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Abstract—Distributed controllers have a ubiquitous presence
in the electric power grid and play a prominent role in its daily
operation. The failure or malfunction of distributed controllers
is a serious threat whose mechanisms and consequences are not
currently well understood and planned against. For example, if
certain controllers are maliciously compromised by an adversary,
they can be manipulated to drive the power system to an unsafe
state. We seek to develop proactive strategies to protect the power
grid from distributed controller compromise or failure. This
research formalizes the roles that distributed controllers play
in the grid, quantifies how their loss or compromise impacts
the system, and develops effective strategies for maintaining
or regaining system control. Specifically, an analytic method
based on controllability analysis is derived using clustering and
factorization techniques on controller sensitivities.

Index Terms–controllability analysis, sensitivity analysis, dis-
tributed controllers, controller compromise

I. INTRODUCTION

The smart grid initiative has driven the industry toward

increasingly sophisticated systems of sensors, algorithms, and

controllers that are involved in widespread communication

and online decision-making. Distributed controllers play a

prominent role in deploying this cohesive execution and are

ubiquitous in their presence in the grid. As global information

is shared and acted upon; if one distributed controller fails,

the remaining set is quick to respond and ensure the overall

control objective is maintained. However, multiple failures can

cause detrimental, cascading effects (e.g., overloads leading

to blackout) as the set struggles to automatically meet the

control goal. Furthermore, if the controllers are maliciously

compromised, they can be manipulated to drive the power sys-

tem to an unsafe or unreliable operating state. Attack vectors

for distributed controllers range from execution of malicious

commands that can cause damage, to sensitive equipment, to

forced system topology changes causing instability.
In this regard, distrusted control can be defined as when

controller(s) are compromised and under the command of a

sophisticated attacker. This adversary can craft these com-

mands in a legitimate format and thus have them successfully

executed in the system. Furthermore, these alterations could

be masked to the operator or any security systems. Cyber

attacks on the power grid are a serious issue, with about
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40% of total critical infrastructure cyber incidents reported

to the Department of Homeland Security from 2009 to 2014

occurring in the energy sector [1]. In fact, one of the first large-

scale attacks on a power grid occurred in December 2015 in

Ukraine, where cyber attacks led to the disconnection of 7

substations and power outage to 80,000 customers for several

hours [2]. Additionally, the threat of physical consequences

resulting from these cyber attacks has become a serious

concern, as demonstrated by [3], [4].

With the modern power grid increasingly being outfitted

with publicly available operating systems, network or Internet

communication, and third-party software, there are many more

access points for an attacker to gain entry. We no longer have

the benefit of “security by obscurity” as historically achieved

by proprietary control protocols that varied utility to utility –

the adversary no longer needs to be deeply knowledgeable

of the specific utility system to launch a successful attack

[5]. In preventing and mitigating these attacks, specifically on

distributed controllers, we must consider: the attack vectors,

adversary capabilities, trusted entities, and impact on system

controllability and stability.

In this paper, we focus on attacks which disrupt sys-

tem control resulting from compromised or failed distributed

controller(s). As mentioned, controller-based threats include

execution of malicious control commands and changes to

controller-level code and binaries which may drive the sys-

tem to an unsafe or unreliable operating state. In particular,

this paper provides an analytic solution to help restore the

control capability of a system given a controller attack. By

identifying the role of each controller, whether they are

critical, essential, or redundant to system controllability, we

can develop powerful techniques to improve control as well

as protect the system. Furthermore, discovering the control

support groups that indicate the interaction of the controllers

with one another provides useful information. This insight can

allow development of systematic method(s) to ensure or regain

control of the system given compromise or failure.

II. POWER SYSTEM CONTROLLABILITY

In power systems, there are various components and be-

haviors we would like to control. We may seek to mitigate

the impact of a disturbance or we would like to alter supply

at various buses due to load change. Control systems and

controllers allow us to enact these changes in system properties

such as topology, equipment settings, and system behaviors.



However, the effectiveness of these controls, especially to

influence behaviors, depends on the controllability of the

system. This relies on the controllers (location, distribution,

extent of abilities) and the power system itself (topology,

constraints). Thus, the controllable region of the system.

