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Abstract: Wildfires are natural or man-made disasters that continuously threaten portions of the transmission and distribution
grid, and thus the stability of the electric grid. This paper presents a two-stage framework for assessing power system-wildfire
risk using a data-driven wildfire prediction model. The first stage of the framework estimates the spatio-temporal probability of
potential wildfire ignition and propagation using a deep neural network in combination with the wildfire physical spread model.
Analysis reveals similar spatial and temporal patterns between the model-predicted wildfire ignition potential and actual wildfire
ignition. Motivated by these observations, the second stage assesses the wildfire risk in the power grid operation in terms of
potential loss of load by de-energization, through combining geospatial information system (GIS) data of the power grid topology
and the stochastic spatio-temporal wildfire model developed in the first stage. The electric power utility applications introduced
by the proposed framework are twofold: 1) a spatio-temporal risk model for proactive de-energization against potential power
system failure-induced wildfire, and 2) a spatio-temporal spreading model for optimal grid operations against exogenous wildfire.
The proposed model, based on real-world dataset, is demonstrated on the IEEE 24-bus test system mapped to a study area in
northern California, while the results illustrate the proposed model can achieve the best performance in potential wildfire ignition
detection (AUC of 0.995) compared to other baselines, as well as demonstrates the risk-aware operation of the power system

enabled by the proposed framework.

1 Introduction

HE increasing magnitude and frequency of power outages

induced or motivated by wildfires affects the operation of crit-
ical services and leads to lost opportunity costs [1]. The California
Department of Forestry and Fire Protection estimates damages from
the 2018 Woolsey and Camp fires to be about $4 and $11 billion
respectively [2], with Campfire responsible for about 84 deaths [3].
Additionally, wildfire threats in October 2018 and 2019 led Pacific
Gas and Electric (PG&E) to shut off power to a sizeable number
of customers in extreme risk areas of northern California leading
to lost opportunity costs when no wildfires occurred [4]. Subse-
quently, the 2020 Zogg fire saw PG&E facing 31 criminal charges,
including manslaughter, for the utility’s role in the fire that claimed
4 lives and destroyed more than 200 building properties [5]. More
recently, the 2021 Dixie fire was caused by the blowing of two
fuses when a Douglas fir fell on a PG&E line [6]. The fire gulped
more than $630 million in suppression efforts and led to tangi-
ble losses including damages to approximately 1500 residential and
commercial property, injuries and fatalities [7].

1.1  Background and Motivation

In response to wildfire threats, utilities have significantly invested
on wildfire monitoring systems and analytical tools, which gener-
ally rely on observations from remote automated weather stations
to evaluate current weather conditions [8] that are disseminated and
retrieved [9] from many sources such as Synoptic’s Mesonet API.
These data are then used to estimate and strategize for optimal oper-
ation in the face of wildfire threats, but with room for improvements.
In fact, the decisions of a utility to shut off power to more than sixty
thousand northern California customers in 2018 and nearly a million
in 2019, was controversial [10]. It may be, however, impossible to
assess if this was an overestimation of impact and utility resources
(“conservative”), but the passing of the California Senate Bill 901
required states investor-owned utilities with the California Public
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Utilities Commission to file wildfire mitigation plans, increasing
research on the topic [11].

Conventionally, electric power utilities have often performed
fundamental analysis to indicate wildfire threat alert on coarse
resolutions of spatial areas while not utilizing the richness of his-
torical data, evident in indices such as the Fire Potential Index
[12]. This index, for instance, utilizes a linear summation of present
weather variables and fuels to provide threat levels (extreme, ele-
vated, normal) for predefined regional-scale threat areas. This may
arguably lead to over-estimation of risk, over-allocation of opera-
tional resources, and consequently “conservative” risk analysis for
utilities.

1.2 Literature Review

Studies on wildfire prediction and estimation [13—15] have mainly
focused on numerical quantification [16] and fire scale [17], often
using techniques such as regression [18], in an effort to aid mit-
igation. In [19], wildfire variables are studied to predict spatial
patterns of ignition producing national-level ignition risk maps. To
aid pre-wildfire planning, [20] implements fire danger mapping sys-
tem based on numerical weather prediction and derived moisture
content of live fuels. Historical data for vegetation, climate and loca-
tional features have been utilized in [21] to predict the risk of wildfire
ignition. However, these region-specific wildfire models are simply
aggregated over space or time with approximated/linear and spa-
tially constant effects [22]. Hence, their accuracy can be affected
by the limited integration of the non-linear influence of variables,
and similarly, do not fully utilize recent wildfire monitoring invest-
ments of grid utilities. Wildfire risk prediction has also been done
where model performance using machine learning approaches have
been evaluated [23]. Artificial intelligence techniques have also been
effective for wildfire analysis and outperform conventional statis-
tical methods [24-26]. Additionally, interactive maps have been
garnering literary and industry application to supply information on
wildfires in real-time. For instance, in [27], a real-time fire prediction
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system is developed for visualizing wildfire risk at specific locations
based on a machine learning model. Although these methods prove
effective, they generally have not been designed to integrate with the
power grid operations.

The effect of this on the power system side is the assumption
of already progressing wildfires, while geographical uncertainties
of spatio-temporal variables are often assumed [28] and not investi-
gated. For instance in [29], energy dispatch is optimized assuming an
already progressing wildfire. The same progressing wildfire assump-
tion is applied in[30] to dynamically change thermal ratings of power
lines and in [15] to optimize resource preparation.

