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Abstract 
Power system analysis results are based on a 

model of the system.  The model is often assumed 

known, yet it may contain errors.  Model errors can 

impact the accuracy of the results.  This paper 

utilizes historical data over time to extract the 

transmission line model parameters.  The focus is on 

application of line parameter estimation techniques 

for real data from a North American utility. The 

approach in this paper focuses on the challenges of 

dealing with uncertainty and errors encountered in 

the real-world data.  Future applications are also 

discussed. 

 

1. Introduction  

Model development and validation is an area of 

growing importance for power systems.  The reason 

for placing high emphasis on model accuracy is that 

in any discipline, results are only as good as the 

models upon which the analysis is based.  Thus, 

identifying model errors is an important problem.   

This work incorporates large volumes of 

historical data collected over time to estimate the 

values of transmission line model parameters. Real 

data often contain significant errors which do not 

have known probability distributions.  Meters used 

for measuring data are a common source error.  A 

key aspect of this work involves being able to 

perform analysis such that any errors in the available 

data do not corrupt the estimate.    

With respect to data collection, phasor 

measurement units (PMUs) [1] have received high 

visibility.  Increasing PMU deployment leads to an 

increase in the amount of data available and a desire 

to effectively manage, send, and process the data.  It 

remains a challenge to intelligently analyze the data 

and obtain useful information to advance the state-of-

the-art for power system operations and control.

Data from PMUs is often the focus of data mining 

efforts, yet other existing sources tend to be 

overlooked.  One resource which has not been 

utilized to its full potential is the enormous volume of 

historical SCADA data which is readily available to

many utilities.

This work addresses the research question of 

whether the sheer volume of available SCADA data 

facilitates acceptable parameter estimates in the 

presence of data errors.  The idea exploited is to use 

“data over time,” and the approach in this paper is 

advantageous over methods which consider a single 

snapshot of the system.  The parameters of a pi-

model of a medium length transmission line are 

determined from multiple measurements of complex 

power and voltage magnitude at both ends of the 

lines.   

The organization of the paper is as follows.  A 

brief background of the estimation problem is 

provided in Section 2. The transmission line model 

used in the work and an overview of the parameter 

estimation method is presented in Section 3.  The 

proposed methodology is described in Section 4.

Results obtained by applying the proposed 

methodology on a simulated test case are presented in 

Section 5 and results obtained on real SCADA data 

from a North American utility are presented in 

Section 6.  Section 7 presents discussions on the 

results. Section 8 discusses future applications for 

transformer model parameter estimation. Finally, 

conclusions are made in Section 9. 

2. Estimation Background   

Many applications rely on correct underlying 

model information. In power systems, the area where 

estimation tends to receive the most attention has 

been in power system state estimation [2], [3].

Parameter identification has often been studied in the 

context of state estimation literature as state 

estimators also serve as data filters.  Uncertainty in 

data with respect to state estimation is analyzed in 

[4].  
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Transmission system parameter inaccuracies can 

have adverse effects on state estimation. Thus, 

existing work is aimed at identifying and correcting 

transmission model parameter errors using telemetry 

data [3],[5],[6],[7],[8].  While a few methods provide 

a means for updating the estimates online, most 

existing approaches consider only a single snapshot 

in time. Also, typically, results for small simulated 

systems are presented as opposed to real systems.

This paper circumvents both previous limitations.  

Historical SCADA data, recorded every five minutes 

over several months, is available and is presented in 

Section 6 of this paper.  A close analogy to the key 

concept of this work is introduced in [9], where PMU 

data collected over a number of different operating 

points can be applied to construct a reduced 

equivalent model at the PMU buses. The statistical 

properties of the data are important to the quality of 

our estimate. Background on the statistical analysis 

of data [10] provides insight into the quality of the 

obtained estimate.  

3.  Transmission Line Model and 

Available Data   

In this section, the transmission line model is 

described and analyzed in the context of the 

measured data which is used in this work.  This 

provides a fundamental expectation of what can (and 

cannot) be estimated about the model based on the 

available data.

3.1. Transmission Line Model 

The line model considered is the pi model for 

transmission lines, shown in Figure 1.  This is a 

standard model which is often used to model lines of 

medium length [11], of approximately 50 to 150 

miles. 

