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Abstract: False alerts due to misconfigured or compromised intrusion detection systems (IDS) in
industrial control system (ICS) networks can lead to severe economic and operational damage.
However, research using deep learning to reduce false alerts often requires the physical and cyber
sensor data to be trustworthy. Implicit trust is a major problem for artificial intelligence or machine
learning (AI/ML) in cyber-physical system (CPS) security, because when these solutions are most
urgently needed is also when they are most at risk (e.g., during an attack). To address this, the Inter-
Domain Evidence theoretic Approach for Inference (IDEA-I) is proposed that reframes the detection
problem as how to make good decisions given uncertainty. Specifically, an evidence theoretic
approach leveraging Dempster–Shafer (DS) combination rules and their variants is proposed for
reducing false alerts. A multi-hypothesis mass function model is designed that leverages probability
scores obtained from supervised-learning classifiers. Using this model, a location-cum-domain-based
fusion framework is proposed to evaluate the detector’s performance using disjunctive, conjunctive,
and cautious conjunctive rules. The approach is demonstrated in a cyber-physical power system
testbed, and the classifiers are trained with datasets from Man-In-The-Middle attack emulation
in a large-scale synthetic electric grid. For evaluating the performance, we consider plausibility,
belief, pignistic, and general Bayesian theorem-based metrics as decision functions. To improve the
performance, a multi-objective-based genetic algorithm is proposed for feature selection considering
the decision metrics as the fitness function. Finally, we present a software application to evaluate the
DS fusion approaches with different parameters and architectures.

Keywords: Dempster–Shafer theory; intrusion detection system; genetic algorithm

1. Introduction

The increase of advanced control and communication technologies within an electric
power grid can also increase its vulnerability to cyber intrusions. Several industrial control
systems (ICS)-targeted attacks such as Stuxnet [1], Ukraine [2], and Mumbai are well known
for their advanced concept of operations and physical impacts. The criticality of power
grid infrastructure necessitates the design of resilient detection and defense mechanisms
against such attacks.

The challenge is that detection is subject to the stochastic and uncertain nature of
attacks. Intrusion Detection Systems (IDS) commonly rely on rule-based policies (signature-
based) or deviations from a baseline (behavioral-based) to detect cyber intrusions. These
systems produce false alarms, both false negatives and false positives. Signature-based IDSs
result in higher false negatives for stealthy and zero-day attacks. Behavioral-based IDSs
often result in high false positives. High false positives are detrimental to an organization’s
effective threat response because they cost time and money for security professionals to
investigate, and they erode an organization’s trust in the system’s results. False negatives
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also pose a significant threat, since an undetected attack may escalate privileges to result in
increased damage or loss to the organization’s assets.

ICS are monitored and controlled using supervisory control and data acquisition
(SCADA) and other operational technology (OT) networks. These networks are highly
static, as they are designed to meet a number of industry based criteria, e.g., the North
American Electric Reliability Corporation (NERC) reliability standards [3], including Criti-
cal Infrastructure Protection (CIP) that focuses on grid cyber and physical security. For ICS,
intrusion detection may be customized based on process-data analysis, control-command
analysis, and with help of an ICS physical model [4]. While security tools such as IDSs and
firewalls provide key functions, they are typically assumed to be trustworthy. Furthermore,
obtaining the data needed for theoretical models to improve the function of such security
tools is a challenge, as even behavioral-based IDSs do not have enough intrusion informa-
tion to build the statistical models [5]. The lack of trust in the IDS creates uncertainty in the
evidences from sensors.

To address the lack of trust of the IDS sensors, various hardware and software-based
authentication schemes have been proposed in the literature from different research groups.
For instance, a Physical Clonable Functions (PUF)-based PUF-Cash Multiple Trusted Third
Party (TTP) protocol is proposed for artificial intelligence (AI)-based Electronic Money [6],
which leverages AI for the selection of an optimal subset of slave TTP for communication
from the Master TTP for secure transaction. An extended Diffie–Hellman key exchange
algorithm as a lightweight and secure authentication scheme based on MQTT subscribe and
publish protocol is proposed for distributed fog computing in [7]. These software-based
solutions address the issue of higher false alarms through changing the authentication
protocol for the sensors. Unlike their approaches, our proposed solution addresses the
uncertainty in alerts by utilizing the features from the headers and payloads from the
existing protocols.

To address these challenges, this work presents a cyber-physical power system intru-
sion detection system based on the theory of uncertainty, called the Inter-Domain Evidence
theoretic Approach for Inference in cyber-physical power systems (IDEA-I). It addresses
the problem of high false alarms in IDS through the developed solution that leverages the
fusion of evidence by domain and location using Dempster–Shafer (DS) rules of combi-
nation. IDEA-I is based on an autonomous data fusion architecture [8], where the features
extracted are fed to the classifiers or estimators for decision making before they are fused.
This is decision-level fusion, where each sensor performs individual processing to produce
an estimate, and then these estimates are combined in the fusion process. Numerous
methods are possible in fusion, such as voting methods, Bayesian inference, DS methods,
and generalized evidence processing theory [8]. DS and Bayesian inference are appropriate
to the autonomous fusion architecture [9], as these fusion algorithms are fed with the
probability distributions computed from the classifiers or the estimators.