1.3 Approaches, Contributions, and Paper Structure

This paper develops a deep learning based framework for analyzing
the expected spatio-temporal impacts of stochastic wildfire threat on
the power grid. The proposed framework, as shown in Fig. 1, inte-
grates a detailed spatio-temporal wildfire analysis model to evaluate
system risk. The model incorporates information from real databases
towards potential wildfire ignition maps, as the spatio-temporal wild-
fire “readiness” of a location does not necessarily imply an ignition
until a fire source is applied. Therefore, a model is proposed to esti-
mate the spatio-temporal probability of a potential wildfire ignition
which can be applied to power transmission and distribution sys-
tems. The advantage in modeling potential ignitions pre-wildfire is
to prepare for critical scenarios and proceed with optimal strategies
to better mitigate risks arising from extreme wildfire events, thereby
reducing the propensity of outages and power shutoff to customers.
As wildfires can be caused by power system failure or by exogenous
causes (human, natural events), the applications of the estimation
result are twofold. First, it provides spatio-temporal risk for proac-
tive de-energization against potential power system failure-induced
wildfire [28]. Second, it generates a spatio-temporal spreading model
for optimal grid operations against potential exogenous wildfires
[15]. Depending on the application, risk metrics quantifying poten-
tial wildfire operational impact, power utility response time for
mitigation, and strategy-enabling metrics for mitigation vs. restora-
tion, are developed in the second-stage. In summary, the main paper
contributions are as follows:

e We develop a comprehensive spatio-temporal wildfire risk
analysis framework using a data-driven deep learning approach
that efficiently incorporates publicly-available historical wild-
fire and GIS data for estimating wildfire ignition risk and its
impact on power grid.

e Novel quantitative risk metrics that capture potential effects
of fuel, vegetation, and wind speed, on wildfire propagation
are proposed, while the weighted impacts of wildfire pre-
dictive variables are furnished to serve utility operations and
stakeholder strategies.

o The framework can provide information to power utilities
towards optimizing the grid operation, i.e., the proactive
de-energization to prevent endogenous power system failure
induced wildfire and the response strategy e.g., “let-burn”,
against exogenous wildfire threats.

The rest of the paper is organized as follows: overview of the pro-
posed spatio-temporal framework is outlined in Section 2 where the
geographical formulation and data requirements are also discussed.
In Section 3, the wildfire estimation model is discussed and the result
utilized in the power grid risk assessment model as presented in
Section 4, which also develops the quantitative power system risk
metrics. Simulations are conducted and numerical results are illus-
trated on the IEEE 24-bus test system as presented in Section 5,
while the conclusions are drawn in Section 6.

2 Overview of the Proposed Model

Wildfires are influenced by a number spatial and temporal fac-
tors that can be unique in different geographical locations which
can lead to inaccuracies in specified mathematical models. Hence,
the objective of the proposed framework is to drive operational
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Fig. 1: Structure of spatio-temporal wildfire risk assessment model

strategy with data-driven situational awareness to wildfire. As in
Fig. 1, the framework consists of two sequential stages. First, the
spatio-temporal wildfire estimation model predicts the probability
of potential wildfire ignition, utilizing the spatio-temporal wildfire
ignition probability predictor model (STWIP), and estimates poten-
tial wildfire spread, producing important parameters such as ignition
probability maps and the rate of spread of potential ignitions to crit-
ical power components. These parameters are then passed to the
proposed power grid wildfire risk assessment model, which aims to
optimize power system operations and risk assessment such that out-
age cost is minimized. The risk assessment model optimizes power
system operations by GIS-enabled mapping of these parameters to
the power network and generating wildfire threat scenarios. Part of
the risk assessment model also includes proposed power system-
wildfire metrics that enable optimal operational strategies such as
choosing mitigation vs. restoration (“let-burn”). Both stage 1 and
stage 2 models incorporate effective wildfire analysis, enhancing
power system resilience, reduction in customer outages and hence,
operational cost during wildfire threats. The rest of this section dis-
cusses the structure of the proposed model and data requirements,
while the spatio-temporal wildfire estimation and power grid wild-
fire risk assessment models are discussed in detail in the next two
sections.

2.1  Geographical Structure of the Model

A spatial location is a point ¢ with geospatial coordinate ¢.loc defined
by a latitude and longitude (lat,lon) at any location in a grid cell.
The grid cells here are 3km x 3km polygons which have uniform
past spatio-temporal wildfire characteristics and a centroid. Each
grid centroid also has geospatial coordinates gc.loc. For instance,
the past spatio-temporal characteristics of a historical sample igni-
tion occurred in ¢ is obtained by its association with gc.loc of
the grid cell g € G in which it is situated, since the centroid is
processed to bear the characteristics of g. Each grid has a set of
historical wildfire ignition events with geospatial coordinates i.loc.
These historical events, which form sample points in the training
data, have a set of variables, x = [z1, z2, ..., Z p], obtained for their
unique ¢.loc and dates of ignition. Here, D denotes the dimension-
ality. These wildfire-informative variables are referred to as Wildfire
Predictor Variables (WPVs) and are usually sourced from weather
stations geographically situated at locations of interest. Their inter-
actions and correlation can be modeled towards wildfire prediction.
They can vary spatially and/or temporally, are indicative of wildfire
occurrence, and are often called explanatory variables [31].
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2.2 Data Requirements

The proposed framework proceeds with data pre-processing and
integration (solid green arrows), feature extraction and training the
predictor (solid black arrows), these precursors are as illustrated in
Fig. 2 and discussed as follows.
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Fig. 2: Spatio-temporal wildfire prediction model

2.2.1 Data Pre-processing: This stage proceeds with obtain-
ing the grid centroids together with spatial data e.g., land-use and
terrain data, from databases such as the National Oceanic and Atmo-
spheric Administration’s High Resolution Rapid Refresh (HRRR)
model [32]. The temporal probabilities, 7; of wildfire ignition, as
shown in Appendix 8.4, are also calculated in this stage from the US
Geological Survey historical ignition data and can be used as a fea-
ture to improve estimation. This assumption of a same climate period
is enabled by the similarity in the data distribution over the histori-
cal period of analysis as illustrated in Appendix 8.2, Fig. 14. Also in
this phase, the python scrapper is coded to request and clean meteo-
rological data for unique spatial locations on days of interest. These
days of interest depend on user applications but for this work, mete-
orological variables on historical ignition and non-ignition days are
duely processed for training/validation of the predictor while fore-
casted meteorological variables are requested for days that wildfire
potential is to be predicted.

2.2.2 Data Integration: The next phase is data integration
which proceeds in two levels. The first is the spatial integration,
where i.loc of historical ignitions are associated to gc.loc to obtain
the past ignition characteristics of g. The goal here is to enable spa-
tial locations in the training data inherit wildfire attributes of the
grid cell in which they are located. The second occurs after fea-
ture extraction during integration into python’s pandas dataframes in
preparation for training. This dataframe is a two dimensional data
structure with columns of multivariate data. The month in which
the training ignition sample occurred is incorporated as a feature to
account for temporal relation of features, and is also critical to the
utilization of only one fundamental deep network.

