act as generation or flexible load resources during 
disaster related outages and assist in restoration efforts by reducing 
reliance on long-span transmission lines [16]. On another hand, in 
Ref. [17] network reconfiguration options have been used to aid re-
covery and hence optimize system resilience, while in Ref. [18] trans-
portable energy storage systems have been proposed to mitigate large 
area blackouts and generation scheduling in microgrids. In Refs. 
[19–28], discussions are directed towards enhancing power grid resil-
ience using intelligent control and communication methods in microgrid 
facilities. In Ref. [29], the proposition to improve power systems resil-
ience includes integrating disruptive events into planning decisions, 
while resilience enhancement using distributed energy resources is 
proposed in Ref. [30]. 

1.1.3. Resilience capabilities and dimensions 
The phases of the resilience trapezoid can also be directly associated 

with the different capabilities of a resilient system, which are the 
withstanding, absorptive, adaptive and restorative capabilities [31]. The 
withstanding capability is the ability of the system to maintain an 
acceptable level of essential functionality under disruptions [32,33], 
and can be evaluated by comparing the normal (baseline) functionality 
of a system to its functionality in disruptive states. The absorptive 
capability is the ability of the system to absorb the impact of the 
disruptive event and hence minimize the system damage, given that the 
system could not withstand the disruptive event [34]. To define this 
capability, the minimum acceptable level of system functionality or the 
normal state is defined. This capability is active in the disruption tran-
sition phase and can be assessed in the outage phase. It is important to 
note that the withstanding capability is associated with long-term 
exposure to disruption, while the absorptive capability is demon-
strated only in the short disruptive transition period. The restorative 
capability is the ability of the system to rapidly recover to normal or 

Fig. 1. The resilience trapezoid, with power system 
performance P(t) at time t: t0, te, td, ts, tr*, tr**, tr, 
respectively, the time at original state, disruptive 
event occurrence, post-disruption state, initiation of 
recovery actions, initial system recovery, infrastruc-
ture restoration begins, and full system restoration 
state. In the pre-event phase, system operates at 
normal conditions. As disruptive event strikes, the 
system absorbs some shock and goes into the alert 
state, then proceeds to an emergency state with 
further degradation, lasting through the outage phase 
which is an abnormal state. In this state, the system 
applies corrective actions and emergency resources 
towards critical load restoration, also known as the 
self-recovery when the emergency resources are pre- 
integrated into system operations. After prioritized 
restoration of critical loads, recovery efforts continue 
with repair and restoration of damaged 
infrastructure.   
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satisfactory functionality [31]. Rapidity is essential in this phase as the 
preference is for faster resource allocation towards system recovery. An 
influential factor to rapidity is also the fastness of identification of sys-
tem failure. The adaptive capability of the system is its ability to learn 
from disruptive events and modify system configuration, personnel 
training, and functions, to enhance system flexibility against future 
disruptions. This can be assessed by comparing system resilience in-
dicators post-disruption after restoration and pre-disruption. In addi-
tion, the planning capability, associated with the pre-event phase, is also 
introduced in Ref. [35] as the ability of the electric power utility to 
implement measures to reduce effects of potential hazards on the power 
grid performance. Common terms which have been used in different 
stages of the resilience trapezoid and associated with the resilience ca-
pabilities in reviewed studies are also presented in Fig. 2. 

Moreover, there are resilience dimensions associated with these 
discussed capabilities, namely robustness, redundancy, resourcefulness, 
and rapidity, also known as the 4Rs of resilience [36]. Robustness is the 
ability of the system to withstand disruption up to a given level without 
loss of functionality. Hence the system robustness is associated with the 
withstanding capability at the pre-event phase. Redundancy is the extent 
to which components and subsystems can be substituted to satisfy the 
suffered loss of functionality. It is associated with the absorptive capa-
bility at the disruption transition and outage phases. Resourcefulness is 
the ability of the system to identify system failures, prioritize and 
mobilize resources when conditions threaten the system, or towards 
meeting target recovery. Hence, resourcefulness is associated with the 
absorptive and restorative capabilities and can be assessed between the 
disruption and restorative transition phases. Rapidity, as discussed, 
basically is the ability to meet recovery priorities in a timely manner in 
order to contain losses and maintain functionality. 

Specifically, in order to effectively quantify resilience, quantitative 
metrics are utilized to evaluate these capabilities and dimensions by 
measuring the impact of different operational resilience and infra-
structural enhancement strategies (e.g., grid hardening) on power sys-
tems when resident in the different performance phases described. 
Although a number of studies have presented overviews of resilience 
[37–48], the gaps remain that there are no existing attempts that focus 
on the comprehensive analysis of quantitative power system resilience 
metrics (PSRMs). In addition, no attempts exist that provide a frame-
work towards categorization and a review methodology towards quan-
titative standardization as a baseline to compare the functional 
effectiveness of PSRMs. This is a major issue for power system resilience 
as highlighted in Ref. [49]: “There is presently no standard for the design 
of resilient distribution systems”. This paper bridges this gap by 
providing attribute categorizations, a standardized comprehensive re-
view and analysis of power system metrics for resilience quantification, 
while proposing insights into improving their design and development. 
Hence, this review focuses on quantitative power systems resilience 
metrics (PSRMs) with the aim of providing adequate information to aid 
the selection of design-appropriate metrics for power systems analysis, 
while identifying and recommending improvements. 

2. Review methodology 

For a comprehensive review, the authors searched various standard 
databases for publications relevant to resilience research. The steps 
taken were: defining the criteria for selected publications, defining da-
tabases and selecting the publications based on the criteria, data analysis 
and discussion of selected publications. The selections were limited to 
publications in English, in all databases visible mainly on Google 
Scholar, published until 2020, and with “Power system/grid resilience” 
as the keyword in the title, abstract or main body. Pioneer and author-
itative papers were included to discuss and review power system resil-
ience and related relevant topics. The selected publications were then 
filtered to consider power system quantitative metrics in the original 
publications in which they were developed. The authors then analyzed 

the methods and frameworks employed by the filtered publications in 
order to elucidate the different types and attributes of the metrics, 
providing broad categorizations and standardization discussed further. 
Innovative papers that adapt metrics from other studies are mentioned 
appropriately to help drive the review, but not included in the tables. 
However, all selected publications of original and adapted quantitative 
metrics are included in the statistical analysis. The methodology for 
review is based on the Axiomatic Design Process (ADP) which is elab-
orated next. 

2.1. The Axiomatic Design Process 

The fundamental hypothesis behind this process is that there are 
basic principles that govern a good design practice. In particular, the 
ADP is the logical process towards an objective through a series of do-
mains [50,51]. The ADP integrates a design sequence which consists of 
four domains: (1) the Service Domain, (2) the Functional Domain, (3) 
the Physical Domain, and (4) the Process Domain. The Service Domain 
represents customer needs. For an electric power utility, these needs are 
resilience objectives that the power system has to meet to provide 
customer satisfaction. These objectives are then transformed into re-
quirements in the Functional Domain. Having recognized these Func-
tional Requirements (FRs), Design Parameters (DPs) are then defined in 
the Physical Domain to specify the recognized FRs. In the ADP process 
the next step would be to define process variables for the processes 
running in the system under analysis. Moreover, the interaction between 
FRs and DPs is considered the major design process [31]. To integrate 
the ADP into our methodology, the Independence Axiom, illustrated in 
equation (1), must be satisfied. 

FR = [A]DP, (1)  

where [A] is the design matrix characterizing design structure. 
Specifically, the process where FRs are mapped to their corre-

sponding DPs, as in Table 1, should fundamentally satisfy the Inde-
pendence Axiom which states that the independence of FRs must always 
be maintained [50,52]. We present the mapping process evaluating the 
relationship between the FRs and DPs in Table 1, where the “✓” in the 
design matrix indicates the non-zero matrix elements, meaning a rela-
tionship exists between an FR and a DP. In addition, the independence 
axiom is satisfied since the design matrix furnished in this paper is of the 
triangular (decoupled) form.1 

In this work, the previously discussed resilience capabilities are 
adapted as the power system objectives towards resilience enhancement 
and thus customer satisfaction, hence recognizing these capabilities as 
the service (functions) that the power system has to provide to its cus-
tomers. These objectives are then transformed into functional re-
quirements. For instance, for the ability to withstand disruption, 
following the definition of the withstanding capability in Section 1.1.3, 
the FRs would include the interaction of the real (current) system per-
formance with the target system performance, where the DPs are the real 
system performance, and its standardization/comparison to the target 
system performance. Table 1 further summarizes the FRs and DPs (left) 
with the specification of the design matrix (right). Thus, the design 
parameters are utilized in the review process in order to maintain 
generalization of PSRMs and a standard for assessment of reviewed 
metrics. However, this does not imply that metrics which do not meet all 
the design criteria are sub-par since metrics are developed for specific 
purposes. Instead, it highlights functional requirements that, without 
loss of generality, have not been adequately addressed in literature. 

1 The design matrix should either be in diagonal (uncoupled) or triangular 
(decoupled) form [53]. The former means that the relationship between FRs 
and DPs perfectly satisfies the Independence Axiom while the latter will also 
guarantee the Independence Axiom given that DPs are specified in an appro-
priate sequence such that dependence between FRs are minimal. 
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2.2. Paper contributions 

In summary, this review paper presents a lead-in discussion of the 
main concepts of power system resilience, and focuses on furnishing 
power system quantitative metrics with unified notations towards 
standardization for research and industry applications. Furthermore, to 
answer pressing questions of metric validation in power system analysis, 
this paper presents a review methodology which explains service ob-
jectives expressed as the functional requirements for a resilient power 
system and identifies appropriate design parameters which demonstrate 
the functional requirement. Since this work provides a review of power 
systems and not a specific system design, the design parameters are not 
further mapped to the process variables. 

Hence in this review, the ADP is employed to recognize the major 
features of a resilient system and develop criteria for assessing reviewed 
power system resilience metrics using the DPs. The reviewed metrics are 
presented with design parameters they satisfy in Table 2, while cate-
gorizations of reviewed metrics, in the next sections, are presented in 
Table 3. Furthermore, this work presents statistical analysis of the 
reviewed papers on quantitative PSRMs, furnishing information on the 
venues and timelines of publication as well as the power system level/ 
stage in which the metrics are applicable. 

The rest of this paper is organized as illustrated in Fig. 3 and as 
follows: Section III discusses the different attributes and categories of 
PSRMs, while Sections IV, V, and VI present in-depth analysis of the 
metrics in these discussed categories which are distribution-level, 
transmission-level, and generic metrics furnished with details under 
the different techniques and enhancement strategies that were 

employed to develop such metrics. Section 7 summarizes, for re-
searchers and utilities alike, sources for obtaining real historic outage 
data for resilience analysis. Section 8 discusses the existing gaps and 
challenges while making recommendations, and conclusions are drawn 
in Section 9. 