In IDEA-I, we propose the usage of Dempster–Shafer Theory of Evidence (DSTE) for
network detection in power system control networks. This approach provides value in how
it handles uncertainty due to its ability to quantify unknowns. Specifically, two advantages
are (1) its ability to deal with the lack of prior probabilities for various events and (2) its
ability to combine evidences from multiple sources [10].

The major contributions of this paper are as follows:

1. A cyber-physical power system intrusion detection system IDEA-I is proposed that
improves intrusion detection by inferring cyber-physical state information to improve
situational awareness based on the fundamentals of DSTE, various rules of fusion,
and decision criteria.

2. A method for computing mass functions for stochastic cyber-physical parameters,
from the detection probability computed in our prior work on data fusion [11], is pro-
posed and evaluated in IDEA-I. The performance based on two different architectures,
location and location-cum-domain based fusion, using IDEA-I is evaluated.
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3. IDEA-I is extended to formulate a feature selection unconstrained optimization prob-
lem and solved using the Non-dominating Sorted Genetic Algorithm (NSGA) [12] to
improve IDEA-I accuracy.

4. IDEA-I is developed as a software tool that includes the development of a DSTE
library in C#. The application is used to evaluate the performance of the proposed
fusion algorithm for varying scenarios and parameters.

The paper is organized as follows. Section 2 develops the IDEA-I framework based
on DSTE and describes how the method would need to work in cyber-physical power
systems. A genetic algorithm (GA)-based optimization problem is proposed in Section 3 for
feature selection to improve the IDEA-I performance. Section 4 presents the experimental
setup in our cyber-physical power system testbed, the use cases that were designed to test,
IDEA-I and their implementation. Then, Section 4.3 introduces the two types of architecture
proposed for the fusion. We compare the approach and results with the centralized-based
fusion and other decision-level fusions such as Bayesian inference. The overall results are
discussed in Section 5, and Section 7 concludes the paper.

2. Development of IDEA-I from Dempster–Shafer Theory and Combination Rules

Uncertainty can be classified into aleatory or epistemic uncertainty [13]. Aleatory
uncertainty is caused by random behavior of the system, while epistemic uncertainty is
caused by lack of knowledge of the system. Under normal operation of an ICS network,
most traffic is not random; hence, aleatory uncertainty is not significant. Under a compro-
mise, the system state is ignorant rather than stochastic; hence, the uncertainty in events
is epistemic. For example, a zero-day attack cannot be detected by knowledge-based or
signature-based IDS due to a lack of information about the intrusions. Dempster and Shafer
introduced the belief function for modeling epistemic uncertainty for reasoning under un-
certainty. Quantifying uncertainty with a precise measure is difficult, and hence, a measure
of probability as an interval is considered. Three major frameworks for interval-based
representation of uncertainty are the following: (a) imprecise probability, (b) possibility
theory, and (c) Demspter–Shafer Theory of Evidence (DSTE). DSTE is preferred because of
its high degree of theoretical development, better relationship with traditional probability
theory, large engineering applications in the past few years, and the versatility of the theory
to represent and combine different types of evidences.

In evidence theory, logs at each sensor act as evidence that are considered for reasoning
about an event. Theoretically, there are four types of evidence: (a) consonant, (b) consistent,
(c) arbitrary, and (d) disjoint [14]. The data of a control network, with an IDS for cyber
intrusion detection and a bad data detector for power system state estimation, can be
collectively considered as disjoint evidence due to their different purposes of deployment.
Traditional probability theory cannot handle consonant, consistent, or arbitrary evidence
without resorting to assumptions in distributions. DSTE can handle all these kinds by
combining a notion of probability with the traditional conception of sets.