2.2.3  Feature Extraction:

Past Spatio-Temporal Ignition: This feature captures sequential
changes in characteristics of spatial wildfire ignition over time and
is crucial in the capability of the predictor to use one fundamental
deep network. It is calculated from the historical wildfire database
and is the initial (historical) ignition probability of a spatial location
in the same climate period. To this end, we compute the past wildfire
ignition probability mg ; of a grid cell g in period j of our compre-
hensive year. Since this attribute is inherited by all ¢ in grid cell g,
we refer to this attribute as m; ;. Specifically, because the climate
pattern of the multiple-year-dataset is assumed constant, the condi-
tional probability of an ignition occurring in grid cell ¢ given the
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study area, is used to calculate m; ; given that grid cells are a subset
of the studied geographical area as in (1).

Ng,j
2 1
N (D

mm- ~

where n ; is the total number of wildfires occurred in cell g in
period j, and N is the total number of wildfires that occurred in
the multiple year period. Assuming constant climate, the multi-year
period (e.g., 1996-2016) can be modeled as a comprehensive year.
As mentioned earlier, in order to enhance the computation of m; ;
considering the scarcity of historical ignitions in some grid cells, the
Monte Carlo population technique is employed in pre-processing the
original dataset to further populate grid cells.

Temporal (Meteorological) Features: Wildfire occurrence is influ-
enced by non-linear and complex meteorological features which are
temporally related. Temporal meteorological input includes temper-
ature, rain, humidity, sunshine hours. The choice of these features
are informed by indices such as the Angstrom, Nesterov, and Cana-
dian Forest Fire Weather Index as well as the US Fire Danger Rating
System [33].

Spatial (Static) Features: These features characterize spatial loca-
tions for same climate periods and are influential to wildfire occur-
rence [34]. Spatial data of land-use and terrain can be obtained from
sources such as the HRRR model which have standard grid points
that can serve as grid centroids and enable division of the studied
geographical area into grid cells with the same spatial and spatio-
temporal features. Historical ignition events that fall within a grid
cell are used to obtain m;_; of the respective cells which are in turn
inherited by the sample points ¢ within g, during training.

In addition, the past ignition probability and ignition month are
also included as spatio-temporal and temporal features respectively.
Additional details can be found in Appendix 8.1 and 8.3.

2.2.4 Data construction: Here, we discuss the logic behind
constructing the training data as there is little to none pre-existing
for wildfire analysis. Since training samples are based on historical
ignition/non-ignition days, the dates (dd/mm/yy) and corresponding
i.loc are extracted from the historical ignition database and are uti-
lized to automatically request training sample variables. Once the
features are extracted from obtained variables, this training sample
point is assigned with a classification label 1, meaning the historical
status of ignition was active for the sample. Next, the feature data
are requested for the same i.loc and another (dd/mm/yy) prior to the
active ignition date, when no wildfire ignitions were reported to have
occurred and this is labelled a 0, meaning that the historical status of
ignition was inactive for the sample. In particular, the ignition label
for a training sample is defined as:

Ign = 1, %f z:gn(j) recorded @

0, if iGN (; _n) —recorded

where Ign is the historical wildfire ignition status in day j, and
n ={1,2,...,30} depending on any day in the given month and
year where an ignition was not recorded. This process constitutes
the dataframe for training the STWIP. For the 0-labelled samples,
dates prior to ignition (1-labelled sample) of an i.loc, are chosen
since historical ignition could have significantly tampered with tem-
perature, fuel and vegetation, rendering later dates deceptive for use
as O-labelled training samples. It is worth noting that although we
assume true absence points, these O-labelled samples are pseudo-
absence points since it is unknown if ignition could not occur (there
was no potential for ignition) or simply did not occur (there was no
source of ignition) in that historical date and i.loc.

3 Spatio-Temporal Wildfire Estimation Model

After data construction, the dataframe is fed into STWIP as input
data following some transformations discussed herein. The input
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data is cleaned, missing values are filled with an average of their
nearest neighbors. A major part of training data processing includes
rescaling the features to have the properties of a standard normal dis-
tribution (1« = 0,0 = 1). The need for rescaling arises as features
are multivariate with different units. Also, since feature magnitudes
in instance Xx; play a role in the updates applied to the weights during
gradient descent, rescaling becomes important. This standardization
is implemented using the Z-score as follows:

L=TTH 3)

Then STWIP predicts the expected ignition potential of a spatial
location in period j as discussed further.

3.1  Spatio-Temporal Wildfire Ignition Probability Predictor

The aim is to train a neural network with the problem objective
formulated as follows. Given a collection of sample points ¢ with
geospatial coordinates i.loc of (lat,lon) € historical ignition data,
where features of the sample point ¢ are known, we aim to predict
the potential of a wildfire ignition at periodic intervals. We propose
a model based on supervised learning of spatial, spatio-temporal
and temporal features to capture complex and non-linear interactions
between WPVs using a deep neural network (DNN). The DNN is the
prediction algorithm of the STWIP and unlike traditional methods of
wildfire estimation with simple logistic regression [18, 35], the DNN
is capable of modeling non-linear correlations between the WPVs as
illustrated in (4), and can update the network’s basis functions in
specific input space directions.

H D
=0 (z Wi (z i A w) . woo) @

h=1 i=1

where w is the vector of adjustable weight parameters, with input
variables x;, o is a threshold function, and {4, h, 0} represent the
input, hidden, and output layers. By adjusting the weight vector
through different training epochs the predicted labels are mapped
closer to the target labels, estimating the probability of potential
wildfire ignition, 7; ;, as follows:

5 = f(x). ©)
The STWIP architecture is a three layer fully connected network

as shown in Fig. 3, utilizing the Adam optimizer, ReLU activation,
and softmax activation at the output layer. The hidden layers’ (12,3)
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Fig. 3: Inputs and predicted output

neurons, respectively, are chosen to avoid over-fitting and enhance
prediction accuracy.The data input, x, is fed into the input layer.
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The output layer consists of two neurons that output probabilities
of potential ignition/non-ignition in one hot encoded format. The
network is trained and minimized over the cross-entropy loss. The
trained STWIP is illustrated in Algorithm 1 in Appendix 8.5.