3. Quantitative power system resilience metrics 

3.1. Standardized notation 

One of the additional contributions of this paper lies in the stan-
dardization of parameters, that have been utilized to develop resilience 
metrics, which have varied across different studies. The following no-
tations are used in the paper: bold-faced letters represent matrices and 
vectors. With the letter R we define power systems resilience and with P 
(t) we define the performance state of the system which is the power 
system performance at any time t along the resilience trapezoid. The 
system performance is a suitable metric associated to the resilience level 
of the system [15]. In particular, it is the state of the quantity (e.g., 
active power and load demand, cost of loss of functionality) used as the 
system’s resilience indicator, and is suggestive of the resilience level at 
any point in time. Based on the performance state of the system, t can be 
equal to: t0, te, td, ts, tr*, tr**, tr, where these times respectively represent 
the time at original system state, the time of the disruptive event 
occurrence, the time at post-disruption state, the time when recovery 
actions are initiated, the time to initial system recovery, the time that 
infrastructure restoration begins, the time at final system restoration 
state, and T as the time to full system restoration as shown in Fig. 1. In 

Fig. 2. Common terms often associated with resilience capabilities.  

Table 1 
1) Defining FRs and DPs for Power System Resilience, 2) The Decoupled Design Matrix. 
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Table 2 
Evaluating selected metrics against Design parameters.  

Publication Real 
Performance 

Standardization 
to Target 
Performance 

Functionality 
Threshold/ 
Threshold 
Deviation 

Component 
Damage 

System 
Damage 

Cascade 
Damage 

System 
Resourcefulness 

Time 
Variation 
of 
Resilience 

System 
Redundancy 

System 
Robustness 

Elapsed 
Time to 
Failure 
Detection 

Elapsed 
Time to 
Initial 
System 
Stabilization 

Elapsed 
Time to 
Final 
System 
Recovery 

Stakeholder 
Decisions 

M. Bruneau 
[36] 

✓  ✓  ✓        ✓  

M.N. 
Albasrawi 
[14] 

✓ ✓ ✓  ✓ ✓  ✓     ✓  

R. Francis 
[13]  

✓   ✓  ✓ ✓    ✓ ✓ ✓ 

L. Zheming 
[63] 

✓   ✓   ✓ ✓     ✓  

K. Barker 
[91]  

✓  ✓    ✓  ✓   ✓  

D. Henry 
[98] 

✓ ✓  ✓ ✓   ✓     ✓  

H. Baroud 
[99] 

✓ ✓  ✓    ✓ ✓    ✓  

M. Ouyang 
[102] 

✓ ✓  ✓ ✓ ✓ ✓  ✓      

M. Ouyang 
[107] 

✓ ✓  ✓   ✓  ✓  ✓  ✓  

Y. Xu [62] ✓   ✓   ✓ ✓     ✓  
N. H. Afgan 

[82] 
✓  ✓  ✓   ✓       

C. Ji [72]   ✓ ✓ ✓ ✓  ✓   ✓  ✓  
S. Chanda 

[54] 
✓ ✓ ✓ ✓  ✓ ✓  ✓     ✓ 

P. Bajpai 
[55] 

✓ ✓  ✓   ✓ ✓ ✓     ✓ 

Y. Wei [71] ✓  ✓ ✓  ✓  ✓   ✓ ✓ ✓  
Y. Wei [70] ✓  ✓ ✓   ✓ ✓   ✓ ✓ ✓  
Panteli [81] ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓   ✓  
X. Liu [85] ✓  ✓ ✓ ✓  ✓ ✓  ✓   ✓  
A. Kwasinski 

[35] 
✓ ✓   ✓ ✓ ✓  ✓     ✓ 

A.A. Ganin 
[92] 

✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 

J. C.Whitson 
[93]   

✓ ✓     ✓      

M. Panteli 
[83]   

✓ ✓  ✓       ✓  

H. Gao [59] ✓   ✓ ✓  ✓ ✓    ✓ ✓  
Y. Fang 

[113] 
✓ ✓  ✓ ✓   ✓     ✓  

Dehghanian 
[86] 

✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓  

M.H. 
Amirioun 
[64] 

✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓  

S. Zuloaga 
[112] 

✓ ✓  ✓ ✓         ✓ 

S. Poudel 
[78] 

✓  ✓ ✓ ✓   ✓  ✓     

(continued on next page) 
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the paper, we refer to the transmission/distribution lines as links, and 
the term nodes refers to the power system’s buses and load points. 

3.2. Attributes of resilience metrics 

The quantitative resilience metrics reviewed in this paper are 
assigned the following attributes that specify the nature, scope and 
methodology utilized to develop the metrics. All attributes of the 
reviewed resilience metrics are summarily tabulated in Table 3. 

3.2.1. Stochastic vs. deterministic metrics 
Stochastic metrics incorporate the impacts of uncertainties (e.g., 

component failure and restoration time) in the metrics calculation, 
while the deterministic metrics calculate the metrics without considering 
the uncertainty of parameters and events. 

3.2.2. Cost vs. energy vs. time-based metrics 
Cost-based metrics quantify resilience based on such costs associated 

with recovering the system performance, lost opportunity costs due to 
power outage in the system, costs of energy not supplied, and value of 
lost load. Energy-based metrics assess resilience by measuring the power 
and/or energy that is lost or retained post disaster. Time-based metrics 
measure resilience based on time, quantifying how fast the system is 
affected by an extreme event or how quick the system recovers. 

3.2.3. Infrastructural vs. operational metrics 
Infrastructural metrics, also known as Planning metrics, assess the 

impacts of planning decisions and infrastructure hardening strategies (e. 
g., replacing aging components and integrating automated switching 
technologies) on improving the resilience of a given system against a 
disturbance that may happen in future. Operational metrics quantify the 
impacts of operational actions (e.g., DER dispatch, system reconfigura-
tion) that aid in maintaining and/or restoring the system performance 
given an imminent disruptive event. 

3.2.4. Dynamic vs. static metrics 
Dynamic metrics capture the time-dependent performance and evo-

lution of disrupted system or components while static metrics are time 
invariant. Hence, dynamic metrics consider the time dependent func-
tions of a system, while static metrics do not consider them [31]. 

3.2.5. Metrics utilizing real data vs. simulated data 
The resilience metrics reviewed in this paper are evaluated using 

either real historical data (e.g., line failure data, weather data), or 
simulated and/or synthetic data and are highlighted to aid power system 
resilience research. 

In the following sections, we discuss and analyze developed power 
system resilience metrics, which are categorized into: 1) distribution- 
level system metrics (DSMs), 2) transmission-level system metrics 
(TSMs), and 3) generic system metrics (GSMs). The metrics in the first 
two categories are specifically proposed for quantifying resilience in 
distribution and transmission systems, respectively, as these metrics 
have unique qualities in terms of component characteristics, configu-
rations and topology, applicable to each of these systems. The generic 
resilience metrics are those that are proposed to quantify the resilience 
of power systems without specification to a particular level and hence 
presumably can be applied at any level. However, first, we provide 
statistical analysis of common performance indicators utilized in quan-
titative PSRMs, time evolution of the reviewed PSRMs, and also, time 
evolution based on journals in which these PSRMs have been published, 
detailed as follows. 

3.3. Statistical analysis 

In this section, we analyze the statistics associated with the publi-
cations of quantitative power system resilience metrics over the past Ta
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Table 3 
Categorizations of quantitative power systems resilience metrics from technical literature.  

Publication Generic 
Metrics 

Transmission- 
level metrics 

Distribution- 
level metrics 

Stochastic 
metrics 

Deterministic 
metrics 

Cost- 
Based 
metrics 

Energy- 
Based 
metrics 

Time- 
Based 
metrics 

Planning 
metrics 

Operational 
metrics 

Static 
metrics 

Dynamic 
metrics 

Use 
simulated 
data 

Use 
real 
data 

M. Bruneau 
[36] 

✓    ✓  ✓  ✓   ✓   

M.N. 
Albasrawi 
[14] 

✓    ✓  ✓  ✓ ✓  ✓ ✓  

R. Francis 
[13] 

✓   ✓    ✓ ✓   ✓ ✓  

L. Zheming 
[63]   

✓ ✓  ✓ ✓ ✓  ✓  ✓ ✓  

K. Barker [91] ✓   ✓   ✓ ✓ ✓ ✓  ✓ ✓  
D. Henry [98] ✓    ✓ ✓  ✓ ✓   ✓ ✓  
H. Baroud 

[99] 
✓   ✓    ✓ ✓   ✓ ✓ ✓ 

M. Ouyang 
[102] 

✓   ✓   ✓   ✓  ✓  ✓ 

M. Ouyang 
[107] 

✓   ✓   ✓ ✓  ✓  ✓  ✓ 

Y. Xu [62]   ✓ ✓    ✓  ✓  ✓ ✓  
N. H. Afgan 

[82]  
✓   ✓ ✓ ✓  ✓ ✓  ✓ ✓  

C. Ji [72]   ✓ ✓  ✓  ✓ ✓ ✓  ✓  ✓ 
S. Chanda 

[54]   
✓ ✓   ✓   ✓ ✓  ✓ ✓ 

P. Bajpai [55]   ✓ ✓   ✓  ✓ ✓ ✓  ✓  
Y. Wei [71]   ✓ ✓    ✓ ✓   ✓  ✓ 
Y. Wei [70]   ✓ ✓    ✓ ✓   ✓  ✓ 
Panteli [81]  ✓  ✓   ✓ ✓ ✓ ✓  ✓ ✓  
X. Liu [85]  ✓  ✓    ✓ ✓  ✓  ✓  
A. Kwasinski 

[35]   
✓ ✓   ✓ ✓ ✓ ✓ ✓   ✓ 

A.A. Ganin 
[92] 

✓   ✓    ✓  ✓  ✓ ✓  

J. C.Whitson 
[93] 

✓   ✓   ✓  ✓  ✓  ✓  

M. Panteli 
[83]  

✓  ✓   ✓  ✓  ✓   ✓ 

H. Gao [59]   ✓ ✓   ✓ ✓  ✓  ✓ ✓  
Y. Fang [113] ✓   ✓   ✓ ✓ ✓   ✓ ✓  
Dehghanian 

[86]  
✓   ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓  

M.H. 
Amirioun 
[64]   

✓ ✓   ✓ ✓  ✓  ✓ ✓  

S. Zuloaga 
[112] 

✓    ✓  ✓ ✓  ✓ ✓  ✓ ✓ 

S. Poudel [78]   ✓ ✓   ✓ ✓  ✓  ✓ ✓  
Y. Wang [73]  ✓  ✓   ✓   ✓ ✓  ✓  
Y. Zhou [96] ✓   ✓   ✓ ✓  ✓  ✓ ✓ ✓ 
U. Muller [76]   ✓  ✓  ✓   ✓ ✓  ✓  
M. Najarian 

[116] 
✓   ✓   ✓ ✓  ✓  ✓ ✓  

S. Pandey [58]   ✓  ✓  ✓ ✓  ✓ ✓  ✓ ✓ 

(continued on next page) 
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decade. 