Research on DSTE includes applications for unsupervised classification in remote
sensing, computing basic belief assessment (BBA) and rules of combination in hidden layers
of a neural network [15], wireless networks [16], and autonomous mobile robots. DSTE is
also being applied to network security [17]. In [18], multi-source alarm information is fused
through DSTE, which is associated with nodes’ vulnerability information, integrated with
the severity of threats for situational assessment of network security. A network anomaly
detector with enhanced reliability with low false alarms is proposed using DSTE [19].
An IDS is proposed in [17] where the mass function is computed based on the incoming
and outgoing traffic ratio, service rate, and the prior knowledge in the domain of DDoS
attacks. A distributive and collaborative-based IDS is proposed using DSTE for fusion
data from multiple nodes [20], where the detection is done collaboratively and the decision
is distributed among all nodes. The presented work, IDEA-I, is the first to leverage DS
theory for the purpose of classification based on the dataset [11] generated from Man-in-
The-Middle (MiTM) attacks in a cyber-physical power system testbed [21].
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DSTE suffers from major drawbacks of its computational requirements and the chal-
lenges it encounters while eliciting the probability masses from multiple evidence [13].
Hence, to address this, we have proposed the use of formulating an optimization problem
by taking the decision function from DSTE as the objective function for feature selection to
train the classifier. Since there are multiple decision metrics, we employ a multi-objective
optimization problem and solve using a meta-heuristic GA approach. GA has been used
extensively in network intrusion detection such as flow-based traffic characterization [22],
feature selection [23], etc. GA in the DSTE framework was proposed in the turbine mainte-
nance optimization problem [13]. In this work, we present GA with DSTE in cyber-physical
security for feature selection.

2.1. IDEA-I Framework

The IDEA-I framework is illustrated in Figure 1. The Datasets are sensor data extracted
from substation networking devices, DNP3 Master, and Outstations from our testbed [21].
DNP3 [24] is a protocol used in SCADA systems for monitoring and controlling field
devices. Data Pre-Processing is performed before training the ML-based IDS Classifier.
The output from the classifier from different sensors carries data of varying timestamps,
which synchronized with the Mean Value-Based Time Synchronization block. The calculations
for Mass Function Computation, DS Rules of Combination, and the Decision Function blocks of
DSTE are detailed in this section. The decision function is used in the fitness function in the
version 2 of NSGA i.e., NSGA-2 Based Feature Selection block (Section 3) to again filter the
features in the Data Pre-Processing block.

Figure 1. Sequence of operations

Data fusion in a cyber-physical system utilizes data from the physical and cyber
sensors as evidence to generate belief functions for the hypothesis, e.g., “root vulnerability
exploitation”. Cyber-physical frameworks [25,26] have been proposed that identify critical
assets and contingencies using power system simulators, graph theories, and dynamic
programming. For example, ref. [25] builds a partially observable Markov Decision Process
(POMDP) model of the grid network and all possible attack paths. The robustness of such
a framework depends on fusion of information such as network access policies, firewall
rulesets, physical sensors, etc. The accuracy of the transition probabilities of the security
states in the POMDP model depend on the amount of data accrued in real time. However,
uncertainty is present due to the unavailability of a full view of the adversary’s steps and
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monitoring limitations. The presented IDEA-I addresses this gap through its use of DSTE
for power system cyber-physical situational awareness.

2.2. Dempster–Shafer Theory of Evidence (DSTE)

DSTE is separated from the basic probability theory on the basis of the manner one
distributes the probability density or mass based on the type of random variables. For ex-
ample, probability theory assigns 0.5 to both Head and Tail for the toss of an unbiased
coin. However, DS theory assigns a 0 belief to Head and Tail but assigns a 1 belief to the
set {Head, Tail}, i.e., “Either Head or Tail". DS does not compel picking a probability when
there is no evidence. This approach provides three kinds of answers: Yes, No, and Don’t
Know. Allowing the third option, i.e., ignorance, can make evidential reasoning valuable
when there are not enough data to validate a hypothesis.

DSTE is concerned with bounds for probabilities of provability rather than computing
probabilities of truth. The two bounds are called belief and plausibility. Equivalent to the
state space in probability, there is a set of mutually exclusive and exhaustive hypotheses
denoted by Ω, which is also called the Frame of Discernment. The set of all possible subsets
of Ω , including itself and the null set O, is called a power set and designated by 2Ω. Thus,
the power set comprises all possible hypotheses or so-called focal elements.

2.3. Basic Belief Assignment in DSTE

The basic belief assignment (BBA) function or the mass distribution function (m)
distributes the belief over the power set of the frame of discernment. Subsets A of Ω such
that m(A) > 0 are called focal sets of m. The mass distribution functions are computed by
utilizing the detection probability scores from the ML-based IDS classifier and performing
Mean Value-Based Time Synchronization, which is explained further. Then, the functions
considered in the Decision Function block (Figure 1) are used for validating a hypothesis,
as presented in Section 2.8.

2.4. Supervised Learning Based IDS

Different Supervised Learning (SL)-based classifiers are used in the Data Fusion
Engine [11]. The probability scores based on the classifier’s output for each data point are
considered for computing the mass function from each evidence. In the testbed, the IDSs
are trained at three different locations in the network: (a) DNP3 outstation, (b) DNP3 master,
and the (c) Substation Router, which are thoroughly presented in Section 4.1. Seven types
of SL-based IDS classifiers are trained: (a) Support Vector Classifier (SVC), (b) K-Nearest
Neighbor (kNN), (c) Decision Tree (DT), (d) Random Forest (RF), (e) Gaussian Naive Bayes
(GNB), (f) Bernoulli Naive Bayes (BNB), and (g) Multi-layer Perceptron (MLP) to compute
the probability scores for different use cases with varying poll rates and the polled number
of outstations.