3.2 Wildfire Spread Estimation

In modeling wildfire behaviors including spread, software such as
Prometheus and Burn-P3 have been developed, but however, may
require predefined inputs such as initial ignition grids from all his-
torical fires, the different ecoregions, percentage of escaped fires and
more, which may not be readily available to the user. In literature,
models such as the FLAME [36] have been developed to rely on
observable field assessments to consider areas of high fire spread
rates. In [37, 38], the developed model seeks to attain the fire front
using a variation of the Thomas Equations shown in (6) and (7).

v — k(14 Vi) ©)
b
rzf,j,w,t = Tif,j,w,t—l + Va{,t At cos(¢ j 1) M

where Vi, is wind speed, k is fire-type parameter, pp is the bulk
density, rf is the radius from the initial ignition point to the fire
boundary, and ¢* is wind direction.

However, if a wildfire ignites in a cell ¢ in period j, its spread
rate depends on surrounding fuel types and wind speed, which can
be captured by the wildfire-fuel spread characteristics. Hence, we
adapt an approximate radial spread rate using the FireLine Assess-
ment MEthod [36], that can be determined by assessing the fuel type
and wind speed at each HRRR grid point nearest to the potential
wildfire ignition location. In this paper, instead of arbitrary values
of spread rates, practical datasets that adapt the considered geo-
graphical area to different fuel types is utilized. The study area is

Table 1 Relating the land-use features to fuel type

Value |Label Fuel Study Area Coverage
1|Evergreen Needleleaf forest Litter/Crown 46.139%
2|Evergreen Broadleaf forest Litter/Crown 0.000%
3|Deciduous Needleleaf forest Litter 0.000%
4|Deciduous Broadleaf forest Litter 0.000%
5[Mixed forest Litter/Crown 0.000%
6[Closed shrublands Litter/Crown 0.000%
7|Open shrublands Litter/Crown 0.000%
8|Woody savannas Grass 11.611%
9[Savannas Grass 14.306%

10[Grasslands Grass 9.583%
11|Permanent wetlands Barrier 0.000%
12|Croplands Barrier/Grass 17.028%
13|Urban and built-up Barrier 0.722%
14|Cropland/Natural vegetation mosaic _|Barrier/Grass 0.000%
15[Snow and ice Barrier 0.000%
16|Barren or sparsely vegetated Barrier 0.028%
17| Water Barrier 0.583%
18| Wooded Tundra Litter/Crown 0.000%
19{Mixed Tundra Grass 0.000%
20{Barren Tundra Barrier 0.000%

mapped, by a consulted fire expert, Robert Ziel, to three common
fuel types namely crown, litter, and grass as illustrated in Table 1
which also shows the coverage of each fuel type in our study area in
northern California. Hence, this paper considers three common veg-
etation/fuel types (crown, litter, and grass) with spread rates modeled
as a function of wind speed, W, as in (8) and as shown in Fig.4. Note
that in the case of multi-fuel types such as litter and crown, the fuel
type with higher spread rate was chosen. Constant but atypical wind
speed directed towards the power system components is assumed, in
order to account for the worst case scenarios of wildfire spread in the
spatio-temporal assessment.

werass = 14.4(W)1232,
Werown = 4.87(W)H146,
Wiiteer = 1.03(W) 213, ®)
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Armed with the potential rate of spread of the wildfire, utilities are
able to optimize operations based on parameters such as expected
distance and the time it takes a potential ignition to reach critical
grid components.
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Fig. 4: Rate of Spread as a Function of Wind Speed (1 ch/hr =
0.005588 m/s)

4 Power Grid Wildfire Risk Assessment Model

This section presents the proposed model for the power grid risk
assessment, utilizing the outputs of wildfire estimation model pre-
sented in Section 3. The wildfire potential ignition map (ignition
probability map), produced by the STWIP, aids in proactive de-
energization to prevent endogenous fires caused by power system
failure [28] while the spread estimation aids improvement in adap-
tive operation of power grid against exogenous wildfires [15].
Specifically, a set of grid component outage scenarios are first gen-
erated by incorporating the output parameters of the first stage
estimation model with GIS information of the power grid. In par-
ticular, given 7; ;, scenarios are sampled given the distribution of
the wildfire potential ignition map and potential ignition locations,
generating expected scenarios for the power system risk assessment
model. Note that the granularity of 7; ; can be improved to hourly
depending on user application. In this paper, we estimate the hourly
probabilities from 7; ; as follows:

H
(I=pin)" =1 —mij) ©)
where p; p, is the hourly probability of potential wildfire ignition in
i, and H is the cardinality of hours in day j. Based on these scenar-
ios, three risk metrics, namely, critical response time, scenario based
damage cost, and the expected damage cost are calculated to assess
risk.

4.1  Power Grid Outage Scenario Generation

We aim to generate the outage scenario of grid component c at time
t of operational day j of the year. Assume that the wildfire igni-
tion happens at time ¢t* = 0, and we aim to assess the operation of
power grid for the subsequent 24 hours after the potential incident. In
other words, the utility operator’s thought process is: “if the poten-
tial wildfire occurs given scenario, s, and I have knowledge of the
spread rates given s, [ should estimate what component outages can
be induced or motivated by this fire so I can be better prepared for
such scenarios”. Let s denote the probability of occurrence of sce-
nario s corresponding to a set Ij of potential ignition locations of
day j. The spreading rate w; of the ignition in location i in sce-
nario s is obtained by using the spread model presented in Section
3.B with the corresponding values of forecast wind speed and fuel
types around ¢. The GIS data of the power grid is mapped into the
considered area. The characterization of a wildfire induced (exoge-
nous) grid outage scenario is illustrated in Fig. 5. In particular, the
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component (e.g., transmission line) is assumed to be damaged if the
potential fire crosses its safety zone defined by A, and the status
of power grid component c is characterized by a scenario dependent
parameter J. ; as:

0, if min D¢ — wiAt > Ac
s i€l®
c,t =

; 10
1, if min Dg — wi At < Ac (10)
iEI;

where At =t —t" =t (t* = 0) is the potential duration of the
wildfire spread, D.. is the Euclidean distance from the potential igni-
tion point 7 to the grid component ¢, and w] At is the spreading
radius of the wildfire from its ignition point. Note that (10) con-
siders potential wildfire ignition with spread closest to component
¢, since multiple ignition points can possibly occur in a scenario s,
which was reportedly the case in the infamous Campfire. Also, when
a component is on outage (6; = 1), we assume it continues to be
out until the end of the considered operation horizon. The value of
A can be adapted from numerical determination of the Acceptable
Safety Distance [39], which furnishes a detailed thermodynamics of
wildfire effect on system components, informed by flame character-
istics and a vulnerability threshold. The safety distance is informed
by flame characteristics and a vulnerability threshold, and is the dis-
tance between the transmission line and the fire at which the thermal
radiative flux is less than a given threshold, ®;},.csp- The thresh-
old value is set to the vulnerability of transmission lines. The safety
adapted distance is determined by the following correlation:

Du(opt) = D' (1= exp (<pinresn?2) ), (1D

where ppresh 1S a pre-determined empirical parameter for each
D preshs Ly is the flame length, 2L is the width of fire, and

D - lfcos'y\/74<I>fhresh+(BT?s7')2

2(I>th,resh _I— IfSZn’y, (12)
where 7 is the atmospheric transmissivity, € represents flame emis-
sivity, B is the Boltzmann constant, and T’ is the average tempera-
ture of the flame.

W

T
I
I
I
I 7
h ,
I
I

Fig. 5: Wildfire-induced outage scenario generation

4.2 Metrics for Power Grid Wildfire Risk Assessment

The following metrics are developed to aid utility decision making
process and operational strategies in the wake of a wildfire threat.
Note, since the metrics are used for a particular operation day j of the
grid, we omit the notation j from hereon for simplifying the notation.

IET Generation, Transmission & Distribution, pp. 1-13
© The Institution of Engineering and Technology 2020

Accepted for publication in IET Generation, Transmission & Distribution, January 2022



4.2.1 The Critical Response Time (At): This metric fur-
nishes the time period within which utility operators can make
operational changes to minimize economic damages before power
shutoff is absolutely necessary. It is a function of the distance from
the potential wildfire ignition point ¢ to power system component ¢
(see Fig. 5), and the wildfire rate of spread w; as follows:

D — A

min 3
viels,seS w;

At = (13)

Note the importance of this metric since aspects of vegetation, fuel,
and velocity of wildfire spread, based on the spreading model in (8),
is incorporated into a time measure for optimizing utility actions pre-
wildfire. The metric inadvertently provides a time estimate before
the potential ignition will pose a risk, and serves in two ways depend-
ing on application. First, if At is << threshold (utility defined,
associated with A.), then ignitable location is close to the power
system component, ignition is possible within A. and components
should be de-energized to avoid being sources of ignition for endoge-
nous wildfires. Secondly, if At is >> threshold i.e., distance of
potential ignition is far enough from component, the utility can
afford to wait pre-wildfire and not cut off power to customers, say
H hours before actual ignition, which is mainly where revenue is
lost during wildfire threats [10]. Also for the latter depending on the
critical time, utilities can operate and strategize before any potential
exogenous wildfire fronts induce component outages.

4.2.2 The Scenario based Damage Cost: The operational
damage cost of a particular scenario s is the result of the optimal
response of the power grid against the realized outage scenario. The
operational damage cost includes losses in revenue accruing to the
power utility due to lost opportunity costs arising from load curtail-
ment, including power shutoff to customers and intended unavail-
ability of power components, e.g., power lines, from wildfire threats.
In the case of the power transmission grid, such scenario based dam-
age cost can be defined as the optimal value of the following security
constrained optimal power flow as below:

costs =min  » Y VOLLyLCj,.  (14)

teT beB
Lo lme-ed ,
st Py = - (1=6p,), Vi=b0'eL (15
l
Poyt—Papt +LCh = > Ppyy  (16)

b eL
0<LC, < Pypy, VoEBYLET  (17)
(1—=6g06)Pgp < Pgps < (1=355¢)Pgs,
Vge G,vbe B,Vte T (18)
—(1=8)P; < P’y < (1—674)Py,
Vie LNte T (19)
0,<0p,<0, YoeBVteT, (20

Py~ Py 1 <RU,, YgeGVbEBNYET, (1)

P;,b7t,1 — Pyt <RDgy, Vge G, Vbe BVt T. (22)
where B, £, G, and T denote the set of transmission buses b, trans-
mission lines [, generators g, and time slots ¢. The objective function
(14) is to minimize the load curtailment cost over all the sets of buses
and the scheduling horizon where LC}, , denotes the load curtailment
in bus b in time ¢ in scenario s and VOILLbyt denotes the value of loss
load. The optimization is subject to the following constraints. The
DC power flow constraints of the transmission lines [ connecting bus
band b’ is captured in (15) where the scenario based outage status of
the line [ is represented by a binary parameter 6f7t. In particular, if the
line is potentially damaged by the modeled wildfire, i.e., §7, = 1,
there is no power flow on the line. Power balance constraint in bus b
is captured in (16) where the power Pgs b+ generated by g in b, minus

IET Generation, Transmission & Distribution, pp. 1-13
© The Institution of Engineering and Technology 2020

the bus power demand Py p, 4, plus load curtailment LCi,t, equals
the total power flowing out of b. Additionally, the load curtailment
at any bus must remain within the limitations of the total demand
at that bus, which is presented in (17). The power generated by g is
constrained by its minimum and maximum capacity as in (18). The
power flow over the line [ is constrained by its thermal capacity P;
as in (19). On a similar note, the upper and lower limit constraints
of the bus phase angle G;t are described in (20). Furthermore, the
limitations RUy 3, RDg 3, of the generators’ ramping up and down
rates are furnished in (21) and (22) respectively. Note that our frame-
work can also apply to power distribution network where DC power
flow constraints are replaced by the DisTFlow model considering
line outage status [40].