3.3.1. Recurring performance indicators 
In Table 4, we furnish information about the system performance 

indicators that have been identified in the course of this review, and 
their distribution as commonly used in resilience quantification of 
DSMs, TSMs, and GSMs. These are system connectivity parameters, 
failure/recovery parameters, active power, energy cost, voltage 
magnitude, and line thermal limits. The system connectivity can be 
evaluated using different measures discussed as follows. The network 
diameter is the largest geodesic distance between possible pairs of 
nodes, and represents the length of the shortest path between the 
farthest components in the power system. The average path length is the 
average geodesic distance of the shortest paths between all possible 
pairs of nodes, and represents the number of components that must be 
traveled through to connect a power source to a load while considering 
the entire network. The degree distribution, which is the fraction of 
network nodes with certain node degrees, represents the number of 
laterals arising out of each feeder node, aiding a more heterogeneous 
network. The betweenness centrality of the network represented as a 
graph, is the number of all the shortest paths passing through a node. 
This represents the relative importance of each component in the 
network. The clustering coefficient of the network represents the prob-
ability that two incident nodes are completed by a third node to form a 
triangle, and determines which components tend to be connected to 
adjacent components. 

3.3.2. Peer review journals and venues of publication 
We present the evolution of the reviewed metrics according to the 

journals in which they have been published over time as illustrated in 
Fig. 4. For instance, all red circles are publications in the Journal of 
Reliability Engineering and System Safety in different years within the 
decade, while the journal with the largest publication percentage for 
resilience metrics is the IEEE Transactions on Smart Grid in the year 
2016. In addition, 2019 and 2020 years have seen an increase in 
quantitative PSRM publications, mainly with the IEEE Transactions on 
Power Systems, Risk Analysis, and Reliability Engineering and System 
Safety. In the following sections, we discuss and analyze PSRMs in their 
different categories. 

3.3.3. Time evolution of reviewed metrics 
In addition, we present the overall time evolution of metrics over the 

last decade as illustrated in Fig. 5. The plot shows the statistical quartile 
box plot for the distribution system metrics (DSM), the transmission 
system metrics (TSM) and the Generic system metrics (GSM) for the year 
2011–2015, 2016–2020, 2010–2020, from left to right. The main goal of 
the plots is to show the variance of the number of papers studying PSRMs 
in each of the power system levels. The analysis shows that DSMs have 
ramped up in literary focus through the decade while less literary 
attention has been given to the TSMs. 

4. Distribution-level resilience metrics 

This section discusses PSRMs that have been developed for utiliza-
tion in the power distribution system (PDS). We further compartmen-
talize these metrics according to employed techniques or parameters, 
even though metrics can fit more than one compartment, to aid read-
ability and research. 

4.1. Employing system topology 

In [54], a resilience measure is proposed based on the concept of 
“topological resilience”. The topological resilience, which is quantified 
by determining the probability of distribution components remaining 
functional after a disruptive event, increases if the functional probability 
of components is above a certain threshold and a path can be connected Ta
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Fig. 3. Paper structure.  

Table 4 
Recurring performance indicators for power system resilience.  

Resilience Indicator Definition Relationship to Power System Resilience DSM % 
Usage 

TSM % 
Usage 

GSM % 
Usage 

Overall % 
Usage 

System connectivity The extent to which power system 
components are connected, and can be 
evaluated by different measures. 

1) The higher the algebraic connectivity, degree distribution, 
and clustering coefficient of the network, the more resilient 
the system. 2) The smaller the network diameter, average path 
length, the higher the resilience. 3) For a high degree 
distribution component, the smaller the betweenness 
centrality, the more resilient the system. 

16.13 14.29 10.34 13.51 

Failure/Recovery 
probability/ 
count/rate 

The probability/rate/count of failed/ 
recovered system components 

The higher this value for recovered components, the more 
resilient the system, while for failure, the less system 
resilience. 

12.90 28.57 34.48 24.32 

Active power The flow/demand/curtailment of active 
power in power system steady state 
operation 

The amount of power that can securely flow through system 
components, served to/curtailed from customer demand. The 
more the power flow violation/deviation from secure states 
and load curtailment, the less resilient the system, and vice 
versa for demand served. 

54.84 35.71 44.83 47.30 

Energy costs The costs associated with supplied 
demand/curtailment of load in the 
power system. 

This value is usually optimized (maximized/minimized) to 
improve system resilience, however generally, the higher the 
energy costs of load curtailment, the less resilient the system. 

9.68 7.14 6.90 8.11 

Voltage magnitude The voltage on a busbar The voltage range that system buses are constrained to remain 
secure. The more the bus voltages deviate from secure/normal 
states, the less resilient the system. 

3.23 7.14 3.45 4.05 

Line thermal limits The temperature limits of the energy 
transports of a conducting line 

The more the line thermal condition rises from secure/normal 
thermal limits, the less resilient the system. 

3.23 7.14 0.00 2.70  
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through functional components to critical loads. The functional 
threshold indicates the fraction of components the operator can bear to 
have damaged. With power flow feasibility being the most influential 
factor, the resilience of each possible feasible topological configuration 
of the distribution system is defined and aggregated towards the overall 
resilience of the system. The overall resilience is defined mathematically 
by a stochastic, static, energy-based, and operational metric as in 
equation (2). 

R = r + (1 − r)
∑U− 1

u=1
wuRu, (2)  

where R = [R1, R2, …, RU] is a vector that contains the resilience scores/ 
values of U feasible configurations of the distribution network, wu is the 
normalized weights assigned to resilient configurations, r = max[R1, R2, 
…, RU], and Ru is an ascending order of vectors containing all the 
composite resilient values of the networks that do not have the 
maximum resilience. The value of the overall resilience increasing il-
lustrates an increase in the number of paths that connect functional 

components to critical loads. 
Similarly, by considering feasible paths and modeling the distribu-

tion network [55], develops a stochastic resilience metric using the 
Choquet integral computation method, which aggregates the contribu-
tion of individual factors associated with nodes and links of the power 
distribution network, including redundancy of paths, probability of 
available sources, and central point dominance, in order to identify the 
feasible paths to restore a load. In Ref. [56], the spatial distribution of 
the impacts of disruptive events is assessed, where the system perfor-
mance as the system fails and recovers is characterized by network ef-
ficiency and the largest connected component. Network efficiency has 
been proposed in literature as a measure of how well a system exchanges 
information and has also been used in resilience evaluation [57], while 
the largest connected component, which is the number of nodes in the 
largest connected subgraph of the network, is also used to assess system 
performance given a range of vulnerability scenarios. In Ref. [58], 
islanding is utilized proactively to minimize the adverse effects of 
disruptive events in a resilience-driven reconfiguration using anomaly 

Fig. 4. Publications by percentage of reviewed quantitative metrics.  

Fig. 5. Evolution of number of metrics over the last decade. In the first plot, we observe the focus on developing GSMs, and the gradual peaking interest in DSMs. In 
the following 5 years, we observe the that the DSMs had peaked in literary attention over GSMs. Overall, through the last decade, literary attention has been 
significant with the GSMs and DSMs, followed by the TSMs which have generally received less attention. 
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ridden distribution-PMU data. The reconfiguration employed is based on 
the spanning tree optimization algorithm that maximizes critical de-
mand met, while the component-based resilience metric employed is 
time-based, deterministic, based on the system topology, and mathe-
matically defined as: 

R =
w1⋅bcn

w2⋅ lg,n
lmax

×
Pc

Pn
, (3)  

where w1 and w2 are system-specific weights, bcn is the betweenness 
centrality of the node being assessed for its resilience, lg,n represents the 
geodesic path of between a node and a generator, lmax is the maximum of 
all path lengths in a given network, while Pc and Pn are the real power 
demands of the critical and all loads respectively, at and downstream of 
the assessed node. This metric notably integrates the topology of the 
distribution system into resilience analysis, however except for the 
disruption phase, it is not comprehensive in other resilience phases 
which are not considered in their resilience analysis. 

4.2. Employing microgrids and/or distributed resources 

In [59], a resilience metric is developed to evaluate the ability of the 
system to restore critical loads by employing microgrids. This stochastic, 
energy-based and operational metric is developed based on two resto-
ration levels: (1) the restoration of critical loads and (2) the restoration 
of power system infrastructure (e.g., damaged poles and lines). Given tr* 
to be the time to restoration of the critical loads, the system resilience is 
defined in the time period [td, tr*] as: 

R =

∫ tr∗

td

∑

c∈C
Wc⋅Pc(t) dt, (4)  

where C is the set of critical loads restored by microgrids, Wc is the 
weight of a critical load c, and Pc(t) is the active power of load c at time t. 
This metric as defined in equation (4) is also adapted in a stochastic post- 
hurricane framework proposed in Ref. [60] in order to improve the 
resilience of networked microgrids using mobile emergency resources, 
as well as in Ref. [61] for pre-hurricane resource allocation inclusive of 
electric buses. Similarly, in Ref. [62], a resilience metric is introduced to 
evaluate restoration of critical loads in a PDS and is defined as the cu-
mulative service time of distributed generators to loads which are 
weighted by priority. A great advantage of these measures is the ability 
to simultaneously assess the operational and planning attributes of the 
PDS, hence, assessing the system resilience attained by short-term 
operational strategies such as resource allocation, and the long-term 
planning strategies such as location and hardening of distribution 
lines. In Ref. [63], the resilience metric in Ref. [59] is extended to 
consider multiple microgrids and also the total switching time of the 
microgrids from grid connected to islanded mode. A stochastic, opera-
tional, cost-based resilience metric is developed and optimized as a 
mathematical formulation. Stochasticity here arises from the utilization 
of the Bat algorithm in handling discrete and non-linear characteristics 
of the formulation and also, the uncertainty of the distributed generators 
subject to weather conditions. The post degradation objective minimizes 
the time slots needed for load restoration. 

R = Λ
∫ ts+Tsw

ts

(
∑

n
ωn,t × Pdn ,t

)

dt − G, ∀i ∈ L, (5)  

where G represents distributed energy resource costs, Λ is a constant 
value to convert system performance to a dollar value, L is the set of links 
i connected to node n, ωn denotes the weighting factor of the node n, Pdn ,t 
is the total load demand on node n, and Tsw is the switching time for 
microgrids to transit between islanding and grid connected mode. 

In [64], the resilience of microgrids against windstorms is analyzed 
using fragility curves of overhead lines and windstorm profile, where 

vulnerability and degradation metrics are developed, and restoration 
efficiency is measured. Hence, proposing a resilience metric analyzed 
through disruption transition to restoration and defined as in equation 
(6): 

R =

∫ tr∗ − Δt
td

P(t)dt
P(t0)((tr∗ − Δt)) − td

, (6)  

where Δt is the time the system awaits infrastructure recovery. The 
advantage here is system resilience details afforded by the employed 
component level modeling, and hence providing a standardized [0,1] 
metric directly proportional to system resilience. Similarly, vulnerability 
and degradation indicators are utilized in Ref. [65] to evaluate the 
resilience of distribution networks focusing on critical load impact under 
disruptive weather conditions. The proposed resilience index is defined: 

R =
1

∫ t
t0

⎛

⎜
⎜
⎜
⎜
⎝

1
S

∑S

s=1
Ps

P(t0)

⎞

⎟
⎟
⎟
⎟
⎠

dt

, (7)  

where Ps is the comprehensive loss of critical load in scenario s at time t. 
In Ref. [66], the resilience of electric infrastructure systems is assessed 
by criticality prioritization of the demand to be restored (priority, ur-
gent, routine) hence recovery proceeds in three stages where initial re-
covery consists of two stages in which the priority and urgent loads are 
recovered, and the final stage which recovers routine loads. In their 
framework, they take into account the impact of temporary services such 
as distributed generators (DG) to restoration, hence different stages of 
recovery include the use of these DG resources. The resilience is then 
evaluated by applying the concept of the four resilience dimensions 
namely robustness, redundancy,resourcefulness,and rapidity, including 
the system adaptive capacity (readjust-ability), into a weighted resil-
ience average as shown in equation (8). 