The controllable region is the subset of the state space on

which the available controls can be used to steer the power

system from one state to any other state [6]. In general, the

power system dynamical equation can be written as:

ẋ = f(x)+
m

∑
i=1

gi(x)ui, x ∈ ΞΞΞ (1)

where x is an n-vector of dynamic variables, f(x) is a vec-
tor consisting primarily of the power flow equations, and

∑m
i=1 gi(x)ui represents the effects of the controls on the

system. The scalars ui, i= 1, ...,m, are the system controls and
are usually piece-wise constant in time, due to device physical

characteristics. System state space, ΞΞΞ, is an open subset of
the n-dimensional Euclidean space. If we have X(s1,u, t) ∈ ΞΞΞ
representing the system movement with the initial state s1,
control u, and 0≤ t ≤ ∞, the controllable region satisfies:

X(s1,u, t) = s2, u ∈ U and 0≤ t ≤ ∞ (2)

where every pair of states s1 and s2 ∈ Z satisfies (2). Z is

the controllable region, a subset of ΞΞΞ. Therefore, the system
presented in (1) can be steered from a state to any other

state within the controllable region. Further proofs and other

references can be found in [6]. For this work, we will focus on

decomposing the set of controls ∑m
i=1 gi(x)ui into the controller

role and control support group sets.

Classic linear methods developed for controllability and

observability are the Popov, Belevitch, and Hautus (PBH)

eigenvector tests using rank conditions [7]. Yet, these tests

only provide answers in a “yes or no” fashion—e.g., yes the

system is observable or no, the system is not observable.

Although useful, more detailed measures of controllability are

desired. Hamdan and Elabdalla [8] and Hamadan and Nayfeh

[9] proposed using the cosine of the angle between appropriate

subspaces to develop a quantified measure for controllabil-

ity and observability of linear systems. In this manner, the

measure is a continuous function of the distance between the

two subspaces. Messina and Nayebzadeh [10] formulated a

design procedure using modal analysis to derive quantitative

controllability and observability measures to place multiple

controllers. To check if the controllability or observability

matrices are full rank, they examined the number of nonzero

singular values and their magnitudes. In this work, we study

the role and interaction of each of the controllers in the overall

controllability. Similar to the work of Bobba et al. [11] that

determined the sets of basic and redundant measurements,

we seek to motivate and invoke the use of these and other

observability-based methods to also study control.

III. SOLUTION OVERVIEW

Using clustering and factorization techniques, the proposed

work identifies the essential and critical controllers for main-

taining controllability of the system as well as the redundant

ones. With this classification, the compromise of controllers

Fig. 1: Proposed methodology that applies clustering and

factorization methods to process controller sensitivities.

can be analyzed to determine how the remaining controllers

should react to restore the system to its normative state.

• Critical controllers (gCi(x)uCi ): devices that are irreplace-

able and mandatory for system controllability

• Essential controllers (gEi(x)uEi ): minimal set of devices

required to maintain system controllability

• Redundant controllers (gRi(x)uRi ): devices that can be

removed without affecting system controllability

Our method performs power system controllability analysis

to provide an analytical solution to restore or maintain system

control given a controller attack. Specifically, the controlled

dynamical power system (1) can be described with each

controller identified as critical, essential, or redundant:

ẋ = f(x)+{gC1(x)uC1 +gC2(x)uC2 + ...+gCTC(x)uCTC}
+{gE1(x)uE1 +gE2(x)uE2 + ...+gETE(x)uET E}
+{gR1(x)uR1 +gR2(x)uR2 + ...+gRTR(x)uRT R}

(3)

where x ∈ ΞΞΞ and C1 to CTC represents the critical controllers

where TC is the total number. Similarly, E1 to ET E represents

the essential controllers where T E is the total number and R1
to RT R represents the redundant controllers where T R is the

total number.

Fig. 1 shows the high-level proposed methodology. The

algorithm uses clustering and factorization along with sensitiv-

ity analysis and provides a general power grid controllability

analysis that can be applied to any control parameters and any

deployed controller devices (only the appropriate sensitivities

are required). In the following sections, we provide the details

on the methodology using clustering and factorization tech-

niques. The algorithms calculate and process the sensitivities

to determine the control support groups.

