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Abstract—Identifying important assets and evaluating the risk
they pose to cyber-physical power systems, when compromised,
is critical to maintaining the system security and resilience. The
cyber-physical betweenness centrality (CPBC) index presents a
suitable means for enhancing system resilience through vulnera-
bility analysis and risk assessment. In this paper, we propose and
demonstrate the CPBC for the multi-component risk assessment
of the cyber-physical power grid. Specifically, the CPBC, based
on the concept of betweenness centrality, traverses generated
attack graphs to rank important components, while integrating
the services, security cost of inter-component communication, and
the likelihood of component exploitation as an adversary medium
to the target relays. The CPBC index notably categorizes compo-
nents in the same security caliber, hence simplifying computation
for the system operator. The proposed model is implemented
on the Cyber-Physical Situational Awareness 8-substation cyber-
physical power system model and results demonstrate to the
power system operator, the combinations of components to which
security resources should be allocated.

Index Terms—Cyber-physical betweenness centrality, multi-
component ranking, risk assessment, attack graph

I. INTRODUCTION

Power grids in modern societies are critical to national
security and hence should be resilient to adversaries. Adver-
sarial threats are increased by the integration of information
technology, which although are essential and beneficial to
smart grids, can introduce potential attack vulnerabilities [1].
These threats can exploit control assets in the power grid to
cause data breaches, asset damage and outages. For instance,
the 2015 Ukranian attack enabled the adversary to gain control
of system circuit breakers, causing six hours of power outages
for thousands of customers [2]. In order to be prepared for
these anomalies, the system operator usually performs risk
assessment to provide situational awareness of the power grid.

The power grid is a complex interdependent network con-
sisting of physical devices for measurement, sensing and
control, and cyber assets such as internet hosts for data
acquisition, and communication services, where anomalies
in the cyber layer can have repercussions in the physical
layer and vice versa [3]. These increasing interdependencies
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also increase exploitable paths to critical devices, making
monitoring intractable for operators and consequently, the grid
becoming a “honey pot” for adversarial attacks [4].

Predominantly, the vulnerability of the cyber-physical power
grid to adversarial threats has been assessed based on graph
theory. Graph theory can be utilized to improve contingency
analysis by modeling the system as a weighted graph, where
priority is assigned to edges/vertices with the most connection
paths passing through [5]. A graph can represent system
topology, where vertices are components such as internet hosts
and relays, while edges are communication links between
vertices. Using this approach, [6] estimates cyber layer impacts
on the physical system through cost-effect analysis. In [7], [8]
contingency analysis is utilized to identify high-risk Markov
Decision Processes [9], while quantifying physical system
impact. In [10], centrality and electrical characteristics are
utilized to identify critical vertices. In [5], parallel betweenness
centrality is applied to power grid contingency selection in
real-time, to aid operators to identify and mitigate potential
widespread cascading failures. In [11], systematic investigation
of topological and electrical characteristics is performed for
power grid networks based on real and synthetic grid data,
while in [12], the authors rank the importance of the grid
vertices and lines based on centrality measures and other
characteristics.

These topological methods also provide a variety of metrics
toward identifying the most critical components in an electric
grid [13]–[16]. In [17], effective graph resistance is utilized
as a metric to assess the robustness of power grids against
cascading failure, identifying the best pair of connectivity
vertices toward optimizing the metric, while in [18], the
group betweenness centrality approach is employed to identify
multiple critical components with severe consequences on the
power system when failed. Moreover, researchers have been
extending test systems to emulate real cyber characteristics,
featuring communication networks and cyber-physical inter-
connections that are salient in the control of power systems [7],
[19], [20]. These communication networks could potentially be
penetrated from multiple potential vectors, including through
external connections and internal internet hosts.

Although there has been a great amount of research in
regards to investigating the risk of the physical grid, less atten-
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tion has been accorded the interdependent cyber-physical risk
of the power system. Hence, cyber-physical risk assessment
as a fundamental power system monitoring tool would allow
the operator knowledge of expected system performance in the
case of an adversary threat, and can thus aid in preparing the
system operators for possible scenarios by ranking equipment
according to access, vulnerability, and impact.