R = w ×

⎡

⎢
⎢
⎣w ×

⎛

⎜
⎜
⎝

2

1 + exp
(

P(t0)− P(td )
P(td)

)

⎞

⎟
⎟
⎠

n

,w ×

(
P(DG)

P(t0)

)

n
,

w ×

(

max
[

1 −

(
Pu

I + Pr
I

Pp
I

)

, 0
]

,max
[

1 −

(
Pu

II

Pr
II

)

, 0
])

,

w ×

⎛

⎜
⎝

1

1 + exp
(

trn − tδn
γ

)

⎞

⎟
⎠

n

,w ×

(
P(tr)

P(t0)

)

n

⎤

⎥
⎦,

(8)  

where γ is the time scale factor, tδn is the slack time (maximum accept-
able time post-disruption before recovery begins) defined for different 
load n which could be priority (p), urgent (u), or routine (r), Pn

I = P(t1)n - 
(P(td)n

+ P(DG)n
) where t1 is the time that restoration of urgent loads 

begins, Pn
II = Pn

1 − Pn
I , and Pn

1 is the performance level when urgent loads 
are recovered. The first term in equation (8) is the weighted system 
robustness, active in the disruption transition phase, and formulated 
using a monotonic modified sigmoid function bounded in [0,1]. The 
second term is the weighted system redundancy which is formulated as a 
ratio between the capacity of the DGs to the system capacity pre- 
disruption. The third term is the system resourcefulness which is the 
ability of the system to rally its resources towards prioritized restoration, 
where 0 → 1 implies positively utilized resources. The fourth term is the 
rapidity of system recovery where the timescale γ represents customer 
sensitivity to power outage, and the recovery time and slack time are 
defined for different n types. The last term is the system adaptability 
which represents the capacity of the system to re-adjust to operations in 
the event that the system does not adequately absorb the impact 
disruption. In Ref. [67], the resilience of the distribution grid against 
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earthquakes is enhanced through the optimization of the capacity and 
location of battery energy storage. A resilience index, mathematically 
defined in equation (9), is proposed as an objective function to be 
maximized subject to battery storage constraints. 

R =
∑24

te=1

Pr(te)

∑tr∗ − te

te
P

(
∑

s∈S
πs

∑Ni

ni=1

∑tr∗ − te

t=1
Δt⋅

(
∑B

b=1
α⋅Pdch

))

, (9)  

where 
∑tr∗ − te

te P is the total system energy demand for the system emer-
gency duration, Pr(te) = 1

24 is the probability of earthquake occurrence in 
each our of the day, πs is the probability of a scenario s, Ni is the number 
of networked islands in the distribution system, α is the parameter that 
indicates the battery energy storage in a network island in a given sce-
nario, and Pdch is the discharge of the battery energy storage in a given 
scenario, in a given time slot given that the earthquake occurred at te. 
This metric basically informs on the discharge of the battery energy 
storage relative to the energy demand by critical loads in the emergency 
duration over different scenarios. In Ref. [68], an outage management 
scheme is proposed for smart grids with multiple microgrids for resil-
ience enhancement in the event of disruptions. This hierarchical scheme 
consists of two stages; the first stage involves the scheduling of the 
available microgrid resources based on a proposed model predictive 
control-based algorithm, while in the second stage, the system operator 
coordinates the inter-microgrid unused capacity to meet unserved de-
mand from the first stage. The performance of the proposed scheme is 
then evaluated using a resilience index proposed as follows: 

R =
1
T
∑T

te=1

∑N

n=1

∑td

t=te+1
Δt⋅Pn,t, (10)  

where N is the number of microgrids, T is the number of time slots in a 
day, and Pn,t is the curtailed load from the second stage scheduling of 
microgrid resources supplying unserved loads. However, this index fo-
cuses on the disruption transition phase and does not integrate the other 
dimensions of resilience. In Ref. [69], analysis and discussions are 
further provided on strategies used by microgrids for resilience 
enhancement as well as the use of microgrids as a resilience resource. 

4.3. Employing failure and recovery assessment 

In [70], a spatio-temporal resilience evaluation which focuses on the 
dynamic nature of failure-recovery states is proposed. For instance, the 
allocation of repair crews following a failure is dynamic. They develop a 
metric that defines resilience of a system component as the probability 
that the component is either functioning or exhibiting infant (fast) re-
covery. This time-based metric is illustrated in equation (11). 

R = Pr{Xi(t) = 0} + Pr{Di(t) < d,Xi(t) = 1}, (11)  

where Pr{Xi(t) = 0} is the probability that a component is in normal 
operations, hence characterizing the ability of resist failure at time t, and 
Pr{Di(t) < d,Xi(t) = 1} is the probability of infant recovery, character-
izing the rapidity of recovery given the occurrence of component failure. 
In a subsequent work [71], further their evaluation considering that 
component failures and recoveries are associated with the system to-
pology. Topological characteristics such as dynamic failure- and 
recovery-neighborhoods are defined by modeling the PDS in a tree to-
pology. Different forms of failure and recovery are recognized to include 
a direct failure (s = f) of a PDS component from the immediate impact of 
the disruptive event, a secondary failure (s = f′) as damage resulting 
from direct failure of another component (burned fuses resulting from 
unbalanced currents from a direct failure), and outages (s = o) which do 
not result in component damage but loss of functionality. The secondary 
and outage failures result from the direct failure of an upstream 
neighbor and the recovery of a component will result in the recovery of 

the downstream neighbors in its recovery neighborhood. A stochastic, 
dynamic and time-based resilience metric is mathematically defined as: 

R = 1 −
1
J

∫ t

te=0

(
∑

s=f , o

∑

z∈Z
λ(s)z (te) × Pr

{
D(s)

z (te) > k
}
)

dte (12)  

In (12) the second term corresponds to the expected percentage of aging 
(slow) recoveries at time t, k = (t − te + d) and s specifies the three failure 
scenarios. Given any of the three scenarios, λ(s)z (te) is the probability of a 
scenario to occur during the period (te − dte, te], z is a sub network 
considered in region Z, and Pr

{
D(s)

z (te) > k
}

is the probability for failures 
that last a duration longer than k. This metric indicates regions and time 
durations of least resilience based on fast (infant) and slow (aging) re-
covery states. If a node remains in a failed state less than the threshold 
value, d, the recovery is said to be infant. Infant recovery indicates 
higher distribution system resilience. This measure is assessed using 
empirical methods and real component failure data from hurricane Ike. 
Another major advantage of this metric is its capability to recognize 
effects of cascades in failure and recovery, hence reflective of real events 
and accurate evaluation of PDS resilience. 

In [72], the authors define planning and operational resilience 
measures, where the former is specified by time-varying component 
failure rates, with which resilience has an inverse relationship. The 
latter is specified by the customer interruption time, system- and 
customer-disruptions that do not recover after a specified threshold, 
hence following the infant recovery described in Ref. [71]. Therefore, 
the metric combines planning and operational measures to obtain a 
dynamic and stochastic metric for assessing PDS resilience. The authors 
incorporate the uncertainty and dynamics of failures and recoveries, 
spatio-temporal methods, and customer cost of failures as shown in 
equation (13). 

R = 1 −
1
ϒ

∫t− d

t0

Es(td )
{

Rinf (td|S(td))Rserv|S(td)
}

dtd, (13)  

where ϒ is a factor that normalizes resilience value to [0,1], d is a 
threshold on disruption duration, Es(td) is the expectation over a random 
system state, S(td), Rinf (td|S(td)) is the infrastructure failure rate of the 
system given S(td), Rserv|S(td) is the conditional expectation of the service 
cost due to delays in restoring failures given S(td), and the integral is 
over the expected cost at time t due to a delayed recovery in a service 
area. They validate their metric using real data from Hurricane Sandy 
and illustrate that slow recovery after disruption is considerably influ-
enced by lower-level components such as fuses. 

A resilience metric similar to Ref. [73] in Ref. [74] where the loss of 
load/curtailed load is utilized in the resilience evaluation of integrated 
electricity and natural gas transportation system planning given 
disruptive conditions. In Ref. [75], the resilience of the integrated en-
ergy systems is quantified based on the system loss in functionality. The 
proposed method entails the introduction of the loss matrix, whose 
scenario-based elements are the undelivered system services during 
operational periods of analysis and for internal and external failure 
modes, which is then transformed into the consequence matrix where 
the penalty costs of undelivered services are assigned to matrix ele-
ments. The elements of this consequence matrix are then normalized to 
obtain the proposed resilience matrix where element-wise resilience is 
defined as: 

R =
Pmax

i − Pi,j

Pmax
i

, (14)  

where Pmax
i in each scenario is the penalty cost if all functional services 

during operational temporal period i are lost, and Pi,j is the penalty cost 
of lost functional services in operational temporal period i and failure 
mode j. 
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4.4. Employing availability and risk indices 

In [76], system availability analogous to fault tolerance is adapted in 
defining resilience metrics of data center power supply as: (1) resilience 
of a subset of subsystems whose single failure leads the system avail-
ability to be less than the minimum for a tier IV design, and (2) resilience 
of two subsystems whose double failure results in the system availability 
to be less than the minimum for a tier IV design. A tier IV design requires 
the data center power supply system availability to be no less than 
0.9999. Hence, lower values imply better availability, operation time 
and hence resilience. In Refs. [35,77], a deterministic, static resilience 
metric that accesses the interdependence between critical infrastructure 
(CI) is developed based on the availability concept in reliability theory. 
In this metric, energy storage units are integrated into the nodes of a 
communication CI in order to assess its electricity dependence on the 
power grid CI. This metric is mathematically formulated as follows: 

R = 1 − UN/Se− μξs , (15)  

where UN/S is the unavailability (1-Availability) of the system without 
storage, ξs is the storage capacity of a storage unit s, and μ is the sum of 
repair rates related to a direct transition from a failed state into an im-
mediate operational state. In Ref. [78], risk based metrics, value-at-risk 
and conditional-value-at-risk, are adapted from risk-averse financial 
planning to quantify the resilience of the distribution system. The 
value-at-risk metric specifies the minimum value of system performance 
which cannot be exceeded with a certain probability, while the 
conditional-value-at-risk metric measures the conditional expectation 
that the loss in system performance will exceed the loss associated with 
the value-at-risk metric. These metrics then quantify the operational 
resilience of the power distribution system by providing insight into 
impacts of present and future disruptions, target system performance 
and potential improvements attained by system enhancement strategies. 