2.5. Mean Value-Based Time Synchronization

The classifier’s probability scores of detection and the time stamp may vary for differ-
ent locations of the IDS. The sample times will also vary. Hence, a time resolution window
res is selected to compute the average of the probability scores from samples existing in
that window and store the average probability score. This ensures time synchronization
for fusion by location. The lower the window size, the higher the time resolution will be,
but more noise will be present in the decision function. The impact of resolution is studied
considering accuracy of the fusion technique for res = 5, 10, 15, 20 s.

2.6. Mass Function Computations

The mass distribution is computed based on the probability score. The frame of discern-
ment for the given IDS problem is given by {attack}; {no_attack}; {attack, no_attack}; {∅}.
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If the probability of intrusion for a data point t is say a, then the dogmatic belief mass
distribution is set to be the following,

mt(∅) = −1
2

∑
i=1

(mt(i)− 1/2)2

mt(attack) = a ∗ (1−mt(∅))

mt(no_attack) = (1− a) ∗ (1−mt(∅))

(1)

where the first mass belief distribution mt(∅) quantifies uncertainty, as per the variance of
the probability scores considered in [27]. However, since most if not all states of belief are
based on imperfect and not entirely conclusive evidence, non-dogmatic belief functions
should be considered where m(Ω) is very small [28], say ε and not zero. In this scenario,
a different belief mass distribution is proposed:

mt(∅) = −1
2

∑
i=1

(mt(i)− (1− ε)/2)2

mt(attack) = a ∗ (1−mt(∅)) ∗ (1− ε)

mt(no_attack) = (1− a) ∗ (1−mt(∅)) ∗ (1− ε)

mt(attack, no_attack) = m(Ω) = ε ∗ (1−mt(∅))

(2)

2.7. Rules of Combination

The purpose of aggregation of information is to summarize a collection of data,
whether the data are coming from a single source or from multiple sources.

2.7.1. Dempster’s Rules of Combination (DRC)

Dempster’s rules of combination is a procedure for combining independent pieces of
evidence. The requirement of establishing the independence of sources is an important
philosophical question. From a set theoretic standpoint, these rules can potentially occupy a
continuum between conjunction (AND-based on set intersection) and disjunction (OR-based
on set union) [29]. Where all evidence are reliable, a conjunctive operation is appropriate,
while for one reliable source, disjunctive operation is preferred. Hence, in the domain of
intrusion detection, one should prefer the disjunctive rule. The normalized conjunctive
fusion rule of combination is given by:

m1,2(A) = (m1 ⊕m2)(A)

=
1

1− K ∑
B∩CA 6=

m1(B) ∗m2(C)
(3)

where
K = ∑

B∩Ceq
m1(B) ∗m2(C) (4)

The disjunctive rule of combination is given by:

m1,2(A) =

{
∑A=B∪C m1(B)m2(C), A 6= ∅
0, A = ∅

(5)

2.7.2. Combine Cautious (CC)

The Combine Cautious rules of combination are based on the work [28]. Conventional
DS rules of combination require the evidence from multiple sources to be distinct or inde-
pendent, which may not be true in reality. Many works have developed mechanisms to
overcome this limitation, but they were limited to at most two focal sets. DRC methods
were extended to separable belief functions, but since all belief functions are not separable,
the conventional method was not further extended. The operators in DRC need to be
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associative, commutative, and idempotency. Many developed rules of combination either did
not obey those requirements or were not scalable for large focal sets. Moreover, the con-
junctive rule assumes that the belief functions to be combined are induced from reliable
sources of information. Due to these challenges in DRC, the CC method of combination is
also considered.

DSTE manages imperfect information through two levels: credal and pignistic. Pignistic
is related to a probability that a rational person will assign to an option during decision
making, while credal defines the probability based on belief. In the DRC, within the credal
level, the evidences are quantified and aggregated, and the decisions rules are implemented
at the pignistic level based on Equation (10) [30]. While in the CC, the commonality function
q and the weight function are computed:

q(B) = ∑
j:B∩Aj

m(Aj) (6)

w(A) = ∏
B⊇A

q(B)(−1)|B|−|A|+1

=


∏B⊇A,|B|/∈2N q(B)
∏B⊇A,|B|∈2N q(B) if |A| ∈ 2N
∏B⊇A,|B|∈2N q(B)
∏B⊇A,|B|/∈2N q(B) otherwise

(7)

where 2N denotes the set of even natural numbers.