• Control support groups: the controllers that are highly
coupled for impact on both the control objective and each

other

Controller coupling is discussed further in Section V. For

example, given 8 controllers (one on each transmission line

in an 8-line system), we can describe the system using the

control support groups:

ẋ = f(x)+

GROUP 1︷ ︸︸ ︷
g1(x)u1+g4(x)u4+

GROUP 2︷ ︸︸ ︷
g3(x)u3+g6(x)u6+g8(x)u8

+

GROUP 3︷ ︸︸ ︷
g2(x)u2+g5(x)u5+g7(x)u7

(4)

Each of the labeled groups, GROUP1−GROUP3, embodies
a control support group—there are 3 in total. In this case, we

achieve information on which controllers work most effec-



tively together on controlling a specific group of transmission

lines. Further insight into the use of these results will be

detailed throughout the paper, specifically Section VII. The

novel contributions of this work are as follows: (1) Determin-

ing controllability-equivalence sets, the control support groups,

via clustering, (2) Computing the number of equivalence sets

(clusters) using a novel sensitivity-based method, and (3)

Identifying the critical, essential, and redundant controller sets

via factorization.

IV. LEVERAGING SENSITIVITIES

A system’s sensitivity matrix (A′′
in Fig. 1) is often used

for robust control to ensure controller parameters are chosen

in such a way that the closed loop system is not sensitive

to variations in process dynamics [12]. With such sensitivity

information, placement of the control devices to achieve

various objectives is facilitated as well as details on the impact

of compromised controllers on overall system controllability.
For our application, we require knowledge of the indepen-

dently controllable lines as well as the controller role sets. The

sets of those lines can be defined as:

• Line flow groups: the sets of transmission lines that can
be controlled independently

The control support groups, as defined in Section III., provide

the corresponding control. To obtain these groups, we cluster

the rows of the sensitivity matrix and then investigate which

lines are most affected by each other as well as those that

are not and have no relation. Additionally, we decompose

the transposed sensitivity matrix to determine the critical,

essential, and redundant sets of controllers.
The appropriate sensitivities to be utilized depend on the

control device and objective. To exemplify the framework, we

use distributed flexible AC transmission system (D-FACTS)

devices. The versatile array of D-FACTS devices for power

flow control includes distributed series reactors (DSRs) and

distributed static series compensators (DSSCs), and is cur-

rently deployed by SmartWires Inc. [13], [14]. We focus on

DSSCs in this work, but are motivated by the flexibility of

D-FACTS and the various sensitivities that can be derived.

The results presented in this paper will be broadly useful and

clearly indicate how any controller and control objective may

be interchanged. This controller acts as a synchronous voltage

source in series with the line, changing the line’s effective

impedance and thus its power flow [14]–[16]. Therefore, we

concentrate on sensitivities considering power flows. Specif-

ically, we use the total power flow to impedance sensitivity

matrix. It reflects both direct (i.e., change in impedance of a

line and its direct impact on that line’s power flow) and indirect

(i.e., change in impedance of a line and its indirect impact

on all other lines’ power flows) sensitivities. This sensitivity

matrix is represented as ΩΩΩ.

ΔPflow.total = [ΩΩΩ] ·Δx (5)

where ΔPflow.total are the changes in the line power flows
and Δx are the impedances. Including the indirect power flow
sensitivities in the calculation of ΩΩΩ allows the representation

of the impact of lines on all other lines, which is very useful

for our analysis in determining line flow groups. Nonetheless,

Fig. 2: Completely decoupled line flows (a.) and completely

coupled line flows (b.) [17].

other sensitivity matrices can be used depending on the desired

application; further sensitivity formulations for D-FACTS de-

vices and derivation of ΩΩΩ are developed in [17].

With the calculated sensitivity matrix, we can apply clus-

tering to determine the control support and line flow groups.

The matrix is represented as A′′
in Fig. 1. It is important to

note that the algorithms presented in this paper are applicable

to any controller and control objective; only the appropriate

sensitivity matrix needs to be selected, or more precisely, one

that reflects the controlled quantities and the control objective.

V. CONTROLLABILITY-EQUIVALENCE SETS

By obtaining sets of line flows that can be independently

controlled with respect to other sets in a system, we can gain

valuable insight on the influence of various controllers and

the control support groups. Identifying these line flow groups

is a key step in achieving comprehensive power flow control.

Within each set, it only makes sense to control one line flow, as

they are all highly coupled given the power system topology;

controlling one line flow will always strongly impact the others

in a predictable way.

A. Control Support Groups

To provide the most complete and effective control for the

entire system, it is necessary to identify how the control of

line flows are related to each other by determining the control

support groups [17]. We can study a trivial example as shown

below, with three power flows (the controlled quantity) and

three impedances (the control).

a.

x1 x2 x3[ ]Pf low,1 1 0 0

Pf low,2 0 2 0

Pf low,3 0 0 1

b.

x1 x2 x3[ ]Pf low,1 1 1 1

Pf low,2 2 2 2

Pf low,3 1 1 1

(6)

These vectors are illustrated in Fig. 2 where line flow

vectors are illustrated as completely coupled or decoupled.