4.5. Employing smart technologies 

In [79], the resilience impact of automated fault location, isolation 
and service restoration devices is assessed, and resilience indices are 
proposed for each phase of the resilience trapezoid. The indices include 
the expectations of maximum load loss, load interruption rate, auto-
matic restoration time, load restored by automation, repair time, and 
energy not served respectively, defined as R1− 6 for the realized sce-
narios, S. 

R1 =
∑

s∈S
πs(P(t0) − P(td)),

R2 =
∑

s∈S
πs
(P(t0) − P(td))

(t0 − td)
,

R3 =
∑

s∈S
πs(t∗r − td),

R4 =
∑

s∈S
πs
(P(t∗r ) − P(td))

(P(t0) − P(td))
,

R5 =
∑

s∈S
πs(tr − t*∗r ),

R6 =
∑

s∈S
πs

∫ tr

te
(P(t0) − P(t))dt (16)  

The expectations of maximum load loss and load interruption rate are 
representative of the system robustness and absorptive capacity, and are 
evaluated in the disruption transition phase. The energy not served in-
forms the degradation in system performance over the period of anal-
ysis, as a result of the disruptive event. It is the magnitude of the valley 

in the resilience trapezoid. The automatic restoration time, load restored 
by automation and repair time are active in the recovery phase. How-
ever, the proposed metrics could benefit from a weighted aggregation 
into a single resilience metric for the power distribution system espe-
cially since they are multivariate. In Ref. [80], the impact of smart grid 
technologies, renewable energy uncertainty, and restoration budget, are 
considered in the optimization of critical loads supply while satisfying 
topological and operational constraints. Towards this, a resilience 
metric is proposed using load prioritization, system resistance to 
disruptive event, and recovery of the distribution system in the period of 
analysis, as defined in equation (17). 

R =

∑

t

∑

n
înt

Pn,t

∑

t

∑

n
Pn,t

×
Pcmax∑

t

∑

nint

Pn,t
×

24
T
, (17)  

where n and t are the index of buses and time respectively, nint is the 
number of interrupted buses, n

înt 
is the number of uninterrupted buses, 

Pn,t is the load at bus n at time t, Pcmax is the total power of restored loads 
which is maximized as an objective function subject to load priority, and 
T is the study period. Hence, the first term in the equation (17), is the 
resistance of the distribution system to the disruption, hence signifying 
the absorptive capability of the system with the ratio of the demand 
supplied after disruption to the total demand of the system. The second 
term is the restorative capability of the system where the ratio of the 
prioritized restored loads to the disruption-interrupted loads represents 
the recovery of the distribution system. The third term adapts the metric 
to the study period. This metric appropriately addresses two major 
resilience disruption and recovery phases. 

5. Transmission-level resilience metrics 

This section discusses PSRMs that have been developed for utiliza-
tion in the power transmission system. We further compartmentalize 
these metrics according to employed techniques or parameters, even 
though metrics can fit more than one compartment, to aid readability 
and research. 

5.1. Employing operational and infrastructural indicators 

In [81], dynamic and time-based power system metrics, R1, R2, R3, R4 
are developed for quantifying resilience with respect to planning and 
operational actions of the power system for different phases of the 
resilience trapezoid. R1 estimates the slope of resilience degradation 
during the disruptive event, hence representative of the rapidity of 
resilience degradation. R2 estimates the level of resilience degradation, 
and by physical representation, it is simply ‘how low’ resilience drops in 
the resilience trapezoid. R3 estimates the time the system remains in the 
degraded state after the disruptive event. R4 is to the recovery phase 
what the R1 is to the degradation phase, as it assesses the rapidity of 
system recovery. The resilience indicators for the operational and 
planning metrics are the amount of connected generation capacity and 
load demand during the event, and the number of transmission lines that 
are online, respectively. In addition, a metric R that utilizes the area of 
the resilience trapezoid is developed to quantify the absolute resilience 
of the system. These metrics are formulated as below, where the su-
perscript ψ ∈{o, i} is used to represent the variable associated either with 
operational actions or planning strategies: 

R1 =
Pψ(td) − Pψ(t0)

td − te
,

R2 = Pψ(t0) − Pψ (td),

R3 = tψ
s − td,
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R4 =
Pψ (t0) − Pψ(td)

tψ
r − tψ

s
,

R =

∫ tψr

te
Pψ (t)dt (18)  

Hence, with respect to Fig. 1, R1 and R2 are associated with the 
disruption transition phase, R3 with the outage phase, and R4 with the 
recovery phase. These present adequate systematic methodology for 
assessing the resilience capabilities at every dynamic phase as well as 
absolute system resilience. The utility can therefore assess the system 
resilience dynamics from disruption progression through to system 
recovery. 

In [82], a deterministic, static and energy-based resilience metric is 
developed for high voltage transmission systems incorporating changes 
in economic, environmental and social indicators as shown in equation 
(19). They approach resilience quantification from a societal context as a 
broader perspective and then a sub-problem is formulated from the 
engineering perspective for high voltage transmission systems. This 
metric aggregates over all resilience indicators, the weighted system 
degradation from the disruptive event, over time. The resilience in-
dicators considered are: economic indicators of electricity cost and in-
vestment cost, environmental indicators which include fire and ice, and 
social indicators include blackouts and human behaviors. 

R =
∑z

0
wz

∫ T

t0
(1 − Pz(t)), (19)  

where wz is the weighting coefficient associated with the change of 
resilience indicators, Pz(t) is the resilience indicator performance, and z 
is the number of resilience indicators. 

5.2. Employing failure and recovery assessment 

In [83], the power grid resilience is enhanced by utilizing the 
concept of defensive islanding, as a preventive measure during weather 
emergencies, which aims to improve resilience by isolating vulnerable 
components whose failure can cause cascading events. They employ the 
use of fragility curves which express weather-dependent failures of 
power system components hence providing an advancement beyond the 
traditional methods towards weather emergency scenarios. They 
employ a stochastic severity risk index in order to determine the links 
that are at higher risk of failure. This risk metric is then utilized to 
implement a risk-based and adaptive defensive islanding algorithm that 
aims to mitigate effects of cascading failures when disruptive event 
occurs. This islanding method improves the power system resilience by 
identifying high risk components that could cause cascading effects, and 
utilizing that information to split the power system network into stable 
and self-adequate islands. This metric is also utilized in Ref. [84] to 
analyze the online spatio-temporal progression of extreme events in 
power system regions. 

In [73], a resilience metric is proposed to quantify the adaptability of 
the power system to extreme events while also applied in the enhance-
ment of the power system operation through resilience-constrained 
economic dispatch. This metric considers weather-induced line out-
ages, common cause outages, and hidden outages to measure system 
resilience as mathematically defined below: 

R =
∑N

n=1
Pn⋅Pr(P≥Pn), (20)  

where N is the number of evaluated nodes, Pn is the load curtailment 
resilience indicator, while R is evaluated from Pn = [0,100] to encom-
pass larger blackouts with larger impact, and Pr(P ≥ Pn) is the cumu-
lative distribution function of the blackout size distribution of a system. 
A stochastic, time-based, and planning resilience metric for multiple 

transmission line outages is developed in Ref. [85]. This metric is 
extended for resilience analysis at the component level. The resilience 
indicators utilized are the bus voltages and the active power output of 
the generators. They perform a resilience analysis on the IEEE RTS-79 
test system and propose enhancement strategies based on the resil-
ience results. 

5.3. Employing system topology 

In [86], several grid resilience metrics are developed given that the 
grid, similar to a graph, can be represented by the Laplacian matrix. 
These metrics are then classified by considering several features of grid 
resilience under two concepts: 1) grid connectivity and robustness and 
2) grid operational functionality. In the first set, three metrics are 
developed, including the algebraic connectivity metric R1, the grid 
sensitivity metric R2, and the grid resistance metric R3. R1 reflects the 
algebraic connectivity of the grid after any changes in its network to-
pology compared to the previous state of the grid. For instance, if the 
connectivity of the grid is reduced (a link or node goes down), the lower 
the graph connectivity, and vice versa. R2 quantifies the response of the 
grid to any changes in it’s topology. For instance, the larger the network 
(components), the less sensitive the grid is to changes in it’s topology, 
and the smaller R2, the more robust the grid. R3 quantifies the opposition 
of the power grid to configuration changes, for instance, the removal of a 
transmission line. It is inversely proportional to the effective grid 
conductance. The algebraic connectivity metric is mathematically rep-
resented as: 

R1 =

[
γx

2

γx− 1
2

]

× 100, (21)  

where x is the system state given that the topology of the system can be 
represented by the Laplacian matrix [γ1, γ2,…, γn], γ2 is the second 
smallest eigenvalue of the Laplacian matrix which defines the algebraic 
connectivity of the grid. The grid sensitivity metric is mathematically 
defined as: 

R2 =

[
2

N − 1

]

× Trace(L+), (22)  

where L+ is the Moore-Penrose inverse of the Laplacian matrix, 
Trace(L+) =

∑N
n=1γn is the sum of eigenvalues for a given grid topology, 

γn is the eigenvalue of the Laplacian matrix given that n nodes of the grid 
are affected, and N is the total number of nodes. The grid resistance 
metric is mathematically represented as: 

R3 = N ×
∑N− 1

n=1

1
γn

(23) 

In the second set, three metrics are also defined. These are the grid 
flexibility metric R4, the outage recovery value metric R5, and the outage 
capacity recovery metric R6. R4 reflects the level of system resource-
fulness, enabling a faster recovery process. For instance, a system with a 
sufficient number of generating units being accessible to the load points 
will have more efficient corrective actions for system stabilization. R5 
quantifies the amount of customer interruption cost that can be 
retrieved after each corrective action. A resilient system should have low 
outage recovery costs reflective of the number of outaged customers. R6 
quantifies the rapidity of restoration of the interrupted performance by a 
recovery action. It signifies the power capacity that could be restored 
from implementing the recovery process with a certain time. The grid 
flexibility metric, is defined as the ratio of the system performance after 
each recovery action to the normal system performance: 

R4 =

∑

h∈H

∑

n∈N
Pt|ej

dn ,h

PT
d

, (24) 
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where Pt|ej
dn ,h is the active power demand at node n after the recovery 

action h, in response to the disruptive event ej, and PT
d is the target active 

power demand of the system in its normal and pre-disaster operating 
condition. The outage recovery value metric is defined as: 

R5 =
∑

h∈H

∑

n∈N
Cdn

(
Pt|ej

dn ,h+1 − Pt|ej
dn ,h

)
, (25)  

where Cdn is the value of the lost load at node n. The outage capacity 
recovery metric similar to equation (39) is defined as: 

R6 =
∑

h∈H

∑

n∈N

(
Pt|ej

dn ,h − Ptd |ej
dn

)

(
PT

d − Ptd |ej
dn

) × 100, (26)  

where Ptd |ej
dn 

is the active power load at node n at the end of the disruption 
time td. These are considered deterministic as the metric parameters 
such as the high impact low probability contingency and the time to 
recovery are predetermined. In Ref. [87], several indices are developed 
which are aggregated and weighted towards defining physical and cyber 
resilience of the electric power grid at the transmission level. The former 
consists of four components, as in equations (27)–(30), which are 
weighted and aggregated towards a physical resilience metric using the 
analytical hierarchical process. The source-path-destination index Rp1 , 
the MW availability index Rp2 , the MVAr availability index Rp3 , and the 
loss of load index Rp4 , are defined as follows: 

Rp1 =
∑

n∈N

k2
n

Vn × Hn × (1 + Cn)
(27)  

where kn is the number of paths connecting generator n to destination 
substation, Vn is the vulnerability index of n due to the repetitive 
occurrence of transmission lines in k, Hn is the Hops index that reflects 
the vulnerability of n due to the number of transmission lines connecting 
n and a substation, and Cn is the average cost, calculated as line im-
pedances, between n and a substation. 