4.2.3 The Expected Power System Damage Cost: The
expected damage cost of power systems [41] for a given set of
wildfire motivated outage scenarios S is calculated as:

ECOST = Z Ts X costs, (23)
seS

where costs is obtained by solving the optimal response of the
power grid against the wildfire motivated outage scenario s, e.g.
solving optimization problems (14)-(22) for the case of transmis-
sion networks. Hence, the EC'OST metric, in addition to estimated
infrastructure damage costs, can aid utility decisions of wildfire
mitigation vs. restoration, i.e., informing the important question:
should the utility use the “let-burn” strategies, since oftentimes the
utility is burdened with the economic decision of either fighting
wildfires or employing the “let-burn strategy” where the wildfire
is allowed to burn and damages are rebuilt/restored [42]. If the
firefighting costs are greater than the expected damage costs (oper-
ational, infrastructural and otherwise), the utility could utilize the
“let-burn” strategy.

5 Numerical Results
5.1 Simulation Setup

We consider an area covering approximately 200km? in north-
ern California and spanning latitudes 38°49'17.616"” N to
40°46'7.14" N, and longitudes 120°11'52.8" W to 122°43'55.2" W,
The chosen area reflects homogeneous climate yet spatially diverse
in fuel and vegetation as illustrated in Fig. 15 detailed in Appendix
8.3. The STWIP was trained and validated using a 70% and
30% split training data of 10,900 samples, and compared to other
data-based conventional baselines [43, 44] including decision tree,
boosted decision tree, and linear regression. We first provide the
wildfire estimation results over the studied area to illustrate the
effectiveness of the first stage of the framework, i.e., the STWIP
model.

5.2 Wildfire Estimation Analysis

The performance analysis in Fig. 6 shows the average accuracy for
training and validation of the STWIP was (98.31% and 97.0%),
while the boosted decision tree was (93.27% and 92.0%), both out-
performing other baselines. Also, the proposed STWIP achieves the
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Fig. 6: Accuracy of baselines
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best performance with an Area Under the Receiver Operating Char-
acteristic curve (AUC) of 0.995. Note that the AUC describes the
model trade-off in terms of sensitivity and specificity. This perfor-
mance is followed again by the boosted + tree algorithm with an
AUC of 0.965 and the regression with an AUC of 0.903 respectively.

41
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Fig. 7: Test Year: Actual (left) vs. predicted spatial ignition pattern

Next, we test STWIP with the 2018 year, comparing results with
the actual wildfire occurrence currently available in [45]. In the test
data we use the 15" day of the month as it is representative of its
wildfire characteristics. Thus, we seek to obtain similar patterns of
spatial density and temporal distribution. Results in Fig. 7 show that
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Fig. 8: Test Year: Actual(left) vs. predicted temporal ignition pattern

predicted hotspots are similar to the actual historical test year, clus-
tered between latitudes and longitudes (39° 30’ 00” N, 122° 30’
00.0000” W) and (39° 30° 00.0000” N, 121° 30’ 00.0000” W).
The central valley area of northern California has less ignition clus-
ters, which is attributed to limited elevation and fuel. Similarly, the
temporal results are analyzed monthly as furnished in Fig.8, show-
ing that the estimated temporal distribution well follows the test
year’s actual temporal wildfire distribution (approximately Gaus-
sian). Hence, by employing the STWIP for analysis as opposed to
the conventional utility predefined fire threat areas and fire threat lev-
els as detailed in Appendix 8.7, power systems can further improve
wildfire forecast and analysis towards actual expectations.
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Fig. 9: Influence of wildfire predictor variables: STWIP captures
the magnitude of this influence better than the widely utilized linear
regression. For instance, the influence of landuse and terrain which
are well known influential factors in wildfire occurrence
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The percentage weighted impact of WPVs on the wildfire ignition
status is presented in Fig 9. In particular, the WPVs are evaluated
based on their weighted influence on wildfire occurrence. Terrain
and temperature, and cloud type and historical ignition, have the
highest and least influence, respectively. Also, humidity seemingly
influenced daily wildfire ignition maps produced by the predictor
especially in the central valley of northern California. This suggests
which measurement types (sensors in monitoring corridors) that
the power utility should invest for enhancing situational awareness
against wildfire. The performance of STWIP is further underlined as
linear methods such as regression do not well capture terrain which
is indeed a high impact feature [46].

5.3 lllustrating Wildfire Aware Power Grid Operation
Analysis

Conventionally, utility often uses region-scale and deterministic
threat level analysis as discussed in Section 1.1 and detailed in
Appendix 8.7. In this situation as further illustrated by Fig. 10,

Casel
Power

Shutoff
Extreme risk days uto

- Wildfire
" Season
i

Threat Areal Threat Areall  Threat Arealll

Case2

Power

Shuloff
Extreme risk locations

STWIP Wildfire

Secason

Fig. 10: Tllustration of the cases

as seen in the “conservative” utility case, the utility will have an
extreme alert in the red area since there are more wildfire threats
as opposed to the elevated threat area (orange highlight). The cus-
tomers in the area with extreme alert will have their power shut off
for the duration of the wildfire threat, including customers up north
(relatively farther) from the wildfire threat cluster. The magnitude
of the shut off can be visualized given the size of the predefined
threat areas in a sample utility wildfire awareness issue as shown in
Fig. 18 in Appendix 8.7. However, the potential ignition map and
spread parameters provided by the first stage estimation model can
be used to analyze the risk of over de-energization motivated by
power component failure-ignited wildfires and the risk of outages
induced by exogenous wildfire. With the granularity in spatial detail
of the wildfire potential probability maps, the spread model, and the
proposed risk assessment, the utility can optimize the time before
shut off is necessary in exogenous fires, and also emulate the dis-
tance between a potential ignition location (ignitable location) and
the power equipment in endogenous/equipment-induced wildfires.
The analysis is conducted on a 24-bus test system mapped to span
the length and breath of the studied area as detailed in Appendix
8.6, however, this analysis can be done on any transmission or dis-
tribution system given complete system details. We consider two
case studies which deviate from the power system normal operation
when there are no wildfire threats. In case 1, the test system is sim-
ulated with the current conventional “conservative” utility approach
of threat area and levels discussed in the Section 1.1 and detailed in