When the vectors are orthogonal, the line flows are completely

decoupled as shown in Fig. 2(a.), and can be controlled

independently. Conversely, in the completely coupled case in

Fig. 2(b.), the row vectors are aligned and the angle between

them is 0°. When line flows are highly coupled, only one needs

to be controlled, as the others will respond as well. Indepen-

dent control of those lines cannot be achieved. When the row



vectors are exactly aligned but point in opposite directions

(angle of 180°), the lines are still completely coupled [17].

The ability of certain lines to exhibit this independently

controllable property is discernible from the relationships in

the sensitivities. We can compare the cosine of the angles be-

tween vectors and determine the coupling sets. Subsequently,

grouping of line flows can be determined using any appropriate

clustering algorithm.

B. Coupling Index

We leverage the line flow vector angle relationships, to

determine the controllability-equivalence sets by comparing

the angles between row vectors of the sensitivity matrix to

find the coupled and decoupled sets of lines flows. To calculate

and compare these angles, we utilize the coupling index (CI)

and measure the cosine similarity [18]. The CI is equal to the

cosine of the angle between two row vectors, v1 and v2, of
the sensitivity matrix A′′

as in (7).

cosθv1v2 =
v1 ·v2

‖v1‖‖v2‖ (7)

The clusters identified using the CI are approximately orthog-

onal to each other. The CI has values between −1 and 1.
By clustering the rows of the sensitivity matrix using CI, the

coupled and decoupled sets of line flows can be determined.

Thus, each cluster will be independent and decoupled from

the other sets. Within the cluster, the line flows are coupled

and dependent on one another.

C. Number of Clusters

For our application, it is difficult to arbitrarily select k as
it will change on a system by system basis. We want to find

very cohesive clusters that most accurately reflect how we can

effectively control lines that are either highly dependent on

or independent of each other. We choose to use hierarchical

agglomerative clustering as it groups data by creating a cluster

tree or dendogram and applying a maximum threshold value

km for the number of clusters to form (cutting the tree) rather

than a strict rule [19]. Though, any other suitable clustering

method may be used.

To leverage the sensitivity matrix and its inherent groupings,

singular values are studied and are computed using singular

value decomposition (SVD), for which details are provided

in [20], [21]. SVD is applied to obtain a rank reduced

approximation of a data set to generalize some properties

or structure. One interpretation of the singular values is

information on the largest contributions to the matrix and its

general structure. Therefore, the most significant or largest

singular values represent the most significant groups present

in the data, which in our case is the sensitivity matrix. To

determine these significant singular values, we calculate an

optimal hard threshold using the techniques detailed by Gavish
and Donoho [22] and obtain an initial estimate for the number

of clusters, i.e., km. The final result is not a fixed threshold

chosen a-priori but a data-dependent threshold. Since we seek
high cohesiveness within our clusters for effective control, we

then iterate on kin by evaluating the coefficient of variance and

the average of the resultant cluster’s silhouette values for kin

[23]. Satisfying these conditions ensures the objects within the

clusters are well-matched and cohesive. Ultimately, we obtain

k f to input as the final maximum number of clusters km for

the hierarchical clustering or as k for other methods.

VI. CRITICAL, ESSENTIAL, AND REDUNDANT

CONTROLLER SETS

With the resultant control support and line flow groups, the

power grid operators and security administrators can specify

the number of controllers to consider as well as an objective

for each group of interest. The devices can be placed for

maximum controllability such that the most independent con-

trollability of groups is achieved. A target set of lines can be

derived, as only one line from each independent group needs

to be controlled. Hence, the target set is analyzed to discover

the critical, essential, and redundant sets of controllers.

Consequently, the protection of critical controllers would be

necessary in maintaining system controllability. If a controller

from any set is compromised, we can determine how to

recover controllability using controllers from its support group.

This requires examining the coupling of the columns of the

sensitivity matrix (of the target set), consistently labeled as

A′′
, or the rows of [A′′

]T, to identify candidate lines with the
best spread (linearly independent) to meet the objective.