This paper investigates the effects and mitigation of the
vulnerability of multiple components on the adversary impact
(number of exploitable power system paths). More specif-
ically, in this paper we present a multi-component cyber-
physical operation model, m-CRSA, that ranks cyber and
physical components in order of importance toward mini-
mizing the interdependencies that the adversary can exploit.
From a physical perspective, the cyber-physical betweenness
centrality (CPBC) index of the m-CRSA offers flexible cyber
vulnerability integration, security-oriented risk awareness and
management in power system risk sensitivity analysis. In
particular, it efficiently ranks components based on cyber
network configuration, whereas from a cyber perspective, con-
trol network’s common vulnerability exposure (CVE) scores
are also integrated according to the underlying power system
topology, and the result is components ranked in security tiers.
The model effectively investigates attack and defense from
adversary and system operator perspectives simultaneously, as
an algorithm is presented that protects critical components in
order to demonstrate the efficiency of the proposed model.

The rest of this paper is organized as follows. Section II
presents the cyber-physical model for integrating cyber vulner-
ability into the power system, while the proposed ranking and
multi-component risk assessment is furnished in Section III.
The simulation results on an 8-bus test system are presented
in Section IV, and conclusions are drawn in Section V.

II. CYBER-PHYSICAL POWER SYSTEM VULNERABILITY
MODELING

Although it is quite improbable that an adversary accesses
all information required to attack, but as with high impact
low probability events, the probability −→ 0 until event occurs
and the probability is 1. Therefore, we assume the adversary
has access to the grid topology information and can carry out
an attack based on component vulnerability and graph theory
[21]. In this section, we explain how the system information
is used to determine the state of the cyber-physical network.

The attack graph provides information on the potential paths
an adversary could take to reach target components given the
possible points of intrusion. It is generated 1 from system
connectivity and topology information. The connectivity file is
generated based on the access control list configured in each
firewall [22], while the cyber topology is generated by NP-
View [24]. Given the connectivity matrix, the security state
of the system is evaluated by assigning scores, referred to as
cyber costs, to communication links between connected com-
ponents. Component connectivity is stored in three elements:

1Based on our work in security assessment [7], [22], available online
[23].
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Fig. 1: Multi-Component Ranking and Risk Sensitivity Assessment
Model (m-CRSA).

1) source object; 2) sink object; and 3) their security cyber
cost (CC).

The security state of the system can be evaluated, as we
assume that the adversary gains access into the network
and can reach the target relays through internet hosts. For
instance, an attack source vertex may leverage knowledge of
required username and password to remotely access another
sink vertex with hard-coded SSH credentials by exploiting the
vulnerability CVE-xxxx-xxxx with a score, hence the path
between the two vertices will be weighted on the cyber costs
(CC) which are computed based on the Common Vulnerability
Scoring System (CVSS) scores obtained from the National
Vulnerability Database (NVD) [25]. Further details on system
vulnerability modeling and attack graph generation using the
system connectivity matrix, cyber topology and host connec-
tivity can be found in our work [26].

III. COMPONENT RANKING AND RISK ASSESSMENT

If data flows from object vi to vj , then object vj is
dependent on vi and the dependency is represented by the
network edge eij = vi −→ vj . We represent G as a pair of
vertex and edge sets (V, E), with V = {v1, v2, v3, ..., vn}, and
E = {e1, e2, e3, ..., em} with individual weights CC(e) →
R+. From one cyber vertex to another, the interdependency is
the data flow or service, while from a cyber to physical vertex
the interdependency is the commands (control) to the relay.