Figure 1. Pi Line Model 

Let V1, V2, I1, and I2 denote the magnitudes of the 

phasor quantities. The assumption is that the 

measurements for this application are P1, Q1, V1, P2,

Q2, and V2.  This is the ‘raw’ SCADA data, recorded 

every five minutes. Note that what is physically 

measured by potential transformers (PTs) and current 

transformers (CTs) is only voltage and current, 

respectively; however, these true raw measurements 

may be unavailable. The goal is to use available 

SCADA measurements to estimate values of r, x, and 

b in Figure 1. The assumption is that the angle 

difference across the line and the line parameters are 

unknown.   If it is possible to know the angle 

difference across the line (as with PMUs), the 

problem is considerably simplified.     

3.2. Basic SCADA Data Properties 

The pi model equations are now considering the 

assumed known or measured quantities. Several 

quantities can always be derived directly from the 

SCADA data. Since P1, Q1, P2, and Q2 are 

measurements, the complex powers S1, S2 at the line 

ends are directly known.  Thus, the apparent powers 

|S1|, |S2| are also known.  From the apparent power 

and voltage magnitudes, the current magnitudes, I1,

I2, can be directly computed.

/i i iI V S� (1) 

From the current magnitudes, power factor angles are 

also known at both line ends, θ1,pf, θ2,pf. Notably 

lacking in these quantities, which can be exactly 

computed from the SCADA data, are the line 

parameters and the angle difference across the line. 

3.3. Pi Line Model  

In the pi model, let b/2 denote the value of the 

shunt modeled at each bus. The admittance matrix of 

the transmission line model is Y=G+jB: 

1 1
/ 2

1 1
/ 2

jb
r jx r jx

jb
r jx r jx

� �� �� �� �� ��
� �

� �� �� �	 


Y  (2) 

The real and reactive components of Y gives matrices 

G and B with elements Gij and Bij. The equations for 

real and reactive power flow at both ends of the line 

are given by the following: 

� � � �2

1 1 11 1 2 12 12 12 12cos sinP V G VV G B
 
� � �� �	 
  (3) 

� � � �2

2 2 22 2 1 21 21 21 21cos sinP V G V V G B
 
� � �� �	 
  (4) 

I1 I2

r+jx

jb/2jb/2

P1 + jQ1

V1 V2

P2 + jQ2
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� � � �2

1 1 11 1 2 12 12 12 12sin cosQ V B VV G B
 
� � �� �	 
  (5) 

� � � �2

2 2 22 2 1 21 21 21 21sin cosQ V B V V G B
 
� � �� �	 
  (6) 

From (2)-(6), the equations for the real and reactive 

power losses in the line are thus given by P1+P2 and 

Q1+Q2 respectively: 

� � � �2 2

1 2 11 1 2 12 122 coslossesP V V G VV G 
� � � � �	 
  (7) 

� � � �2 2

1 2 11 1 2 12 122 coslossesQ V V B VV B 
� � � � �	 
  (8) 

Thus, four out of the six equations in (3)-(8) are 

independent.  The loss equations are obviously not 

independent of the first four since they are each the 

sum of two other equations. In equations (3)-(6), the 

unknowns are G12, B12, b/2, and θ12 = (θ1-θ2).  Thus, 

there are four equations and four unknowns. 

This looks similar to a traditional state estimation 

problem except with different unknown variables.  

The difficulty is that the unknowns appear in the 

equations in a nonlinear manner.  Thus, it follows 

that use of a linear technique to estimate these 

quantities will not yield complete success.   To see 

this, observe that what appears in the equations is 

always a product term of Gij and Bij multiplied with 

either the term sin(θ12) or cos(θ12).  Solution requires 

a nonlinear iterative approach such as Newton’s 

method to find b, x, and r to minimize the difference 

between the measurements and the calculated 

quantities.  Essentially, this is state estimation.  The 

key difficulty is that from one snapshot, there are 

more unknowns than equations so traditional state 

estimation is not sufficient.  The goal of this work is 

to improve the ability to directly estimate b, x, and r

using data collected over multiple points in time.  

The unknowns Gij, Bij, and b/2 are not dependent 

on time.  This is true at least over some window of 

time, whereas the angle difference θ12 is a function of 

the operating point and changes over time.  Thus, the 

terms in (3)-(6) which depend on time are the 

following:   

� � � �
� � � �

12 12 12 12

12 12 12 12

cos , sin

sin , cos

G B

G B


 



 

 (9) 

The proposed approach of considering multiple 

snapshots in time to estimate the transmission line 

parameters is only successful if there are fewer 

unknowns which depend on time than the number of 

linearly independent equations.  In this case, there are 

four linearly independent equations.  Each additional 

time point will produce four more equations but will 

also produce four more unknowns.  Thus, in the 

SCADA estimation problem, some approximation is 

necessary. The choice of the approximation is 

therefore important. 