Critical measurement identification in regards to observ-

ability analysis has been investigated, as demonstrated by the

works of Bobba et al. [11] and Chen and Abur [24] A similar

methodology can be applied to identify critical controllers as

well. We apply the analysis on our sensitivity matrix to study

controllability, the dual of observability. The idea is to perform

a change of basis to obtain a mapping from measurements to

equivalent states. Instead of using this decomposition to ex-

amine the redundancy of measurements for estimating states,

we use it to examine the set of control devices needed to

control equivalent line flows. Define [A′′
]T, where the rows

correspond to control devices and columns correspond to the

variable being controlled. For simplicity, we continue to use

the example of D-FACTS devices with columns corresponding

to the real power flows to be controlled. Again, we only

consider the real power flows of the target set of lines, as

determined from the clustering results.

LU factorization is applied to obtain the change of basis,

decomposing the transposed sensitivity matrix to lower and

upper triangular factors; [25] describes the LU factorization

method. The following decomposition of [A′′
]T is obtained as:

[A
′′
]T = P−1LFUF (8)

LF =

[
Lb
M

]
(9)

Using the Peters-Wilkinson [25] method, we are able to

decompose [A′′
]T into its factors, where P is the permutation

matrix and LF and UF are the lower and upper triangular

factors of dimension n, respectively. M is a sparse, rectangular

matrix with rows corresponding to redundant controllers. The

new basis has the structure:

LCER = LFL−1
b =

[
In
R

]
(10)



TABLE I: Singular Values yi of ΩΩΩ

y1 y2 y3 y4 y5 y6 y7 ...
4.13 3.24 1.14 1.06 0.41 0.02 0.01 ...

The transformed basis, shown in (10), must be full rank for a

controllable system and this requires the m×(n−1) matrix to
have a column rank of (n−1) to be a controllable n-bus system
with m-measurements. Since LF and UF will be nonsingular
for a controllable system, the rank of [A′′

]T can be confirmed
by checking the rank of the transformed factor LCER. Also, Lb
has full rank and with LF multiplied by L−1

b from the right,

the row identities will be preserved in the transformed matrix

LCER. Each row of the matrix will, therefore, correspond to
the respective controllers [24].
Rows of In correspond to essential controls that are suf-

ficient to assure independent controllability of the equivalent

line flows. If the essential controller is the only non-zero entry

of an equivalent line flow column, it is the only controller
that can control it and is irreplaceable. There is only one

entry for that line flow and it is in In. Thus, the control
corresponding to that row in In is critical, since that equivalent
line flow cannot be independently controlled by any of the

other devices. Rows of R correspond to redundant controls.

These roles were defined in Section III. Columns correspond

to the equivalent flows which can easily be mapped back to the

original flows using the permutation matrix P obtained from
the LU decomposition step.

VII. EVALUATIONS

The proposed methodology to discover the distributed con-

troller role and interaction (controllability-equivalence sets)

was tested on a PowerWorld 7-bus system and is detailed next.

The system has 5 generators and 11 lines that are modeled

in PowerWorld as the B7 DFACTS DEMO case [26]. For

this study, we assume the controllers are D-FACTS devices

whose control objective is to change line flows by changing

the effective impedance of lines. We first perform an a-priori
grouping of parallel lines. In this case, there are two parallel

lines, lines 10 and 11. Whichever line flow group and critical,

essential, or redundant set line 10 is placed in, line 11 is also

in. We also exclude the transformers as D-FACTS controller

placement options. Lastly, we posit there is a controller on

every allowable line for simplicity, but this can be easily

altered as well.
Using the total power flow to impedance sensitivity matrix

ΩΩΩ, discussed in Section IV., we compute the CI matrix to
measure the cosine similarity between row elements of ΩΩΩ.
Next, we perform SVD on ΩΩΩ and obtain the singular values,

yi, shown in Table I where y8− y10 are near zero.
With the calculated hard threshold τ̂∗ = 0.503 for the n×n

sensitivity matrix ΩΩΩ, we find that 4 singular values satisfy
this threshold. Therefore, we set kin = 4 and then iterate

on it by evaluating the coefficient of variance and average

silhouette values. In this manner, the number of clusters is

increased to 6 so we set km = 6 and achieve our line flow
groups. The resultant line flow groups, labeled Clus1-Clus6,

are provided in Table II. Note that line 11 (parallel with

TABLE II: Line Flow Grouping Clusters

Clus1 Clus2 Clus3 Clus4 Clus5 Clus6
L1, L2, L6, L8 L3, L4 L5 L7 L9 L10, L11

Fig. 3: 7-bus case with lines colored according to cluster group

and labeled with critical, essential, and redundant controllers.

line 10) is also included in the final results. The clusters are

visually represented in Fig. 3. The lines are colored according

to cluster membership, a black line indicates only that line

was in the cluster – not grouped with any other line.