Table 2 Wildfire Motivated De-energization

Case Study | Transmission Line Outages Generator Outages
Case 1 L1-4,L6-8,L14,1L19, L.24-33 Gl1-4, G15-29
Case 2 L4,L18,L19,1.23-24,1.28, L31-33 | None
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Appendix 8.7. In this case, all the power components located in the
pre-defined elevated threat area as illustrated in Appendix 8.7 are
intentionally outaged whether or not they are in the direct vicinity
of high wildfire potential. This simulates current utility procedure
to prevent endogenous wildfires [10]. In case 2, the wildfire analy-
sis and test system de-energization is based on the wildfire potential
ignition map produced by STWIP as described in Section 4 aiming
to improve spatial granularity and optimize (shorten) the time span
of utility de-energization. The data used in simulation is based on
Nov. 10, 2018. The value of lost load is set to 1000 $/MWh. Details
of the components that are out of service in the three case studies are
shown in Table 2.

5.3.1 Assessing risk of outages induced by exogenous wild-
fire:  For exogenous wildfire induced outage risk analysis, the prob-
abilistic ignition map is used to generate wildfire ignition scenarios
and simulated spreading pattern, thus modeling exogenous wildfire-
induced damages on power grid components. The expected damage
cost, ECOST, as illustrated in Fig. 11, represents the aggregate anal-
ysis for one operational year of the test system in the studied area.
It shows that the power system is highly vulnerable during summer
time from June to September, and quite low during winter time from
December to March. However, the risk of wildfire induced outage
still exists during non-summer times, which can be explained by the
impacts of the time independent WPVs such as landuse and terrain.
Hence, an efficient allocation of utility wildfire monitoring resources
should be based on spatio-temporal analysis of wildfire occurrence,
e.g., monitoring grid and vegetation should be done more frequently
during high risk period.
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Fig. 11: Expected damage cost over the period of one year: showing
sustained wildfire risk during non-summer months

5.3.2 Enhancing de-energization decision for mitigating
power component failure-ignited wildfires: Wildfires can be
ignited by electric power line faults that cause arcing in a high-heat
release of energy. Such incidents are majorly caused by ignitable
vegetation contacting power lines. Indeed, the correlation between
the wildfire ignition probability map and electric power failures
motivates the use of proactive de-energization of equipment as a
preventive measure [28]. We aim to illustrate the improvements in
de-energization using the proposed STWIP, which is more granu-
lar and stochastic, over conventional utility approach. The proposed
framework aids in enhancing de-energization and estimating the
potential cost of wildfire occurrence as detailed further.

The total system energy consumption, total loadshed, and
loadshed-bus localization of the three cases are shown in Fig. 12.
The total energy demand of the system is 54358.679 MWh, with
case 1 supplying 29449.051 MWh due to large amounts of load shed-
ding, 45.8%, resulting from the conventional threat area and threat
level methods. Relative to case 2, the power grid response avoids a
large amount, 19798 MWh, of unnecessary load shedding. Hence, a
more detailed wildfire potential ignition map provided by the pro-
posed granular analysis results in less conservative shutoff, i.e., only
components in the high wildfire vicinity are proactively de-energized
to prevent component failure-caused wildfire [28]. Table 3 presents
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Fig. 12: Demand served and load shedding for cases 1 and 2: illus-
trating that a detailed wildfire potential ignition map provided by the
proposed power grid wildfire risk assessment model results in less
conservative proactive de-energization

Table 3 Costs for Cases 1 AND 2 ($)

Load Shedding Cost ($) | Generation Cost ($)
Case 1 | 181,591.25 537,969.01
Case 2 | 37,263.75 537,991.32

load shedding cost, and generation cost for all cases. For the nor-
mal system operation, there are no load shed costs and generation
costs are $568,084.40 The total costs for case 1 is high due to the
amount of load shed and the increase in production of expensive
online generators.

In addition, the framework aids improve the resilience of the sys-
tem by spatio-temporally informing the disaster progression phase
of the resilience trapezoid as illustrated in Fig 13, hence reducing
the “dip” in the resilience curve [47]. Specifically, in case 1, a large

1 ‘ N
— M N e o e e e o o o e o o e e e e e e e e e e 2
209 |\
3 :
Eos8 ||
3 : case 2
§0.7 \ — " “case |
@ 0.6 \ normal
D e e e e e  — s — s — — e — . — -
=9
0.5
t0 t4 t8 t12 tl6 20 24

Time (h)

Fig. 13: Profile of load served in the system. The proposed power
grid wildfire risk assessment model aids in enhancing system robust-
ness and hence resilience, as evident in case 2 as opposed to case
1

and sudden drop of the percentage load served (performance indi-
cator) is observed. This is because without spatio-temporal analysis,
the utility performs conservative forced outages as soon as a wildfire
threat is observed in their pre-defined regional threat areas, which in
this simulation is set to the beginning of the scheduling horizon at
t* = 0. The percentage load served in case 2 is observed to reduce
over time. This is possible due to the improved granularity provided
by spatio-temporal analysis where expectations of wildfire param-
eters such as distance, spread rate, and the critical response time
have been pre-estimated as discussed in Section 4.2.1. Hence, with
a grasp of the expected critical response times, the utility operations
have increased and informed time flexibility in forcing component
outages.