Rp2 =
∑

n∈N

AMWn × AFn

PMW
(28)  

where AMWn is the MW availability of n, AFn is the availability factor, and 
PMW is the total MW load. 

Rp3 =
∑

nr∈N

AMVAr

PMVAr
(29)  

where nr is the total number of reactive reserves available in the sub-
station, AMVAr is the MVAr availability, PMVAr is the total MVAr load. 

Rp3 =
Ps

c

Pc
(30)  

where Ps
c is the critical load supplied and Pc is the total critical load at 

each substation. 
On the cyber side, the cyber resilience Rc is defined as the weighted 

sum between attackability and security as follows: 

Rc = w1 ×
kn

ka
+ w2 ×

∑
SMn

I
(31)  

where kn and ka are number of network and attack paths respectively, 
SMn is the weighted security mechanism (e.g., authentication, moni-
toring, access control), and I is the impact value based on transmission 
line utilization if its control device is taken out of service. The weights 
are determined through stakeholder requirements through the analyt-
ical hierarchical process. 

5.4. Employing reliability and risk indices 

In [88], transmission grid resilience is assessed by extending the 
common reliability indices including loss of load probability, and ex-
pected unserved energy into resilience evaluation using topological 
network information such as node degree and thermal ratings of trans-
mission lines as performance indicators for prioritized node removal, 
after which system resilience is evaluated. However, their metric does 
not address the major resilience capabilities/dimensions, only viable in 
the disruption transition phase, and the magnitude or impact of the 
disruptive event is not modeled nor incorporated. Similarly [89], adapts 
the yearly loss of load frequency, expected energy not served and loss of 
load expectation to assess the resilience of future electricity networks to 
climate hazards. Furthermore, in Ref. [90], resilience is assessed by 
utilizing the load point resilience profile which is a function of the ex-
pected probability of interruption, the expected outage duration, and 
the expected energy not served. The proposed resilience quantification 
model includes the modelling of the disruptive event, its impact, and 
optimal restoration. Load point restoration then proceeds with the 
proposed optimal restoration strategy, a mixed integer linear program-
ming optimization problem for islanded microgrids, with distributed 
energy resources in islanded segments. 

6. Generic system resilience metrics 

This section reviews and specifies the attributes of the generic 
resilience metrics for power systems. We further compartmentalize 
these metrics according to employed techniques or parameters, even 
though metrics can fit more than one compartment, to aid readability 
and research. 

6.1. Employing system topology 

In [91], dynamic, time-based and stochastic metrics are developed to 
assess the importance of components such as links to network systems. 
In Ref. [92], a resilience metric is developed for networked systems by 
defining a critical performance term, K, for all nodes and links, showing 
the performance that the system must maintain at each time step t. 
Having defined the critical performance term of the system, a stochastic 
continuous-time resilience metric is developed as the ratio of the 
average critical performance for all disruptive events over time, to the 
critical performance of the network when no disruptive events occur. In 
Ref. [93], a stochastic resilience metric is developed to describe the 
sensitivity of the network services to disruptive events. This metric de-
scribes resilience as the probability density function of network reli-
ability when considering α external failures affecting the network and β 
specific failure scenarios containing α. These networked system metrics 
can also be adapted to quantify power systems resilience. For instance in 
Ref. [94], a resilience index is developed for power grids based on the 
possibility of paths for delivering power from generator to loads 
considering load importance pre- and post-disruption with approach 
based on optimal power flow and axiomatic design concepts. 

6.2. Employing availability and risk indices 

A resilience metric is also proposed in Ref. [95] based on the avail-
ability of system components by multiplying the ratio of availability and 
the natural logarithm of recovery time pre and post disruption, 
capturing the performance and time based attributes of the system as 
illustrated below: 

R =
Pt0

j⋅ln(t0)

∑J

j=1

Pj
td ⋅Pj

tr

(tj
r − tj

d)
, (32)  

where J is the number of disruptive events, P is the system availability. 
This metric considers the adaptive capability of the system given a 
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number of disruptive events. In Ref. [96], a metric is proposed to 
quantify the system resilience to changing climate condition over a time 
period. The metric employs the use of the conditional-value-at-risk 
metric to capture the impact of disruptive events on the system for 
unique intensity levels, and the rate of change of system vulnerability 
under these intensity levels, as given in equation (33). 

R =

(

PCVar(Ij),
PCVar(Ij+1) − PCVar(Ij)

Ij+1 − Ij

)

, (33)  

where PCVar is the system vulnerability assessed based on the 
conditional-value-at-risk, j = 1, …, N is the number of intensity levels 
tested, while Ij is the intensity level condition under analysis. Hence, this 
metric captures the degradation/loss in target system performance given 
different intensity levels of the disruption. An interesting improvement 
to this metric would be to include the dynamic resilience attribute or 
analysis of system resilience over time. 

6.3. Employing operational and infrastructural indicators 

Resilience, R, is defined in Ref. [36] for communities in seismic 
conditions by employing the resilience triangle, a predecessor of the 
trapezoid. It is mathematically defined in equation (34), as a deter-
ministic metric that quantifies the magnitude of expected degradation in 
system performance, P(t), over time. 

R =

∫ tr

te
[100 − P(t)]dt (34)  

They acknowledge the dynamic nature of P(t), and the need to factor 
probabilities of disruptive event occurrence. The advantage of this 
metric is it’s applicability in different systems. However, unrealistic 
assumptions such as instantaneous impact of disruptive event and 
instantaneous application of restoration, could hinder effective utiliza-
tion. For smart grids [14], describes metrics for assessing two phases of 
operation: the pre-fault phase (reliability) and beyond the pre-fault 
phase(resilience). The latter is characterized by resilience and is deter-
mined by both cascading/independent failures. Hence, resilience anal-
ysis commences from time of failure occurrence and is defined as the 
ratio of the restored to lost performance in equation (35). 

R =
P(t) − P(td)

P(t0) − P(td)
, (35)  

where t ∈{ts, tr} and the performance criteria chosen is the line flow and 
voltage violations. They compare resilience achieved by utilizing 
different recovery strategies and state that their techniques are generally 
applicable to power systems and critical infrastructure. In Refs. [97–99] 
a similar resilience measure concept is defined over a set of disruptive 
events, while in Ref. [98], metrics for time and cost of resilience are also 
furnished. In addition, this metric is adapted [100], to solve the 
multi-objective (resilience maximization and restoration cost minimi-
zation) restoration problem of the power system as an interdependent 
(water system) infrastructure, as well as in other fields e.g., trans-
portation system optimization after natural disasters [101]. 

In [102], a power system metric is introduced as the ratio of the real 
performance to the desired target performance, PT(t), of the system, as 
shown in equation (36). 

R =

∫ T
t0

P(t)dt
∫ T

t0
PT(t)dt

(36)  

They focus on the technical dimension of resilience, and take into ac-
count time-dependent, inter-hazard interactions where past hazards/ 
disruptive events can affect the system state in future events. For inter- 
hazard analysis, the different ranges of time to full system recov-
ery,

(
Tp,Tc,Tf

)
, which mark periods of hazards in the past, current and 

future times, respectively compute the system resilience, the current 
potential resilience and the future potential resilience. The first is 
computed from historical data, the second, from current system pa-
rameters, and the third is computed from simulated system evolution 
and improvement in adopted strategies. The metric is also used, albeit 
for distribution systems, in Ref. [103] to access the resilience-impact of 
adding microgrids to interdependent gas-power networks, as well as in 
Ref. [104], to evaluate dynamically the resilience impact of ice disasters 
on power transmission systems considering their strength and location. 
The metric is also adapted in the framework proposed in Ref. [105] for 
measuring resilience at spatial and temporal scales for a community 
defined based on the socio-cultural, economic, environmental and 
physical infrastructure such as gas, power, and water distribution net-
works, e.t.c. Also [106], adapts this metric in the resilience assessment 
of the interdependent traffic-electric power system when subject to 
hurricane disruptions. 

In addition [107], extends equation (36) to compute the expected 
resilience as shown in equation (37), which considers multi-dimensional 
resilience through sequences of disruptive events. The system perfor-
mance levels are determined by the amount of flow delivered. 

R = 1 − λE[IA], (37)  

where E[IA] is the expected impact area (damage to performance) from 
disruptive events and λ is the annual rate of occurrence of disruptive 
events. However, they focus on current potential resilience where sys-
tem target parameters are fixed to the current time settings of the sys-
tem. This metric as defined in equation (37) is also adapted in 
Ref. [108], for optimizing network resilience by slight modifications to 
the system structure. In addition, this metric is adapted in Ref. [109] to 
develop an evaluation approach, that captures the interactions between 
attackers and system operators, for the joint impact of physical and 
cyber attacks on power distribution networks for the purpose of 
post-disruption loss minimization. In Ref. [110] the same authors adapt 
the resilience index in Ref. [109] and extend their evaluation approach 
to assess the value of timely distribution resources dispatch post 
disruption. In Ref. [111], a stochastic, dynamic and planning resilience 
metric that assesses the expected ratio of the real performance to the 
target performance of a power transmission system is developed. It 
quantifies the expected annual resilience of a power transmission system 
and it’s stochasticity arises from the modeling of some of it’s parameters 
such as P(t). They evaluate the infrastructure resilience under single and 
multiple disruptive events, modeled by a Poisson process. The expected 
annual resilience in equation (38) is then reduced to further account for 
single and multiple disruptive event scenarios. 

R = E

[ ∫ T
t0

P(t)dt
∫ T

t0
PT(t)dt

]

= E

⎡

⎢
⎢
⎢
⎣

∫ T
t0

PT(t)dt −
∑J(T)

j=1
AIAJ(tej )

∫ T
t0

PT(t)dt

⎤

⎥
⎥
⎥
⎦
, (38)  

where T is the yearly horizon (T = 1 year = 365 days), j is the index of 
events which includes event co-occurrences of different hazard types, J 
(T) is the total number of event occurrences during T, tj is the occurrence 
time of the jth event, and AIAJ(tej ) is the area between the actual per-
formance curve and the targeted performance curve, called impact area. 
The larger the impact area, the lower the system resilience. 