Now that we have the line flow groups, we can determine

the the critical, essential, and redundant sets of controllers. In

fact, the cluster results can be used to determine the target set

of lines. Only one line in each line flow group needs to be

controlled, so one line from each cluster can be selected to

be analyzed with the controller sets. For example, a target set

of lines that encompasses control of the entire system can be

L1, L3, L5, L7, L9, and L10. By applying the decomposition
method on the transposed sensitivity matrix, [A′′

]T, comprised
of the targeted lines and all possible controllers, we achieve the

transformed basis LF
T shown in Table III and results provided

in Table IV.

By examining Table III, we can determine the critical, essen-

tial, and redundant controllers. An equivalent line flow column

with only one non-zero entry, as highlighted for EQ.L3, has
only one device that can control it and thus is a critical

controller corresponding to row 3. The essential controllers

are discovered by examining the first 6 rows (In) and the
remaining 4 rows (R) correspond to redundant controls. We
can, therefore, deduce that if there are controllers on every

line, the critical and essential controllers on lines 2, 3, 4, 5, 7,

and 8 would provide full system controllability. The locations

of the critical, essential, and redundant controllers for the 7-

bus system are also illustrated in Fig. 3.

1) Insights for Regaining Control: With these valuable

results about the flexibility and redundancy of the control, we

can effectively strategize regaining control of a given system

after a controller attack. The following situations could arise

and, with our insights from this analysis, we can respond in

the corresponding manners:



TABLE III: Transformed Basis

EQ.L1 EQ.L2 EQ.L3 EQ.L4 EQ.L5 EQ.L6
1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0.0000 0 1.0000 0
0 0 0 0 0 1.0000

-0.0014 -0.0000 -0.0000 0.0899 -0.0000 -0.0000
-0.0144 0.0000 -0.0000 0.9227 -0.0000 -0.0000
0.0000 1.5107 0.0000 -0.0018 -1.0644 0.7466
-0.1250 -0.0000 0.0000 -0.1865 0.0000 -0.0000

TABLE IV: Critical, Essential, and Redundant Controller Sets

Lines with Controllers
Critical Set L5
Essential Set L2, L3, L4, L7, L8
Redundant Set L1, L6, L9, L10, L11

#1 Redundant Controller(s) Compromised
If the controllers on L1 and L9 are compromised, we know
from the clustered line flow groupings that for L1 controller,
we can most effectively use the essential controllers in GR1
to best mitigate any adverse actions from L1 controller. The
redundant controller on L6 can be used, additionally. Since no
critical or essential controllers have been compromised, we

still maintain full system control. We see that L9 controller
is independently controlled (no other members in cluster),

so perhaps we need the efforts of multiple, uncompromised

controls to counter any malicious actions.

#2 Critical or Essential Controller(s) Compromised
If L2, L5, and L8 controllers are compromised, we know
that L1 and L6 redundant controllers will be most effective
in mitigating any actions of L2 or L6 essential controllers.
However, since the critical controller on L5 is compromised,
we do not have full system control. All other “safe” controller

actions are necessary in trying to regain control of the system.

This is true for L5 controller as well, especially since it
has no other controls in its support group. If combination

of critical, essential, and redundant controllers compromised,

a similar response of utilizing all uncompromised system

controls and/or defense mechanisms to regain system control

is needed.

VIII. CONCLUSION

The presented methodology provides significant insight on
how to best regain or maintain control given controller com-
promise or failure. We gain information on 1) the control
support groups, the controllers that are highly coupled for
both impact on the control objective and each other, 2) which
controllers are critical and essential in maintaining system
controllability, and 3) which controllers are redundant and
can be managed more readily if compromised. Thus, if a
given controller in a redundant set is compromised, a set of
essential and critical controllers can be used to restore the
system and mitigate any adverse consequences. Conversely, if
an essential or critical controller is compromised, immediate
remedial actions are necessary as full system controllability
is no longer maintained, especially for critical controller
compromise. These insights can allow for strategic protection
schemes, as well as a prioritization of cyber (and physical)
defense mechanisms surrounding critical and essential sets of
controllers. System restoration strategies and further security

measures on critical control points are aided significantly with
the results of this analysis.
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