The goal is to discover effective operator strategies to
reduce overall system vulnerability (number of attack paths
exploitable by adversary). Thus, we obtain possible attack
scenarios towards component ranking, using the CPBC index
[26]. In particular, the CPBC incorporates the CC in (1), repre-
senting severity(operator-side)/vulnerability(adversary-side) of
compromising services between vertices,

CC(e) =
∑
e∈E

minVe (1)

where Ve are vulnerability scores from the NVD, and the cost
metric associated with realizing an attack edge is obtained

2
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from the CVSS with a script that extracts exploitability sub-
scores using access complexity and authentication scores [9].

The goal of the system operator remains mitigating system
threats. Toward this, the m-CRSA utilizes the CPBC to rank
components given possible cyber-originated intrusions that
target physical power system control components. The CPBC,
as in (2), utilizes computed shortest paths (important vertices
have a greater chance to lie on multiple vulnerability-weighted
shortest paths to target relays), the cardinality of services,
and CC of communication links, to calculate a unified cyber-
physical ranking for the entire network. Hence for the system
operator, the higher the number and cost of services running
on a vertex, the more important (highly critical node).

CPBC(v) =
∑

s6=v 6=t∈V

σst(v)× ε×
1

ev∑(
1

CC(e)

) , (2)

where σst(v) is the number of shortest paths, as in Algorithm
1, from source vertex s to target vertex t that pass through
the vertex v with edges weighted on the communication link
cyber costs, and ev is the set of all edges to/from v, with
cardinality of ε which proportional to the vertex density in
the network. We use the reciprocal of the CC to weigh
the vertices in the cyber-physical topology graph to make
computation consistent with the cyber vulnerability concept
discussed. Another important advantage of this setup is that it
allows for the grouping of vertices in the same security tier as
further illustrated in the result section.

Next, the risk sensitivity assessment proceeds with pri-
oritized protection of ranked components while the impact
of protection towards reducing the system’s vulnerability is
measured. The aim here is to provide the system operator
enough information about the combination of components
she chooses to protect in order to make monitoring tractable

Algorithm 1 Obtaining Node Importance

1: Select IP of targeted relays, Physical vertices
2: Select IP of Internet vertices, Cyber vertices
3: function node importance(vertices) . vertices:

Generated Attack graph unique vertices
4: for relay in Physical vertices do
5: for host in Cyber vertices do
6: weighted shortest paths . Get list of shortest

paths, SPL, unless host=relay . Pass exception if no
path

7: for short path S in SPL do
8: for node in vertices do
9: if vertex in short path then

10: unique node importance += 1
11: end if
12: end for
13: end for
14: end for
15: end for
16: return node importance, σst(v), (for the ranking index)
17: end function

during threats. As illustrated in Algorithm 2, protecting critical

Algorithm 2 Protecting Important Vertices

1: function Generate Attack Graph,H(G, L, sel t)
2: Create empty attackGraph,H
3: Get set, S∗, of components to be protected
4: Get CC(e) (vuln list) of x ranked components in S∗.
5: for component in S∗ do
6: v list = Get(vuln list - y% of vuln list)
7: new path = get path(G, v list)
8: for adversary a in L do
9: d,p = djikstra shortest path(a,G)

10: for target t in d do
11: if t in L then
12: path = G(t) . get the path from G
13: Add path to attackGraph,H
14: end if
15: end for
16: end for
17: end for
18: return new attackGraph,H
19: end function

vertices follows with the removal of y% of vulnerabilities of
components in S∗ in the attack graph G, generating a new
attack graph, H , subgraph of G, with attack paths ≤ G.

The formulation of the protection algorithm is as follows.
Let E1 be the set of edges with links to a unique vertex v1,
in the set [v1,v2,..., vm], in the attack graph G, and Ec

1 be
the set of edges with links to critical vertex vc1 in the attack
graph H . Then, the list of edges Ec

1 is defined as unique row
entries with all but y% of the edges of the original set E1,
where Ec

1 ∈ E1 ∈ E. Hence, for multi-components, the set of
edges E∗, from set V ∗, not in H is:

E∗ =

|V ∗|∑
1

y

100
of Ei for i = 1, 2, . . . ,m. (3)

where y is a 100% to remove any bias in analysis. Hence the
total number of exploitable paths in the new attack graph H ,
is reduced by paths formed by E∗, which is the improvement,
i.e., reduction in paths accessible to adversary, that increased
protection of critical vertices provides the system operator.