6 Conclusion

This paper proposed a comprehensive spatio-temporal framework
for power system wildfire risk analysis. The framework includes
two sequential models, where the first model estimates the gran-
ular and spatio-temporal potential wildfire probability and spread
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based on influential parameters such as vegetation and fuel, wind
speed, geographical and meteorological variables, while the second
model leverages the estimated probabilistic ignition maps in order to
analyze system risk from exogenous wildfire and to enhance power
system de-energization in mitigating endogenous fires induced by
power equipment failures. Numerical results show that lower forced
electricity outages to customers can be achieved by increased gran-
ularity in spatial locations in utility service areas. Hence, the
framework significantly improves utility de-energization decision
compared to the current “conservative” threat area approach In addi-
tion, the framework aids to improve system resilience and utility
revenue and prioritize resource allocation given increased localiza-
tion of high wildfire potential. Future work will entail using the
proposed model as a base in proposing a self-sufficient model for
complete wildfire prediction and detection for electric power util-
ities using recent state-of-the-art sensor developments and designs
in wildfire detection. Part of these future studies are already formu-
lated but not included in this paper to enable a concise and clear
exposition.
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8 APPENDIX
8.1  Spatial Features Details

‘We assume that land-use data contains information on fuel type, fuel
load, fuel continuity as illustrated in Table 1 while terrain informs
the topography of the ecoregion. The land-use and terrain are exam-
ples of spatial features and usually do not change significantly over
the short-term, hence the name static. Land-use refers to the natural
vegetation and the various ways in which humans make use of and
manage the land and its resources. The terrain represents the topog-
raphy of the geographical area. Hence, input features employed are
not exhaustive but motivated from wildfire studies.

8.2  Same Climate Assumption

In this work, we assume same climate distribution over the period
which we collect historical data for analysis. This assumption is
enabled by similar distribution in spatial and temporal data. In the
said period, the later is approximately Gaussian, while the former is
as furnished in Fig. 14.

Fig. 14: Same Climate Assumption: Similar distribution of Histori-
cal data-points Latitude and Longitude.
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8.3  Spatio-Temporal Wildfire Estimation Model: Setup

Landuse was obtained from the NOAA’s HRRR model and ranges
from evergreen needleleaf forest to barren tundra, assigned values
[1, 20], while Terrain input gives insight into the topography and
elevation of the area with values in the range [6, 2603] meters
as shown in Fig. 15. Temporal variables were obtained from the
Open Weather Map database by building an application program-
ming interface scrapper in python, to make data requests to the
open weather map online weather database using the http pro-
tocol. Requested meteorological data includes temperature levels,
rain, humidity, cloud, atmospheric pressure, visibility, month and
sunshine hours, where numerical values are assigned to qualitative
features, for instance, the daily weather types (clear, cloudy, hazy,
drizzly, rainy) are assigned real values in the ratio [0.1, 0.3, 0.5, 0.7,
0.8] respectively. Historical wildfire ignition records were obtained
for the multi-year period of analysis (1996-2016,2018) from the
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U.S. Geographical Survey database and provides the samples of the
training and test data, respectively.

8.4  Temporal Probability Details
The temporal probabilities of wildfire ignition is also calculated

from historical data with the assumption of a same climate period
as shown in Fig.16.

85 The STWIP Algorithm

Algorithm 1 Batch Learning Based STWIP
1: Given a training set (X1,y1), ..., (Xn, Yn) With features in instances x;
€ R™, with label y; € {0,1}

2: Input(X,Y): A set of labeled input features [temp, ..., month], of
training samples 6, batch size b

3: Output: The spatio-temporal ignition probability maps.

4: Hyper-parameter selection

5: function Predictor_Training(X,Y)

6: Shuffle <—enabled

7 count_max <— %

8 count < 0

9: while count < count_max do

10: for batch b in 6 do

11: STWIP < DNN learns (bX [temp, ..., month])

12: count ++

13: end for

14: end while

15: Compute accuracies

16: Compute the ROC AUC metrics

17: Apply STWIP to test samples

18: return Wildfire potential ignition maps of 7;_;
19: end function

The trained STWIP, as presented in Algorithm 1, is then validated
and utilized in the prediction for unlabelled test samples for a future
period j. When the algorithm ends, the probability map of potential
ignitions, ; ;, is returned.

8.6  Mapping Bulk Power Grid to the Wildfire Potential Map

The IEEE 24-bus reliability test system [48] that includes 24 buses,
38 lines and 33 generating units is aligned to the ignition probability
map as shown in Fig. 17. Also, to illustrate conventional power util-
ity wildfire practices, the grid is divided into fire threat areas with
extreme, elevated, and normal threat levels, while spatio-temporal
analysis employs the most probable generated scenarios.

8.7  Utility-Employed Predefined Fire Threat Areas and
Levels

Electric power utilities have carried out ground breaking work in
modeling wildfire occurrence, including developing analytical tools
such as the Fire Potential Index (FPI) and more [49]. These indices,
for instance the FPI, calculated at district level corresponding to
three levels of wildfire threat alert, are efficient for planning deci-
sions, however, they start to fall short in the day to day operational
decisions for utilities as spatio-temporal granularity is lost in these
methods i.e., the use of pre-defined wide threat areas and few
(extreme, elevated, normal) threat levels.
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In particular, the challenges posed by current utility techniques
include the use of Fire Threat Areas (FTAs), Fire Threat Levels
(FTLs), the independent analysis of the Wildfire Predictor Variables
(WPVs), and the exclusion of adequate past wildfire characteristics
in analysis. As stated by Brian D’ Agostino, SDGE’s director of fire
science and climate adaptation: “We need to understand what the
weather is doing in every canyon, every ridgetop all across the back-
country to really bring that level of customer safety and customer
service”. Thus, the use of FTAs and FTLs can introduce ambiguity
in utility analysis, such as the over allocation of resources, excess —
load shedding in risk assessment, and lengthened forced outages to

Extreme
—

Flevated
—

39°13'12.00"N. 38°48'36.00"N.

customers, since the pre-defined area may not be granular enough 120°104.80"W 122°1142.00°W
for operational wildfire analysis. Furthermore, the independent anal-
ysis of wildfire predictor variables introduces errors in estimation Fig. 17: IEEE 24-bus mapping into three wildfire threat areas

due to the exclusion of the effects of the interactions between these
variables. For instance, for utility operations, when certain condi-
tions (e.g., relative humidity < 15%, sustained winds and gusts >
25mph and 35 mph respectively, for a duration > 6 hours) are met,
operational decisions e.g., all reclosers being turned off, sensitive
relay settings being enabled [50], are taken. However, these assess-
ments of environmental conditions are made independently, leaving
little room for evaluating how the interactions between variables
drive wildfire potential. Moreover, data obtained from historic events
provide increased information on spatial wildfire characteristics as
demonstrated in this work.
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