2.8. Decision Criteria
2.8.1. Belief and Plausibility Score

After the fused mass function are computed using disjunctive, conjunctive, and cau-
tious combine rules, the belief and plausibility scores are calculated as:

bel(B) = ∑
j:Aj⊂B

m(Aj) (8)

pls(B) = ∑
j:Aj∩B 6=

m(Aj) (9)

The belief in hypothesis B is the sum of masses of elements that are subsets of A, Aj.
Plausibility is the sum of all the mass of the sets Aj that intersect with the set B.

2.8.2. Pignistic Score

To make a rational decision, we propose to transform beliefs into pignistic probabil-
ity functions through the generalized pignistic transformation (GPT) [30]. The pignistic
transformation is based on the following equation,

P{A} = ∑
X∈2Θ

|X ∩ A|
|X| m(X) (10)

where |A| is the number of the worlds present in the set A, and X are the other components
in the frame of discernment. Usually, decisions are made by computing the expectation
over multiple simulations, using the pignistic P{.} as the probability function needed to
compute expectations. Conventionally, one uses the maximum of the pignistic probability
as decision criterion.

2.8.3. General Bayesian Theorem (GBT)

In the literature, DS theory has two main views: DS theory of evidence (DSTE) and DS
theory of generalization of probability. The second view handles a wider variety of data
imperfection as well as allows one to perform Bayesian Inference within a DS theoretic
framework [31]. Considered in the second view, the GBT is a generalization of Bayes’
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theorem, except that the conditional probabilities in Equation (11) are replaced by belief
functions, and the a priori belief function on Θ is vacuous.

P(θi|x) =
P(x|θi)P0(θi)

∑j P
(

x|θj
)

P0
(
θj
) ∀θi ∈ Θ (11)

3. Genetic Algorithm for Feature Selection

Feature selection is difficult for intrusion detection due to uncertainty, which increases
due to CPS complexity. Leveraging feature reduction techniques such as PCA can assist
in improving detection accuracy, but feature transformation can obfuscate the meaning of
features. Hence, IDEA-I adopts non-transformable techniques for feature reduction using
optimization techniques while also considering system uncertainty.

The feature selection problem in a stochastic system relies on the epistemically uncer-
tain parameters. This problem is formulated as a multi-objective optimization problem
with uncertain fitness functions (i.e., the belief, plausibility, and pignistic scores). In this
context, the objective of the present work is to propose a feature selection technique by
propagating the uncertainties of the conventional classifiers onto the fitness values and
formulating the solution of the GA as a binary encoding. A GA-based meta-heuristic ap-
proach is adopted for feature selection, and the initial population consists of chromosomes
of randomly selected features. The fitness functions are obtained for the different evidences,
which were further used for selection, mutation, and cross-over operation. Since there are
multiple decision criteria in this problem, a multi-objective problem is formulated.

3.1. Non-Dominated Sorting Genetic Algorithm ver. 2 (NSGA-2)

A single fitness function cannot provide an optimal solution for the multiple decision
metrics considered in the DSTE framework. Hence, multi-objective GA algorithms need to
be explored. NSGA [12] has been found to solve multi-objective problems efficiently. In this
paper, a faster version of NSGA (NSGA-2) is used to solve the feature selection problem.

The algorithm for NSGA-2 is given in Algorithm 1. It involves two steps: (a) From
population, Pt, at iteration t, offspring solution, Qt, is obtained using the selection, mutation,
and crossover operations (Lines 12–15). First, the union of Pt and Qt, non-dominated sorting
is performed to obtain solutions at different Pareto-front levels (Lines 2–3). (b) In the second
step, while the next population set Pt+1 is obtained by sequentially adding the elements in
the obtained Pareto fronts, starting with 1 until the condition |Pt+1|+ |Fi| ≤ N is satisfied
(where Fi is the solution in the ith front, and N is the maximum size of the population),
for the selection of the elements in Fi, crowding-distance computation using the fitness
function in each front (Line 6) is performed to obtain diverse solutions (Lines 5–9).

Algorithm 1 Algorithm of NSGA-2.

1: while termination criteria do
2: Rt ← Pt ∪Qt
3: F ← non_dominated_sorting(Rt)
4: Pt+1 ← φ; i← 1
5: while |Pt+1|+ |Fi| ≤ N do
6: Ci ← crowd_sourcing_assignment(Fi)
7: Pt+1 ← Pt ∪ Fi
8: i = i + 1
9: end while

10: Fi ← sort(Fi, Ci, desc)
11: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
12: Qt+1 ← selection(Pt+1, N)
13: Qt+1 ← mutation(Qt+1)
14: Qt+1 ← crossover(Qt+1)
15: t← t + 1
16: end while
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3.2. Problem Formulation

The objective of the feature reduction problem is to minimize the error with reference
to attack labels A(t), obtained from Snort IDS, over the sampled time throughout the
simulation, so as to identify the least number of features that need to be considered for
training the classifiers,

min Fk =
Nsim

∑
t=0
| fk(t)− A(t)| (12)

where k ∈ K, K is the set of all decision metrics such as fused belief, plausibility, pignistic,
and GBT functions, fk is their corresponding scores after the fusion operations, as presented
in Sections 2 and 2.8, respectively, and Nsim is the simulation duration. The decision
variables are binary encoded, indicating whether a feature is selected for training the
classifier or not. The fk(t) at time t depends on the feature selected for training. A(t) ∈ 0, 1
depending on the attack window, i.e., A(t) = 1 during attack or else A(t) = 0.