IV. STUDY RESULTS

The proposed model for multi-component risk assessment
is implemented on an 8-substation test case [19] including
components such as hosts, routers, remote terminal units,
with details available in [23]. Results are obtained with an
i7 1.80 GHz processor and 16 GB of RAM computer.
The results presented are threefold: first, is the ranking of
the power system cyber-physical components. Secondly, we
demonstrate the important characteristic of the CPBC, which
is the grouping of the components in security tiers for multi-
component risk assessment. Thirdly, we present the multi-
component assessment risk tables that would be provided to
the power system operator for optimal protection strategy and

3
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Fig. 2: The cyber topology of the 8 substation model [19].

Fig. 3: The cyber-physical topology of the 8 substation model [19].

assess the model accuracy. Lastly, we furnish an illustration
of the power system operator strategy.

In the first case, we implement the ranking model on
the test cases with results in Table I which furnishes the
component ranks, calculated CPBC value, unique component
ID and types, respectively. For instance, Host PC with ID
1896 and rank 1, reduces adversary security impact on the
system by 12.95% when protected, as observed from Table
II. Furthermore, a unique characteristic of the CPBC ranking
which is important to the power system operator is the capacity
to rank components in security tiers. For example, there are 4
components in the security rank 2, which means that protecting
any of these components will reduce system attack paths by
an equal percentage. In Table II, we illustrate the functionality
of the multi-component security tiers. We observe that com-
binatorially protecting any members of unique groups reduces
attack paths by the same amount. For instance, protecting
components (1896,2018) or (1896,2004) will produce similar
results as they are from tiers 1 and 2, respectively. This is
important for the system operator to gain on computational and
time complexity, and improve her system security knowledge.

Next, the proposed model is implemented to evaluate the
multi-component risk assessment aiding strategy (Fig. 4).
After component ranking, the vertices are protected as in
Algorithm 2, by reducing the vulnerabilities associated with
that vertex by 100% (to eliminate bias), hence deterministi-
cally patching the vulnerabilities and producing new attack
graph H as illustrated in (3) with decrease in attack paths as
furnished in Table III. Column 2 presents the rank/security
tier to which components belong, column 3 represents the
total number of attack paths present in H , while column
4 furnishes the percentage decrease in attack paths from G
to H . As expected and observed from the tables, there is a

TABLE I: Component ranking: 8 substation test case
Rank CPBC Vertex ID Component Type

1 0.0652 1896 Host PC
2 0.0583 [2018,2020,2004,2006] [Overcurrent relay x2, Distance relay x2]
3 0.0528 [2014,2016,1998,2000,2002,2008,1996] [Overcurrent relay x2, Distance relay x4, Host PC]
4 0.0476 2012 Overcurrent relay
5 0.0304 1930 Overcurrent relay
6 0.0282 [1920,1922,1924,1926,1928] [Overcurrent relay x5]
7 0.0175 2024 Distance relay
8 0.0105 [1938,1940,1942,1934,1936,1932] [Overcurrent relay x3, Distance relay x2, Host PC]
9 0.0067 2022 Host PC

10 0.0061 [2010,1877] [Distance relay, Router/Switch]
11 0.0015 [1916,1918,1910,1912,1914,1870] [Overcurrent relay x2, Distance relay x3, Router/Switch]
12 0.0013 1871 [Router/Switch]
13 0.0007 1878 [ Router/Switch]
14 0.0005 1894 Host PC
15 0.0003 [1898,1900,1902,2030] [Host PC x3, Router/Switch]

decreasing trend in attack paths given different combinations
of components according to their declining security tiers. This
trend of reduction in attack paths as visualized in Fig. 5,
illustrates the accuracy of the ranking model. For example,
protecting two components ranked in groups 1 and 2, will
decrease the number of exploitable attack paths by a higher
percentage than protecting two components ranked in groups
1 and 3. The accuracy of the proposed model over one-to-
five component protection, as in Table III, is assessed in Fig.
6, showing that the model performance is high with 84%
accuracy and a few mispredicted ranks, given the decrease