3.4. Estimation Equations  

The equations used to perform the SCADA 

estimation are presented in this section.  The 

following two equations for real power losses and 

reactive power losses contain the three unknowns (r,

x, and b) which are time independent. 

2

lossesP I r� (10) 

� � � �2 2 2

1 2/ 2 / 2lossesQ V b V b I x� � � �  (11) 

The need for approximation arises since the current 

magnitude I in (10) and (11) is not known exactly 

from the measurable quantities.  Due to current 

injections from the shunt elements, I differs from I1

and I2 which are known from (1).  As an 

approximation, the average of I1 and I2 is taken for I.

This avoids the problem of unknowns which depend 

on time.   

Other variations of the estimation equations are 

possible depending upon which approximations are 

desirable to make.  Future work may investigate the 

impact of the model approximation on the parameter 

estimation. For example, a bias term u can be added 

to the estimation equation for r, 

2

lossesP u I r� � (12) 

2 2

21 2

2
losses

V V
Q b I x

� ��
� � �� �

� �
 (13) 

which represents a Ploss static error in the 

measurements. Based on (12) and (13), a system of 

equations is obtained by appending the contributions 

of repeated measurements to the matrix A.  This may 

be expressed as (14) or (15):  

� �

2

2 2 2

1 2

1 0 0

0 0 / 2

losses

gen

u
I P

r
I V V Q

x

b

� �� � � �� �� � � �� �� � �� � � �� �� � � �� � 	 
� �	 
 	 

�
��

� �
b

��
��
����
	 
b
��
b

 (14) 

�
y p,q

Ae f (15) 

As additional rows are added corresponding to 

additional time points, this becomes an 

overdetermined problem.  Least squares estimation 

minimizes the residual, 
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� �
y p,q

r Ae f (16) 

and results in the following estimate (14), 

1[ ]�� T T

y p,q
e A A A f  (17) 

where ey = [u, r, x, b] denotes a vector of the 

estimated quantities.  The vector fp,q contains real 

power losses Plosses and the negative of reactive 

power losses Qgen. It is possible to estimate Plosses

and Qgen independently since the equations are 

completely decoupled, as evident in (14).  

4.  Proposed Estimation Approach  

An overview of the proposed methodology is now 

presented.  Initially, a data selection module returns 

the dataset and also accomplishes data ‘screening’ 

functions such as value filtering and initial bad data 

rejection.  Then, for a given set of data, regression is 

applied to detect and reject possibly wrong data 

based on analysis of a fitted model.  

4.1.  Dataset Selection 

The procedure outlined in Algorithm 1 is responsible 

for selecting and returning a set of data on which the 

analysis is to be performed. For a specified line, the 

sample dataset consists of measurements of P, Q, and 

V at both line ends. This function also provides 

initial screening and filtering of the raw SCADA 

data.  Currently, all data is screened simply by 

removing data points which have all values of zero.

Additional screening may also be performed.  A data 

point or a row refers to one set of SCADA 

measurements from one point in time.  Value filters,

when applied, allow Algorithm 1 to return a dataset 

for particular conditions, such as a<x<b, where x is

any of the measured or computed variables.  

Function DataSelection 
Input: RawData, whichLine, filter, chunkSize,
Output: DataSet consisting of P, Q, V at line ends 
keepIndex = (rand) to (rand+chunkSize)
DataSet = RawData(keepIndex) 
Foreach row of DataSet do begin 

If row = 0 then begin
Remove row

End
End 
clear keepIndex
Foreach row of DataSet do begin 

If row.MeetsFilter then begin
keepIndex.add(row.Index);

End  
End 

DataSet = DataSet (keepIndex)  

Algorithm 1. Procedure for Dataset Selection

In summary, Algorithm 1 returns a random 

consecutive data chunk of size chunkSize which has 

undergone initial screening and value filtering. 