In [112], power system resilience metrics are developed modeling 
the power-water system interdependence and considering the weighted 
sum of bus voltage magnitude, line thermal limits, thermoelectric 
cooling water demand satisfaction, overall load supply satisfaction, 
water distribution system pump load supply satisfaction, as resilience 
indicators. This component level metric considers the water-energy 
nexus with diverse performance indicators, hence providing a rela-
tively comprehensive resilience metric. In Ref. [113], a stochastic, 
time-based and dynamic resilience metric is defined and optimized 
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subject to power flow constraints. Two resilience-based metrics are then 
developed using this optimized metric, the optimal repair time and the 
resilience reduction worth. The former is defined as the time when a 
component is restored so as to maximize resilience, while the latter is 
defines capacity of resilience reduction of a component due to delays in 
the restoration of that component. The performance measure is the 
amount of flow received by a demand node at a specified time. The 
optimized system resilience metric focuses on the effect that the re-
covery of system components have on the global system resilience, and 
as such defines resilience at a time, t, during restoration, as the ratio of 
the total restored amount of performance to the target system perfor-
mance, over time. 

R =

∑t=T

t=1

[
∑

n∈N
PLdn (t) − P(t0)

]

T
(
∑

n∈N
Pdn (t) − P(t0)

) , (39)  

where PLdn (t) is the amount of flow received by demand node n at time t, 
P(t0) is the system performance at time t0, Pdn (t) is the power demand at 
n. Similarly, equation (39) is adapted in Ref. [114] to analyze the sto-
chastic effect of uncertainty of repair time and resources on system 
restoration after disruption by optimizing the priority allocated to the 
intensity and time of system repair with the objective of resilience 
maximization, while in Ref. [115], it is adapted to assess the network 
resilience of cyber-human-physical complex systems such as supervisory 
control and data acquisition systems. 

6.4. Employing resilience capabilities 

In this context [11], develops a dynamic, time-based metric to 
evaluate power system resilience through hurricane scenarios. This 
metric is based on a slight modification of the trapezoid (Fig. 1) in order 
to account for two stages of recovery, the first stage is marked by initial 
recovery efforts while the second stage marks the final restoration of the 
system. 

R = Sp
P(tr)

P(t0)

P(td)

P(t0)
, (40)  

where Sp is the speed recovery factor, and is equal to 
((

tδ
tr∗)exp[− a(tr − tr∗)]

)

for tr ≥ tr*, otherwise is equal to 
(

tδ
tr∗

)

; a is a 

parameter controlling the decay of system’s resilience attributable to the 
final recovery time, tδ is the maximum acceptable time post-disaster 
before recovery begins (slack time), and tr* is the time to complete 
initial recovery actions. In equation (40), the decay factor and slack time 
captures the system robustness and resourcefulness towards recovery. 
This metric is efficacious because it captures a realistic condition of 
initial system stabilization, and the subsequent decay in resilience over 
time, after this initial condition. In Ref. [116], a weighted convex 
combination of the absorptive, adaptive and restorative capabilities of 
the system is developed as a resilience metric mathematically defined as: 

R =

⎛

⎜
⎝w1

∫ td
te

P(t)dt
∫ td

te
PT(t)dt

+ w2

∫ tr
td

P(t)dt
∫ tr

td
PT(t)dt

+ w3

⎧
⎨

⎩

1, if tr ≤ trt

trt

tr
, otherwise

⎞

⎟
⎠, (41)  

where trt is the preferred system time to recovery which could be well 
informed by expert opinion (stakeholder decisions). In the above metric, 
the first component weighted on w1 is the absorptive capacity of the 
system, the second component weighted on w2, the adaptive capacity 
and the third component weighted on w3, is the time to recovery. This 
metric is relatively comprehensive since it assesses resilience at all 
phases of the resilience trapezoid, however as described in Ref. [32], the 
adaptive capability should be able to reflect the “long-term adaptation” 
as well as the“short-term coping”, hence the metric could benefit from 

appropriately adjusting the integrals for the second component to ac-
count for adaptability, short-term, through self reorganization, as well as 
system adaptability, long-term, against future disruptions. 

Having reviewed metrics developed for quantifying power systems 
resilience, Table 2 standardizes the reviewed metrics using the DPs 
developed, while Table 3 summarizes the reviewed metrics into the 
categories and attributes discussed. The next section discusses available 
sources for obtaining real input data needed for resilience analysis. 

7. Common inputs for resilience assessment 

Accurate inputs are crucial to the resilience quantification processes. 
In this section, this review discusses common inputs in resilience eval-
uation of the power system starting with the fragility models of power 
infrastructure to the data inputs which can enhance realistic resilience 
assessment. 

7.1. Fragility curves 

Frequently, there is a need to assess power system resilience by 
utilizing component analysis. In addition, some components could be 
more crucial to the functionality of the system and therefore metrics are 
often developed to assess this criticality [91]. In this context, to assess 
power systems resilience, the impact of disruptive events on the system 
components have to be identified. Toward this end, a relationship is 
established between the weight (force) of disruptive event and the level 
of damage (failure) expected from the component as a response to this 
force. This relationship is actualized through the utilization of fragility 
curves [64,117], which are defined by fragility functions. A fragility 
function describes the failure probability of a component which depends 
on the potential intensity of the disruptive event. For power system 
components, the fragility curve typically follows a lognormal distribu-
tion [16] and should be site-specific [118]. In order to obtain the 
fragility curve of a component, data such as wind speed or damage level 
are needed. To obtain these data, two main methods exist based on 
statistical and simulation models [119–121]. 

7.1.1. Statistical models 
These models employ statistical methods [122] such as generalized 

linear models, generalized additive models, and accelerated failure time 
models. An overview of these models is presented in Ref. [119] where 
different statistical fitting methods are compared. 

7.1.2. Simulation models 
These models use simulations in order to better imitate realistic 

event scenarios [72,102,111,119,123,124]. For example, to better 
mirror the effects of wind speed on a transmission line, computer or 
physical simulations could be executed by exposing the line to different 
wind speeds in order to observe its damage levels. More details on 
fragility functions and on power system fragility curves are further 
discussed in Refs. [16,123,125–128]. 

7.2. Data for resilience evaluation 

For power system resilience quantification purposes, data could be 
obtained from the following group of sources: power utilities, system 
operators, weather and government agencies. Owing to the fact that 
disruptive events have a low probability of occurrence, together with the 
fact that in some cases these data are sensitive for public release (e.g., 
equipment failure data), it becomes elusive to obtain them. To bridge 
this gap, this section provides a summary of sources that provide real 
data pertinent to power system resilience quantification. 

7.2.1. Failure data 
In [72], real failure and outage data (e.g.,failure duration, number of 

affected customers) were obtained from the service area of a power 
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utility which lost functionality due to disruptions caused by the hurri-
cane Ike. Similar data can also be found in Refs. [71,129] for disruptions 
caused by the hurricane Sandy. In Ref. [121], an investor-owned power 
utility that covers a three state-service area in the Gulf Coast region 
provides statistical data for number of outages, number of affected 
customers, number of damaged transformers, poles, overhead lines, 
switches, overhead lines, and underground lines caused by nine hurri-
canes. In addition, statistical data pertained to the number and duration 
of unscheduled outages, and the number of affected customers are 
provided for the state of Arizona in Ref. [130]. In Ref. [131], an online 
platform reports and visualizes utility level power outage information 
for every 15 min. In Ref. [132], data related to the damage level of the 
components (e.g., generators, transmission lines, transformers, sub-
stations), as well as recovery process cost and time data are provided for 
the Chilean power grid which experienced vast failures engendered by 
an 8.8 Richter scale earthquake in 2010. In Ref. [133], failure data, 
hurricane exposure, and hurricane damage statistics are provided for 
Texas investor-owned utilities. 

7.2.2. Disruptive event data 
In [134], windstorm speed data from 1851 to 2011 is provided. 

However for weather related data, the national oceanic and atmospheric 
administration (NOAA) and the national hurricane center dominate. In 
addition, these bodies provide a number of tools for disaster analysis 
including nowCOAST, a GIS web-mapping to real-time coastal infor-
mation, and Digitalcoast, which provides vulnerability maps and GIS 
data. In Ref. [135], a comprehensive database from 1851 till date, 
including raw hurricane observations and historical weather maps, is 
provided from the hurricane research division at NOAA. In Ref. [136], a 
historical hurricane track visualization tool that provides data such as 
maximum sustainable winds, pressure and dynamics of hurricanes is 
open source. In response to wildfire threats, utilities have significantly 
invested on wildfire monitoring systems and analytical tools which 
generally rely on observations from remote automated weather stations 
to evaluate current weather conditions [137] which are disseminated 
[138] and retrieved [139,140] from many sources. Other resources for 
obtaining real input data include the multidisciplinary center for 
earthquake engineering research, united nations office for disaster 
reduction, the federal emergency management agency, the transmission 
availability data system, the residential energy services network. 

Furthermore, these data could be utilized in analysis and resilience 
assessment by integration into power system failure models such as 
fragility curve and component failure models, in order to test the system 
response to external forces introduced by the disruptive events [134]. In 
general, five different methods are utilized for deriving these failure 
models which provide input data for resilience metrics development and 
assessment. These are the analytical, experimental, empirical, judg-
mental, and hybrid methods [16,141]. The analytical methods are uti-
lized to develop data models [16,142] when there are insufficient 
disaster-related component failures [16], with the Markov approach 
dominating in the use of the analytical method [142]. Experimental 
methods involve the deliberate failing of system components which 
could be cost intensive for large-scale system analysis. The empirical 
methods employ data from observations, and field measurements [71, 
143,144]. Logically, it is employed when there are tangible amounts of 
failure records and hence may be better suited for reliability analysis 
compared to resilience. Further, judgmental methods utilize opinions of 
experts in the field of the required data, but could also be riddled by bias 
and uncertainty given limited knowledge of these low probability 
events. The hybrid method combines data acquisition characteristics 
from the previously mentioned methods. Analytical methods are more 
often utilized with resilience analysis considering that these disruptive 
events are high impact but with low probability of occurrence, in 
addition, it is cost-effective compared to experimental methods as well 
as eliminates bias and uncertainty with judgemental methods. It is worth 
mentioning that analytical techniques are also preferred for small-scale 

system configurations because of their simplicity and low computational 
burden [145]. 

8. Gaps and challenges 

In this section, the gaps and challenges associated with quantifying 
power systems resilience are enumerated. In discussing these gaps and 
challenges, the major findings and implications of these findings are 
furnished, while recommendations are made where applicable. Hence, 
this section not only recognizes the gaps and challenges evident in 
studies on power system resilience, but in discussing shortcomings and 
making recommendations to meet these gaps, the authors identify future 
directions that can serve to enhance resilience analysis and assessment. 