TABLE II: Illustrating the security categories of the components as
ranked by the CPBC index

Protecting any member of the first group by CPBC
Protected vertex ID Final No of Attack paths % Decrease attack paths

1896 68398 12.960
[2018, 2020, 2004, 2006] 70469 10.324

[2014, 2016, 1998, 2000, 2002,
2008, 1996] 70860 9.827

2012 71256 9.323
1930 75097 4.435

[1920, 1922, 1924, 1926, 1928] 75063 4.478
2024 74991 4.570

[1938, 1940, 1942, 1934, 1936,
1932] 75267 4.219

2022 76080 3.184
[2010, 1894, 1875, 1892, 1877,

1870, 1871, 1916, 1910, ...] 78582 0.000

Protecting members of the first and second groups by CPBC
Protected vertex ID Final No of Attack paths % Decrease attack paths

1896, 2018 60646 22.8
1896, 2020 60646 22.8
1896, 2004 60646 22.8
1896, 2006 60646 22.8

Protecting members of the first and third groups by CPBC
Protected vertex ID Final No of Attack paths % Decrease attack paths

1896, 2014 61018 22.3
1896, 2016 61018 22.3
1896, 1998 61018 22.3
1896, 2000 61018 22.3
1896, 2002 61018 22.3
1896, 2008 61018 22.3
1896, 1996 61018 22.3
Protecting members of the first, second, and third groups by CPBC

Protected vertex ID Final No of Attack paths % Decrease attack paths
1896, 2018, 2014 53950 31.3
1896, 2020, 2016 53950 31.3
1896, 2004, 1998 53950 31.3
1896, 2006, 2000 53950 31.3
1896, 2018, 2002 53950 31.3
1896, 2020, 2008 53950 31.3
1896, 2004, 1996 53950 31.3
Protecting members of the first, second, third, and fourth groups by CPBC

Protected vertex ID Final No of Attack paths % Decrease attack paths
1896, 2018, 2014, 2012 48204 38.66
1896, 2020, 2016, 2012 48204 38.66
1896, 2004, 1998, 2012 48204 38.66
1896, 2006, 2000, 2012 48204 38.66
1896, 2018, 2002, 2012 48204 38.66
1896, 2020, 2008, 2012 48204 38.66
1896, 2004, 1996, 2012 48204 38.66
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TABLE III: Multi-Component Risk Attack Tables
Two-Component Protection

Protected vertex
ID

Component Rank
(group)

Final No of
Attack paths

% Decrease
attack paths

1896, 2018 1, 2 60646 22.82456542
1896, 2014 1, 3 61018 22.35117457
1896, 2012 1, 4 61394 21.87269349
1896, 1930 1, 5 65237 16.98226057
1896, 1920 1, 6 65202 17.02680003
1896, 2024 1, 7 65890 16.15128146
1896, 1938 1, 8 65406 16.7671986
1896, 2022 1, 9 66238 15.70843196
1896, 2010 1, 10 68398 12.95971088

Three-Component Protection
Protected vertex

ID
Component Rank

(group)
Final No of
Attack paths

% Decrease
attack paths

1896, 2018, 2014 1, 2, 3 53950 31.34560077
2018, 2014, 2012 2, 3, 4 57362 27.00363951
2014, 2012, 1930 3, 4, 5 60660 22.80674964
2012, 1930, 1920 4, 5, 6 64829 17.50146344
1930, 1920, 2024 5, 6, 7 68565 12.74719401
1920, 2024, 1938 6, 7, 8 68157 13.26639688
2024, 1938, 2022 7, 8, 9 71226 9.360922349
1938, 2022, 2010 8, 9, 10 72765 7.402458578