4.2.  Estimation and Outlier Rejection 

Once an initial data set is selected, regression is 

applied, as outlined in Algorithm 2.  An initial fit to 

the dataset is obtained from least squares. However, 

in this initial fit, all of the data are used 

indiscriminately.  Thus, outliers can have a 

significant impact on the estimate.  By removing 

outliers or problematic data points, the estimate 

improves. At each iteration, the residuals or 

deviations are computed using (16) with the current 

values of the estimated parameters.  High residuals 

indicate a poor match of the particular data point to 

the model. The strategy is to identify data points 

with residuals which exceed a predetermined 

threshold and reject them.  The process continues and 

iteratively fits the data to the refined data set until all 

data points have residuals within the specified 

threshold. The procedure stops when the number of 

rows removed from the dataset during any iteration, 

nR, is equal to zero. 

Function PerformRegression  
Input: DataSet 
Output: ey = [u, r, x, b], DataSet
ey = LeastSquaresEstimate(DataSet) 
r = Aey-b 
While nR > 0 then begin 

nR = 0 
[DataSet, nR] = OutlierFilter (DataSet, r, nR) 
ey = LeastSquaresEstimate(DataSet) 

End 

Algorithm 2. Regression 

The regression algorithm thus progressively 

identifies and removes bad data and computes a new 

estimate from the refined data set. However, any 

errors which exist in the initial dataset can still have 

an impact on the quality of the initial fit.   

Outlier filtering is performed as indicated in 

Algorithm 3, which is applied as a component of 

Algorithm 2. While Algorithm 3 is the currently 

implemented, other outlier filtering algorithms can 

easily be substituted in its place. 

Function OutlierFilter  
Input: DataSet, r, nR

Output: DataSet, nR

Foreach row of DataSet do begin 
  [F, xi] = ksdensity(r) 

  [µ, σ, µci, σci] = normfit(r) 
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threshold  = f(r, σ)    

If residual(row) > threshold then begin
Remove row from DataSet 
Increment(nR) 

End 
End 

End 

Algorithm 3. Outlier Filtering 

In Algorithm 3, Matlab functions ksdensity and normfit 

have been used from the Statistics toolbox. The 

function ksdensity (r) is used to compute a probability 

distribution estimate for the sample vector r. This 

function returns a vector of density values F

evaluated at the points in vector xi. The function

normfit(r) fits r to a normal distribution and returns the 

estimates of mean µ and standard deviation σ of the 

data with a 95% confidence interval.  Estimates on 

the bounds of the confidence intervals are given by µci

and σci. The objective of Algorithm 3 is to detect and 

remove ‘bad’ data characterized by deviation of 

residual from the zero mean. If the error residual for 

a data point exceeds the threshold, the point is 

removed. 

5.  Application to Simulated Data   

In this section, the procedures are applied to 

simulated data from a test system to serve as a 

reference. To perform these simulations, PowerWorld 

Simulator is used via SimAuto and script commands.  

A program allows SimAuto to retrieve SCADA data 

from the simulated system.  Then, the system is 

perturbed to a new operating point.  By repeating this 

procedure, data for a number of operating points is 

obtained. Simulations provide a reference case since 

both the model and the data are exactly known.  

Application to real data is presented in the next 

section.  The system used for the simulations is the 

seven bus system shown in Figure 2.

Figure 2. Seven bus study system 

The estimated line is between Bus 3 and Bus 4, with 

model parameters: r=0.01 pu, x=0.03 pu, b=0.02 pu. 

5.1. Simulated Error-Free Data 

A simulated SCADA dataset for line (3,4) is 

obtained from five different operating points.  The 

units of P, Q, and V measurements are MW, MVAr 

and per unit, respectively.  Using only these points 

with no added error, the estimate matches the model, 

as expected. The values of the estimates are given in 

Table 2.  Real and reactive power plots of the actual 

data, the estimate, and the model are shown in Figure 

3 and Figure 4. The per unit base is 100 MVA. 

Table 1. Study system noise-free estimates 

Line u (pu) r (pu) x (pu) b (pu)

(3, 4) -1.99e-5 0.010055 0.030161 0.020058

Figure 3. Seven-bus error-free data Ploss plot 

Figure 4. Seven-bus error-free data Qgen plot 

5.2. Simulated Data with Error

From the data for the five ‘error-free’ operating 

conditions above, 200 perturbations are made of each 

point.  This reflects the fact that during each quasi-

steady-state operating point, the SCADA values do 

not change much but may change slightly.  Thus, 
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from the five exact operating points, we create 200*5 

= 1000 hypothetical measurement data points.  Each 

measurement is per-unitized and randomized by a 

normal probability distribution of mean zero and 

standard deviation 2 MW, 2 MVAr, and 0.02 per unit 

voltage.   These 1000 points are used to compute the 

estimate. The results from the new dataset are shown 

in Figure 5 and Figure 6, and the corresponding 

estimates are shown in Table 2.