3.3. Analysis of Computation Time of IDEA-I

IDEA-I collectively involves the DRC along with the NSGA-2 algorithm for feature
selection. The time complexity of the DRC depends on two parameters: the size of the
frame of discernment as well as the number of mass functions being combined [32]. The size
of the frame of discernment grows exponentially with the number of variables (or class in
the case of evidence from classifiers). Since we have considered two classes (alert and no
alert) for the SL-based classifier, this factor does not impact the computation. Meanwhile,
the amount of evidence that is fused will depend on the fusion architecture. For the meta-
heuristic algorithm for feature selection, the parameters such as (a) population size for each
generation, (b) cross-over points in mutation, and (c) offspring size in every generation can
affect the computation time. The time complexity of the NSGA-2 algorithm is O(MN2) [12],
where M is the number of objective functions, and N is the population size.

4. Testbed and Fusion Architecture
4.1. Testbed Architecture

Before discussing the fusion architecture, we present the testbed that is producing
the data during the emulation of different MiTM attacks. The testbed emulates cyber-
physical power systems using Common Open Research Emulator (CORE) and Power World
Dynamic Studio (PWDS), with SCADA clients and servers of DNP3 (an OpenDNP3 master
and a RTAC-based master), Snort IDS, and data storage, fusion and visualization software
(Elasticsearch, Logstash, and Kibana (ELK) stack), as shown in Figure 2. The evidences are
collected at three locations: DNP3 Master, Substation Router, and server hosting PWDS.
Details on the testbed’s architecture, use cases, and fusion are published in [11,21,33],
respectively.

4.2. Threat Model: Modifying Measurements and Commands

The objective of the intruder is to disrupt grid operations through False Command
and Data Injection, whose impacts are detailed in [21,33]. Four use cases with this threat
model are considered here. The first two are pure FCI, while the next two are a mix of FDI
and FCI, as follows. UC 1: Selected branches’ binary direct operate command are changed
from a CLOSE to a TRIP command. UC 2: Selected generators’ set-point command are
modified. UC 3: The readings of generator outputs are modified in the DNP3 read response
traffic, forcing the operator to raise the set-point, further modifying the generation set-point
to a low value. UC 4: The adversary first follows UC 3; then, it modifies the read response
packet of the preceding packets based on the actual set point, making the master unaware
of the contingency created.
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Figure 2. Testbed architecture showing three evidences: DNP3 Master (Evidence 1), Substation
Router (Evidence 2), and PWDS emulating DNP3 outstations (Evidence 3).

4.3. Fusion Architectures

Two types of fusion architectures are proposed and adopted, as shown in Figure 3.

4.3.1. Fusion by Location (FL)

In the first case, we explore the performance through fusion by location based on the
probability scores obtained from classifiers trained with both cyber and physical features at
the substation router, DNP3 master, and outstation.

4.3.2. Fusion by Location and Domain (FLD)

In the second case, we fuse by location as well as domain, utilizing the probability
scores obtained from classifiers trained with pure cyber and physical features.

4.4. IDEA-I as a Software-Based Solution

IDEA-I is considered to be a software-based solution, as it incorporates Application
Programming Interfaces (APIs) and the protocol parsers to extract features from a power
system simulation server, PWDS, and packet header and payload information from real-
time network traffic using Packetbeat, Pyshark, etc., to further train the SL-based classifiers,
considering alerts from IDSes. Furthermore, it uses a framework for fusing the alerts from
multiple locations in the emulated network using the DSTE. Unlike various hardware-based
approaches, a software-based approach is adopted in the current approach of intrusion
detection, because the physical sensors are emulated within PWDS, and the cyber sensors
such as Snort, Packetbeat, and pyshark are software-based.

Figure 3. (Left) Fusion by location and domain (FLD) from pure cyber and physical classifiers.
(Right) Fusion by location (FL) from cyber-physical classifiers.
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5. Results and Discussion

This section describes the experiments performed to evaluate the performance of IDEA-
I with the datasets published at (IEEE Dataport: https://ieee-dataport.org/documents/
cyber-physical-dataset-mitm-attacks-power-systems, accessed on: 1 December 2021). The
four use cases were implemented with MiTM attacks in the emulated synthetic electric
grid. Different rules of combination and decision criteria are evaluated from the DSTE.
Furthermore, these criteria or scores are used to compare different classifiers that must
be considered prior to the incorporation of DS rules of combination. Post combination,
the scores are fed to the NSGA-2 algorithm for feature selection to improve the perfor-
mance. Based on the selected classifier, different types of fusion techniques used in DSTE
are evaluated. The performance of two architectures introduced in the previous section
that involve fusion by location and domain are assessed. Finally, the impact of the time
resolution in the fusion operation on its accuracy is evaluated.