Four-Component Protection
Protected vertex

ID
Component Rank

(group)
Final No of
Attack paths

% Decrease
attack paths

1896, 2018, 2014, 2012 1, 2, 3, 4 48204 38.65770787
2018, 2014, 2012, 1930 2, 3, 4, 5 53877 31.43849737
2014, 2012, 1930, 1920 3, 4, 5, 6 57719 26.549337
2012, 1930, 1920, 2024 4, 5, 6, 7 61238 22.07121224
1930, 1920, 2024, 1938 5, 6, 7, 8 65250 16.96571734
1920, 2024, 1938, 2022 6, 7, 8, 9 67707 13.83904711
2024, 1938, 2022, 2010 7, 8, 9, 10 71226 9.360922349

Five-Component Protection
Protected vertex

ID
Component Rank

(group)
Final No of
Attack paths

% Decrease
attack paths

1896, 2018, 2014, 2012, 1930 1, 2, 3, 4, 5 45042 42.68153012
2018, 2014, 2012, 1930, 1920 2, 3, 4, 5, 6 50936 35.18108473
2014, 2012, 1930, 1920, 2024 3, 4, 5, 6, 7 54128 31.1190858
2012, 1930, 1920, 2024, 1938 4, 5, 6, 7, 8 57923 26.28973556
1930, 1920, 2024, 1938, 2022 5, 6, 7, 8, 9 64800 17.53836757
1920, 2024, 1938, 2022, 2010 6, 7, 8, 9, 10 67707 13.83904711
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Fig. 5: Decreasing trend in attack paths illustrated in Table I

in attack paths, between IDs 2024 and 1930.
Finally, the system operator (OP) aims for a balance be-

tween system resilience, economics and security as in Fig. 7.

1896 2018 2014 2012 2024 1920 1930 1938 2022 2010
1896 5
2018 5
2014 5
2012 5
2024 2 1 2
1920 4 1
1930 1 1 3
1938 2 3
2022 5
2010 5

Predicted Rank

A
ct

ua
l R

an
k

Fig. 6: Accuracy: Confusion Matrix

Toward this objective, the m-CRSA provides the strategy
demonstrated in Fig. 4, where colors from green-to-red repre-
sents budgetary increase (protecting two or more components
is ideally more expensive than protecting one component),
the number of circles present in unique component squares
is proportional to system resilience (reduction in attack paths
attained by protecting unique components improves robustness
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Fig. 7: System operator decision strategy.

against attacks by reducing attacker reachability), and sizes of
the circles (% decrease in attack paths) represents improve-
ments in system security by eliminating certain vulnerabilities.
Generally, resilience and security improves by protecting more
components but economics suffers i.e., ideally assuming costs
increase as more components are protected. In particular,
some components (e.g., routers) may have higher protection
costs than others (e.g., host computers which may just require
software downloads), however, it is out of this paper’s scope to
model these costs. The OP can observe that protecting 1896
improves security and resilience with limited budget, while
resilience and security improvements taper towards 2010 even
with higher budgets. Table IV shows OP strategy, where XXX is
strong correlation, X implies some correlation, 7 is negative
correlation, and o is no correlation.

TABLE IV: Visualizing Results for Operator Strategy
No. of Circles Size of Circle Color of Circle
↑ ↓ ↑ ↓ Green Red

Resilience XXX 7 X 7 o o
Security X 7 XXX 7 o o
Economics X 7 o o XXX 7

V. CONCLUSION

This paper proposes a model, m-CRSA, for critically
ranking multiple components, which integrates industry stan-
dard vulnerabilities into risk assessment of the cyber-physical
power system. The model ranks components in security tiers
with high accuracy, providing protection prioritization strategy
to the system operator. The m-CRSA is implemented on an 8
substation cyber-physical power system. The simulation results
show that the system operator will benefit from enhanced
knowledge of her system’s security, while computational com-
plexities will be reduced due to the attribute of the model to
rank components in security tiers, in addition to providing the
operator different system protection strategies.
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