Figure 5. Seven-bus noisy dataset Ploss plot 

Figure 6. Seven-bus noisy dataset Qgen plot 

As indicated by the estimates for (3, 4)*  in Table 2,

the accuracy of the r estimate is considerably 

improved when the static error u is not estimated.  

Table 2. Study system estimates with noise 

Line u (pu) r (pu) x (pu) b (pu)

(3, 4) 0.0012165 0.006369 0.02932 0.017988

(3, 4)* - 0.010153 0.02931 0.020321

It is interesting to note that the five operating 

points result in five distinct clusters of points on the 

graphs.  In real data, the authors have observed the 

presence of these bands, especially when a relatively 

small set of points is examined.  Thus, multiple noisy 

measurements of the same operating point seem to 

cause this feature.

As may be evident when comparing the results, 

some sets of operating points facilitate better 

estimates than others.  The issue is that when

simulating data, it is challenging to reproduce data 

with a realistic distribution.  The question arises of 

how one should perturb the system to obtain 

representative operating points since there are infinite 

possible ways to change the system and obtain a new 

operating point.  Thus, rather than speculate on what 

representative operating points exist that should be 

studied, the most value is obtained from testing the 

procedure on real data. 

6.  Application to Real SCADA Data  

The proposed procedures are applied to historical 

SCADA data from a real North American power 

system.  Identifiers of buses and lines in the real 

system have been made anonymous.  From a 

practical point of view, it is extremely valuable to be 

able to present these results for actual SCADA data.  

Estimation on artificially constructed data is a 

special/trivial case. However, parameter estimation 

using real world data can be extremely challenging as 

evident in the results and discussions presented in the 

following sections. Real world data rarely follows a 

Gaussian or known probability distribution.  

6.1. Study System  - North American Utility

From a North American utility, SCADA data 

collected over several months is available for the 

three transmission lines illustrated in Figure 7.  The 

model values of the line parameters for these lines are 

also available, tabulated in Table 3. Results for these 

three lines are presented.  

Figure 7. Three Lines with Available Data  

Each line identifier α=(i,j) in Table 3 denotes a line α

between bus i and bus j, from Figure 7.

Table 3. Existing Model Values for Lines 

Line r (pu) x (pu) b (pu)

A=(1, 2) 0.00056 0.01054 0.9079

B=(2, 3) 0.00052 0.00999 0.75194

C=(3, 4) 0.00025 0.00445 0.32042

6.2. Comparison of Model to Data 
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An initial dataset with a size of 30,000 data points 

is selected according to Algorithm 2. No value 

filtering is applied.  In the next sub-sections, Figures 

8, 10, 12, 14, 16, and 18 plot Ploss and Qgen vs. I for 

each line.  The red and blue lines on these plots show 

respectively the expected data points when using the 

estimated and model parameter values. Figures 9, 10,

13, 15, 17, and 19 show distributions of the residuals 

about the parameter estimate as well as Gaussian 

distributions of the same mean and standard deviation 

(red dotted lines). The available datasets for lines A,

B, and C lead to reasonable and consistent parameter 

estimates.   

Resistance r and static power offset u are estimated 

from the real power losses, while x and b are 

estimated from the reactive power losses. These 

estimates for all of the lines are given in Table 4. 

Each estimate is based on 30,000 data points.  

6.2.1. Line A plots.

Figure 8. Qgen vs. I (Line A)

Figure 9. Qgen residual distribution (Line A) 

Figure 10. Ploss vs. I (Line A) 

Figure 11. Ploss residual distribution (Line A) 

6.2.2. Line B plots.

Figure 12. Qgen vs. I (Line B) 
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Figure 13. Qgen residual distribution (Line B) 

Figure 14. Ploss vs. I (Line B) 

Figure 15. Ploss residual distribution (Line B) 

6.2.3. Line C plots.

Figure 16. Qgen vs. I (Line C) 

Figure 17. Qgen residual distribution (Line C) 

Figure 18. Ploss vs. I (Line C) 

Figure 19. Ploss residual distribution (Line C)
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6.2.4. Parameter Estimates for All Lines

The estimates of the line parameters based on the 

data above are given in Table 4 below.