5.1. Decision Criteria Selection

In DSTE, different criteria or scores serve different purposes. Hence, four decision
criteria: (a) Belief score, (b) Plausibility score, (c) Pignistic score, and (d) GBT score are
evaluated. We evaluate the decision function for all the use cases, while considering
different classifiers and cyber-physical features, and select the criteria that has the highest
accuracy in the most scenarios. For the evaluations, the time resolution res is assumed
to be 15 s, and the disjunctive rule of combination is considered. Table 1 shows that for
seven classifiers (Support Vector Classifier (SVC), k-Nearest Neighbor (k-NN), Decision
Tree (DT), Random Forest (RF), Gaussian Naive Bayes (GNB), Bernoulli Naive Bayes (BNB),
and Multi-Layer Perceptron (MLP)) and 14 use cases (for varying polling interval, PI,
in seconds and number of DNP3 outstations polled, os), the pignistic score has the highest
accuracy under 78 scenarios. The Belief score, Plausibility score, and GBT score have the
highest accuracy under seven, seven, and eight scenarios, respectively. Thus, results show
the pignistic score as a reliable criteria for evaluation. Figure 4 shows the decision metrics
for the disjunctive fusion with mass function computed from Decision Tree classifier.

Figure 4. Decision criteria after distinctive fusion, with the probability scores from DT classifiers for
Use Case 1.

https://ieee-dataport.org/documents/cyber-physical-dataset-mitm-attacks-power-systems
https://ieee-dataport.org/documents/cyber-physical-dataset-mitm-attacks-power-systems
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Table 1. Decision criteria with maximum accuracy evaluated accross different scenarios and classifiers
(a = Belief score, b = Plausibility score, c = Pignistic score, d = GBT score). The detailed scores are
available in the attached supplementary file.

Scenarios Classifiers

UC os PI SVC K-NN DT RF GNB BNB MLP

UC1
10 30 c c c c b c b

10 60 c c c c c c c

UC2

5 30 c c c c c c c

5 60 c c d c c c c

10 30 c c a c c c c

10 60 c c a c b c c

UC3

5 30 c c c c c c c

5 60 c c a c c c c

10 30 b c c c c a c

10 60 b c c c c b c

UC4

5 30 c c a c d b d

5 60 c c a c c c d

10 30 c c d c d d d

10 60 c c c c c c a

5.2. Comparison by Classifier

A classifier’s performance may vary based on the features selected for training. Certain
use cases perform well with the use of linear classifiers such as logistic regression, while
some outperform with the use of non-linear classifiers such as DT or RF, and some with the
use of the deep learning-based classifiers, depending on the spatial and temporal nature
of features and relationship with the labels. Here, the seven classifiers are compared with
the FL architecture of fusion. Figure 5a–d show the comparison of the classifiers used,
prior to the disjunctive-based fusion, evaluated based on the precision, recall, F1-score,
and accuracy. For all four use cases, the DT and RF classifiers are found to be better options
with disjunctive-based fusion. However, the precision scores for UC-1 and UC-2 are better
with SVM and k-NN classifiers, but accuracy and F1-score are considered the major criteria
here, so DT and RF classifiers are preferred.

5.3. Comparison of Rules of Combination

Disjunctive rules of combination require at least one reliable piece of evidence. Con-
junctive rules perform well if the evidence is independent and reliable. Cautious combina-
tion rules perform better when the cardinality of the frame of discernment is high. Hence,
the comparison of conjunctive, disjunctive, and cautious conjunctive fusion techniques is
performed. Figure 6a–c show the impact on the precision, recall, F1 score, and accuracy
scores computed with the pignistic function for three different rules of combination. In the
experiment, the intruder compromises the substation network; hence, both the substation
router and the DNP3 outstation are compromised. Among the three sensors, with the
assistance of one source considered to be secure, i.e., the DNP3 master, the disjunctive
fusion with DT and RF classifiers performs better in comparison to conjunctive and its
cautious counterpart.
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(a) (b)

(c) (d)

Figure 5. Precision, recall, F1 score, and accuracy obtained based on the pignistic score from
disjunctive-based DS fusion performed from probability scores from different classifiers with cyber-
physical features combined using FL architecture in Figure 3 for (a) UC1; (b) UC2; (c) UC3; and
(d) UC4 with 30 s polling interval and 10 polled outstations.