8.1. Gaps identified from review methodology 

8.1.1. Failure detection and self-restoration 
According to Table 2, which summarizes reviewed metrics, it is 

noted that fewer metrics address the rapidity of detecting failures [107], 
self-restoration of the power system to initial stabilization [66], and 
effects of stakeholder decisions [55]. Rapid failure detection can greatly 
improve rapid recovery. When failure is accurately identified, the sys-
tem response can be directed to avoid common-cause failures and also 
recovery strategies would be more effective. For instance, the rapid 
detection of line failures caused by vegetation contact can enable quick 
reconfiguration strategies and avoid overloading of available paths. As a 
critical infrastructure, the self-restoration of the power system is a pri-
ority. The self-restoration addresses the system effort towards restora-
tion with little or no external interference and is often referred to as the 
self-healing ability of the system. This can greatly contribute to a deeper 
understanding of the effects of long-term planning strategies, and the 
capacity of the system to serve critical loads. For instance, when a utility 
invests in efficient reconfiguration techniques or even DERs, the effect 
on self-restoration after a disruptive event would be getting the system 
to an initial recovery level (operational) e.g., power supply to critical 
loads, before the utility has to dispatch repair crews for infrastructure 
recovery. 

8.1.2. Integrating the effects of stakeholder decisions 
The effects of stakeholder decisions in power system resilience 

cannot be overemphasized. Power system stakeholders have important 
decisions to make in the face of a high impact disruptive event. For 
instance, stakeholders make decisions about resource locations and al-
locations, the sensitivity settings of reclosers, de-energization when 
wildfire threats occur [146,147]. Therefore, the effects of stakeholder 
decisions should be considered while quantifying the system resilience. 
An example of this is the February 2021 snowstorm outage in Texas 
which has been blamed on the stakeholder’s financial structure of 
deregulation and free markets putting priority to cheap prices rather 
than a resilient grid as there is no incentive for utilities to prepare for 
winter. “I think we unfortunately found out that the electric grid and the 
coupled natural gas infrastructure were not well prepared to deal with 
this rare but not unprecedented event,” Overbye [148,149]. The effect 
was a massive reduction in system performance over the timeline of a 
week while costs went up 41,000% per unit of energy [150,151]. 
Another instance, is the October 2018 wildfire threats of northern Cal-
ifornia that led the PG&E utility to shut off power to a sizeable number of 
customers due to heightened wildfire risks from high winds [152], even 
though no wildfires occurred landing the utility a couple of lawsuits. 
However just one month further in November, a wildfire occurred when 
utility stakeholders decided not to shut off power allegedly due to the 
fact that management bonuses are tied not to safety, but rather the lack 
of customer complaints [153]. These instances promulgate the necessity 
of integrating stakeholder decisions to power grid resilience analysis. 
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8.1.3. Multi-facet interaction between resilience indicators 
Apart from network measures which consider different resilience 

indicators, the reviewed metrics generally consider a resilience indicator 
without considering the dynamics of the chosen indicator with other 
resilience indicators. For instance, hardening and increasing trans-
mission line capacity could be a good infrastructure improvement, 
however the strategy may also increase the risk of congestion if for 
instance, hardened high capacity lines fail during a disruptive event, 
hence further reducing the operational resilience. Another example can 
be illustrated by the minimization of energy cost as a resilience indica-
tor. This could imply worse resilience if the minimal costs come from 
cutting off smaller, more expensive, but more operationally flexible 
generators as opposed to larger, cheaper generators which may not be 
easy to reschedule, ramp up, or down, during high impact emergencies. 

In addition, for most cases where real data is not integrated, the 
models have often assumed thresholds, recovery times, degradation 
times, and other intricate parameters. The authors suggest that the ac-
curacy of models could greatly be increased with adequate modeling 
that factors the availability of resources, extent of system damage, 
accessibility of damage to repair crew, economic costs, and budgets of 
the power system and other system specific parameters. 

8.1.4. Modeling component failure 
We observed that only in a few reviewed papers, component fragility 

curves have been utilized in determining component failures. This could 
be attributed to the fact that, to the best of our knowledge, only a few 
fragility curve types, the hurricane-windspeed fragility of transmission 
lines [16,142,154], and extreme heat waves and drought impact on 
generation units [155], has been developed. However, methods exist 
that can relate the effects of other influential disruptive event variables 
to the fragility of a variety of power system components. In this paper, 
we suggest the use of techniques offered by artificial intelligence in 
order to account for these relationships which could be non-linear. In 
order to obtain data that correlates the event variables with component 
failure, the authors suggest utilizing failure dates. The values of event 
variables in the days of failure occurrence can be used as training data 
towards predicting the target value of component failure. E.g., the 
real-time wind speed (for hurricanes) or temperature, landuse, terrain 
(for wildfires) can be among data collected and related to the component 
degradation with time. When the disruptive event is on the cyber side, 
we suggest the use of the system connectivity maps, communication 
packets analysis, and artificial intelligence [156], towards component 
failure analysis [157,165], where analytical techniques could be used in 
power system testbeds to model component failure due to high likeli-
hood of data unavailability. 

8.1.5. Spatio-temporal assessment 
We encourage quantitative PSRMs that integrate the spatio-temporal 

properties and impacts of disruptive events. Since the high impact 
events such as hurricanes, and wildfires do not only have a temporal 
aspect but also a spatial aspect, the authors recommend the imple-
mentation of spatially and temporally detailed models towards resil-
ience quantification. Toward this end, statistical and heuristic methods 
have been utilized to illustrate the spatio-temporal aspects, however, the 
use of Geographical Information Systems (GIS) resources are highly 
encouraged. On the same hand, by using GIS enabled resources, factors 
such as slope and topography which are influential to intensity of high 
impact events, could be adequately accounted for. Without these factors, 
the authors believe the models may be less efficient in real event sce-
narios, or simply generate a gross imbalance of utility assessments with 
respect to the event impact and progression. In addition, while we 
identify system resourcefulness, redundancy and time variations as 
design parameters for addressing uncertainty in disruptions, we also 
encourage the aggregation of uncertainty scenarios towards resilience 
quantification. Scenario generation and reduction algorithms have been 
implemented in Ref. [84]. From the review methodology, the authors 

identify metrics which mostly address this criteria as [81,86],and [92]. 

8.1.6. Minimum requirements of a quantitative resilience metric 
Related to differing resilience definitions, quantitative metrics need 

to have specified minimum requirements in order to be referred to as a 
resilience metric. For instance, if a metric addresses the disruption 
transition phase, but not the outage nor recovery phases, does it qualify 
as a resilience metric? In this review, our opinion towards achieving 
standardization is that any resilience metric should address the four 
main phases of the resilience trapezoid in order to be recognized as a 
quantitative power system resilience metric. Otherwise, appropriate 
nomenclature should be used to define such metrics. For example, if a 
metric is defined to assess the resistance of the power grid to a disruptive 
event, then such metric be referred to as a “Robustness” metric as 
opposed to a “Resilience” metric. 

8.1.7. System functionality vs. performance as resilience indicators 
Specifically, the loss of functionality implies loss in performance 

however, loss in performance does not necessarily imply loss of func-
tionality. For instance, a system to deliver a target 100 MW, delivering 
80 MW is a loss in performance, while the system not delivering power at 
all is a loss in functionality. Through our review, we found that these 
concepts require clarification when developing resilience measures. 

8.2. Challenges identified 

Here, we discuss the perceived challenges in resilience quantifica-
tion. Some of these challenges can be related to the reason why the 
above discussed gaps exist. 

8.2.1. Resilience definition and quantification 
Subtle disparities exist in defining power systems resilience. For 

example, in Refs. [158,159] resilience is defined as the system’s resis-
tance to an external attack, in Refs. [14,160] resilience is defined based 
on rapidity of service restoration, in Ref. [73] resilience is calculated as a 
measure of system adaptability to extreme events, while in Ref. [161] 
resilience is defined based on risk management approaches. Hence some 
metrics quantify resilience based on only certain phases (adaptive, 
absorptive, outage, or restoration), raising the question: Should a metric 
be referred to as a resilience metric if it does not comprehensively inform 
all phases of the resilience trapezoid? This challenges power utilities, 
regulatory authorities, and stakeholders in developing metrics that 
could provide standard quantification protocols for power systems 
resilience and aid in effectively exchanging resilience related informa-
tion. This necessity is fundamental for developing resilience re-
quirements and standards for power system planning and operation. 

8.2.2. Smart grid technologies integration 
The majority of existing resilience metrics lack in capturing the 

impact of grid modernization technologies, including advanced control 
and telecommunication methods, distributed energy resources, demand 
side resources, flexible loads, outage management systems, unmanned 
aerial vehicles, and smart switching on quantifying power systems 
resilience. For example, if distributed energy resources (e.g., solar gen-
eration) that could locally supply the electricity demand are system 
integrated, then system dependency on the main grid is reduced, 
generally leading to higher power system resilience levels. Although 
some efforts have been made in including some of these technologies in 
resilience metrics [35,77,162], these studies are still in pioneer stages. 

8.2.3. Scarcity of historic data 
The scarcity of real data could create a great challenge towards 

developing metrics and models that could more accurately capture 
power systems resilience. In this regard, historic data, including outage 
and failure data, number of affected customers, and damage levels, from 
previous disruptive events are in great demand to calibrate resilience 
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metrics and models. However, obtaining historic data becomes elusive 
because: (1) disruptive events have a low probability of occurrence (2) 
the majority of these data contain sensitive information including the 
location of critical power system components, and therefore unavailable 
for public usage. Often, real data are replaced with data derived from 
statistical approaches. 

8.2.4. Integrating interdependencies 
The vast majority of critical infrastructure systems (water, gas, 

transportation, communication) are highly dependent on electric power 
and vice versa e.g., gas powered generators. In many cases, this inter-
dependence if properly managed could offer additional energy flexi-
bility to power systems [163]. Hence, it is important for resilience 
metrics to capture these interdependencies between the power grid and 
the critical infrastructure they serve. For instance, during the Texas 
snowstorm outages, because the power grid was down, the water dis-
tribution system was down, the internet service providers were down, as 
these systems were dependent on the power grid [164]. Hence, another 
great question posed to the power system resilience community is: 
Should the effect of disruptive events on interdependent systems be 
integrated when developing, analyzing, and evaluating power system 
resilience? 

9. Conclusion 

This paper presents a comprehensive analysis in power systems 
resilience and proposes a categorization scheme for quantitative power 
system resilience metrics. The proposed scheme classifies these metrics 
broadly under the distribution-level, transmission-level, and generic 
system metrics and also discuss these metrics with respect to their at-
tributes. Furthermore, this paper standardizes reviewed metrics and 
generalizes them to functional requirements of a resilient system by 
developing an Axiomatic Design Process for functional requirements 
and design parameters towards satisfying resilience objectives. The re-
view methodology presented in this paper aims to contribute toward the 
development of standardized power system resilience metrics. In addi-
tion, this paper furnishes statistics associated with the publications of 
quantitative power system resilience metrics over the past decade, as 
well as several sources and methods for obtaining real/simulated input 
data for utilization in resilience quantification of power systems. Finally, 
the paper discusses the gaps and challenges identified in the review, 
highlighting their implications while making recommendations towards 
improving power system resilience analysis, with one of the major 
highlights being the resilience quantification question posed to the 
resilience community as follows: Should a metric be referred to as a 
resilience metric if it does not comprehensively inform all phases of the 
resilience trapezoid? 
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