Table 4. Estimates from 30,000 Data Points 

Line u (pu) r (pu) x (pu) b (pu)

A=(1, 2) 0.0067853 0.0008664 0.010794 0.90628

B=(2, 3) -0.008649 0.0004789 0.01163 0.7144

C=(3, 4) -0.010291 -0.000257 0.004415 0.35742

7. Discussion of Results  

As can be seen from the above plots, the estimated 

parameters are close to the available model 

parameters. The estimated resistance for Line A is 

slightly higher than its model parameter; this may be 

due to the fact that the available model resistance 

value was computed using the dimensions of the line, 

material resistance, etc. for different conditions than 

actually seen in operation. The reason this does not 

occur for the other two lines may be because Line A

is much longer in comparison to the Lines B and C.

The estimated resistance of Line C is negative 

when the algorithms are applied on the available raw 

SCADA data. However, the magnitude of the 

estimated resistance is close to the model resistance 

available. This may indicate the presence of 

measurement sign errors. The suspected sign errors 

are corrected, and a corrected dataset is returned after 

applying this filtering in 

Algorithm 1. The new estimate of the resistance, r

= 0.000305 pu, is considerably improved.  Figure 20

shows the new Ploss vs. I plot.   

Next, estimation is done after applying regression 

for all the lines. Since the actual parameters of the 

transmission lines are not known or rather cannot be 

exactly known, there is no way to validate the final 

results. However, the values provided in Table 5 are 

expected to be the best parameter estimates.  It is 

clear that ‘screening’ the data is a critical stage of the 

estimation process, as the dataset which is chosen 

ultimately impacts the quality of the final estimate.   

The data for reactance and shunt estimation for the 

three lines was ‘better’ than the data for resistance 

estimation, as evident from the plots for distribution 

of residuals. The latter data is noisy and the Ploss

values are small compared to the value of the 

parameter being estimated.  Measurements may also 

contain systemic biases which are not accounted for 

in the approach.  A more thorough coverage of the 

detection of data problems is beyond the scope of this 

paper.   

Figure 20. Ploss vs. I (Line C, corrected data) 
  

Table 5. Estimates after Regression 

Line u (pu) r (pu) x (pu) b (pu)

A=(1, 2) 0.0058326 0.0009012 0.010774 0.90586

B=(2, 3) -0.010256 0.0004928 0.011749 0.71445

C=(3, 4) 0.0077929 0.00030975 0.004401 0.3589

 An effect which has not been included is how 

actual line resistance varies with temperature. There 

is approximately a 0.4% increase in resistance per °C

rise in temperature [12]. In seasonal planning models, 

the r values are not adjusted since x values typically 

dominate. When we use multiple months of SCADA 

data to obtain an estimate, any changes in the actual 

parameters are ignored.

8. GIC Model Validation Applications  

A future use of historical data to estimate model 

parameters is in geomagnetic disturbance (GMD) 

modeling. GMDs induce geomagnetically induced 

currents (GICs) in transmission lines and 

transformers.  Background on the problem and its 

effects in large power systems is presented in [13].   

GIC-related transformer reactive power losses are 

observed to vary linearly with terminal voltage [14],

and may be represented, for example, as

2

loss line m pu GICQ I x V KI� � �  (18) 

where K is the constant to be estimated and is 

specific to the transformer, Vpu is the terminal voltage 

in per unit, and IGIC is the DC GIC.  In the simple 

case of a wye-delta step-up transformer, IGIC is the 

neutral current IN.  Units of K are MVAr/A.  For an 

autotransformer, IGIC is given by 

t H L

GIC

t

a I I
I

a

�
� (19) 
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from [15] [16] where the two DC coil currents IH and 

IL may be measured, and at is the transformer turns 

ratio. 

When the K values of transformers are not known, 

they are often approximated in the analysis by default 

values. Obviously, it is preferable to use actual values 

to improve the meaningfulness of the GIC results.  

The NERC report [13] identifies as an action item the 

development of tools for GIC flow and subsequent 

reactive power loss modeling.  Parameter estimation 

can help validate transformer parameters which are 

needed for GIC analysis.   

9. Conclusion 

The value of using data collected over time is 

apparent when estimating transmission line 

parameters, as shown in this paper.  Results for both 

simulated and real data are discussed.  It is clear that 

estimation based on real measurement data presents 

challenges which are not encountered in simulation.   

The presentation of the proposed solution approach 

to real data is thus valuable.  The approach is 

validated on actual SCADA data from a real North 

American utility. In summary, the proposed 

methodology is a valuable tool which can allow 

planners to find and correct model errors based on 

data which is already collected. 
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