(a) (b) (c)

Figure 6. Precision, recall, F1 score, and accuracy obtained based on the pignistic score from three
different rules of combination: (a) disjunctive; (b) conjunctive; (c) cautious conjunctive; tested with
UC1, 30 s polling interval and 10 polled outstations.

5.4. Comparison of Two Architectures

Feature-based fusion is performed prior to fusion by location (FL). If the features
from diverse domains are unable to be fused due to lack of performance or due to lack of
evidence from any one domain, one needs to adopt the FLD architecture, where fusion-
by-location on the raw domain-specific features are performed prior to fusion-by-domain.
Figure 5a–d show the results for the FL architecture, while Figure 7a–d show results from
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the FLD architecture. FLD-based fusion outperforms FL-based fusion in many scenarios,
but in some cases, there was not much influence. Hence, both may be adopted depending
on the scenario.

(a) (b)

(c) (d)
Figure 7. Precision, recall, F1 score, and accuracy obtained based on the pignistic score from
disjunctive-based DS fusion by location and domain performed from probability scores from different
classifiers with pure cyber and pure physical features combined using FLD architecture in Figure 3
for (a) UC1; (b) UC2; (c) UC3; (d) UC4.

5.5. Impact of Time Resolution while Merging by Location

Since low time resolution results in noise in intrusion detection, it is advisable to con-
sider smoothening techniques. The physical sensor and cyber sensor time intervals between
samples may vary; hence, it is essential for fusion to bring the samples to the same time
frame. This comparison evaluates detection performance based on varying time resolution,
which is considered during time synchronization prior to fusion by location. Figure 8a–d
show the effect of different resolutions res in the Mean Value-Based Time Synchronization
block, which is implemented for the probability scores obtained from the DT classifier for
UC1 10 OS 30. Results show that increasing the sample time leads to better decision scores
except for the GBT score.

5.6. Comparison with NSGA-2 Based Feature Selection

Detection performance considering feature selection using the NSGA-2 algorithm
varies based on the selection of type of classifier. For all the classifiers, the results obtained
with the GA algorithm improve the detection performance. The comparison of the results
for RT and DF classifiers with and without GA-based feature selection is shown in Figure 9.
In the classifier without GA-based feature selection, since all the features are selected,
the amount of false negatives is relatively higher than the scenario when critical features
are filtered out and considered using GA-based feature selection. For instance, in the
DT, more features results in a bigger tree with more binary splits, making it difficult to
obtain the optimal split that has the lowest cost. Hence this GA-based technique result
in pruning or removing branches in the DT by increasing predictive power by reducing
overfitting. Similar performances are observed for RF, which is a collection of DT. In the
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optimization problem, if the number of features are constrained using upper and lower
bound, the performance will vary depending on the use-case scenario.

(a) (b)

(c) (d)
Figure 8. Precision, recall, F1 score, and accuracy obtained based on the different decision criteria
from disjunctive-based DS fusion by location from probability scores of Decision Tree classifiers
with combined cyber-physical features and different time resolutions (a) res = 5 s; (b) res = 10 s;
(c) res = 15 s; (d) res = 20 s.

Figure 9. Comparison of the RF and DT-based classifier with and without the use of GA-based
feature selection.

6. DSTE Evaluation Framework

A desktop application for IDEA-I is developed for the evaluation of DSTE rules of
combination for different use-cases and parameters. Figure 10 shows the application,
visualizing the decision metric for UC2_5OS_30poll for disjunctive fusion, with only cyber
features, and using a mean value based time synchronization res of 15 s. The check-box
labeled “Merge by Location and Domain?" is used to select either the FL- or FLD-based
architecture. The code for the DSTE evaluation application has been made available
in Github (Github: https://github.com/Abhijeet1990/DS_Fusion_GUI.git, accessed on
1 January 2022).

https://github.com/Abhijeet1990/DS_Fusion_GUI.git
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Figure 10. IDEA-I application for evaluating DSTE components for different scenarios, classifiers,
and fusion architectures.

7. Conclusions

An evidence theoretic-based data fusion framework for detecting cyber intrusion in
power systems is presented. The framework is evaluated by studying the performance of
different classifiers using DS rules of combination. Results show the evidence from the DT
and RF classifiers to be the best among other techniques. Results also show that higher
time resolution in mean-value based time synchronization improves the decision metrics.
The pignistic function decision criteria is observed to be the best among all the others for
all the use cases. The FLD (autonomous architecture) outperforms the FL (centralized
architecture)-based fusion in many scenarios, but in some, there is not much influence,
so both techniques may be considered depending on the scenarios. Among the different
rules of combination, the disjunctive rules performed the best when considered with DT
and RF probability scores. Finally, an application has been developed and presented that
performs these analyses and facilitates the DS theoretic framework for the fusion of cyber
and physical sensors in power systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22062100/s1.
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