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Abstract—Updating the structure of attack graph templates
based on real-time alerts from Intrusion Detection Systems (IDS),
in an Industrial Control System (ICS) network, is currently done
manually by security experts. But, a highly-connected smart
power systems, that can inadvertently expose numerous vulnera-
bilities to intruders for targeting grid resilience, needs automatic
fast updates on learning attack graph structures, instead of
manual intervention, to enable fast isolation of compromised
network to secure the grid. Hence, in this work, we develop
a technique to first construct a prior Bayesian Attack Graph
(BAG) based on a predefined threat model and a synthetic
communication network for a cyber-physical power system.
Further, we evaluate a few score-based and constraint-based
structural learning algorithms to update the BAG structure based
on real-time alerts, based on scalability, data dependency, time
complexity and accuracy criteria.

Index Terms—Bayesian Network, Bayesian Attack Graph,
Structural Learning

I. INTRODUCTION

Since power systems are critical infrastructure, grid re-
silience to cyber threats is a priority for national security.
Ongoing and historical events including the Ukranian attack
in 2015, the Stuxnet attack in 2008, and even the latest
Mumbai power outage attack in October 2020 [1] motivate the
criticality of grid cybersecurity. Cyber threats and propagation
of their impacts can be analyzed by performing cyber-security
risk assessment [2], where such assessments benefit from
the use of attack graphs. Attack graphs are used to analyze
network and host vulnerabilities as well as potential access
paths adopted by adversaries to exploit these vulnerabilities to
compromise their target [3].

Graphical models are used in the cyber-physical systems
(CPS) community to allow both visual interpretations and
algorithmic techniques to analyze and infer vulnerabilities.
Graphical formalisms such as Bayesian networks (BNs) are
versatile due to their ease of construction which can include
information from cybersecurity domain experts, threat models,
and even from raw data learning. Because an adversary’s
behavior is uncertain, BNs as Probabilistic Graphical Models
(PGM) are beneficial for modeling attack graphs. In this work,
we hypothesize that BNs can be useful in the cyber-physical
power system setting to perform causal reasoning between
each step in the access paths of the adversary’s trajectory to-
ward the compromise of its final target. A challenging task is to
determine the structure of these BNs from raw data, e.g., from
network logs or Intrusion Detection Systems (IDS). Hence,
this paper addresses this challenge, where our contributions are
as follows: a. We create synthetic BAGs from the threat models
on a synthetic electric power and communication network
based on the BN'’s parameters, including the conditional
probability densities from the Common Vulnerability Scoring
System (CVSS) scores from National Vulnerability Database
(NVD). b. We implement and compare structure learning
algorithms for the synthetic BAGs. c¢. From analysis of the
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structure learning techniques applied to BAG, we infer the
most suitable techniques.

The paper proceeds as follows. Section II provides a review
of the usage of PGM in CPS. Section III introduces the notion
of attack graphs and the creation of BAGs. In Section IV, we
present the types of structure learning techniques considered
in this work. Algorithm the construct prior BAG and to learn
structure is introduced in Section V. Finally, in Section VI, we
evaluate the performance of the learning methods for synthet-
ics BAGs based on size, computation time, data dependency,
and accuracy. Section VII concludes the paper.

II. BACKGROUND

BNs can be used for modeling critical infrastructures and
their interdependencies. For example, a coupled intrastructure
is modeled to study the impact of cascading effects between
a power grid and its communication systems using BNs [4].
Similarly, a causal polytree based anomaly reasoning engine is
proposed in [5] that utilizes Bayesian inference to produce a
high-level view of the security state of a SCADA network.
However, these works consider BNs for inferring posterior
probabilities of intrusions, not for the problem of learning the
BN structures that is tackled here.

BNs have been predominantely used in the areas of net-
work security through construction of attack graphs. In [6],
BNs are used to build an automatic and adaptive IDS for
attack signature recognition. In [2], a dynamic BN for risk
assessment is proposed, since the network state changes in
real-time. BNs also have applications for model-based power
system diagnosis [7] and decision support [8]. Contrary to the
above works, our work on learning BNs is not restricted to
pure network security or physical systems, but expanded to
interdependent networks.

Numerous works examine automatic attack graph genera-
tion. Researchers in [9] propose two novel approaches for
generating attack privilege fields as prerequisites and post-
conditions from the NVD. Authors in [10] propose a practical
approach to construct knowledge graphs from structured data,
while [11] proposes an automatic generation algorithm for
penetration graphs that optimizes the network topology before
generating the penetration graph. Instead of using NVD scores
to approximate attack characteristics, our work focuses on
constructing a Bayesian variant of attack graphs for cyber-
physical power systems.

Attack graphs are commonly constructed by security ex-
perts, but such templates depend on the expert’s assumptions
and cannot capture zero-day exploits. To solve this problem,
alerts generated from IDS can act as a data source for the
structure learning problem to learn the structure of an attack
graph based on the prior structure provided by experts. Learn-
ing techniques can be classified into two types: score-based
and constraint-based. Constraint-based methods use statistical
evaluation to learn conditional independence from the data
and prune the graph-searching using the obtained constraints,
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while a score-based algorithm assigns each candidate Directed
Acyclic Graph (DAG) a score reflecting its quality of fit, which
is further optimized. A BN comprises a DAG, where nodes are
the random variables, and conditional probability distributions
(CPD) are defined for variables given their parent nodes.
Learning the graph structure of these networks from data
is NP-hard [12]. Approximate procedures can handle larger
networks but usually get stuck in local maxima. The authors
in [12] use score-based learning to learn BN structures from
data based on score functions such as the Bayesian Information
Criterion. A constraint-based learning example based on d-
separation, is given in [13]. The above procedures were
developed as a general mathematical tool for BN structure
learning, but not evaluated for AGs or BAGs in particular.

The authors in [14] provide a review of various dynamic
structure learning techniques, where the structure is updated
based on new data received. Additional review papers, such
as [15], [16], and [17] comprehensively review different state-
of-the-art structure learning methods by considering discrete
and continuous random variables in the BN. However, these
works were not evaluated for BAGs for CPS on the basis of
accuracy, computation time, data dependency, and scalability.
Measuring computation time assists in faster incident response,
accuracy improves corrective actions, and data dependency
helps in selecting a learning technique based on availability of
trustworthy alerts. Hence, this work evaluates the performance
of different score-based and constraint-based structure learning
algorithms, which will assist a security analyst to adaptively
respond as the system evolves dynamically.

III. BAYESIAN ATTACK GRAPH (BAG)
A. Attack Graph (AG)

Attack graphs represent how the vulnerabilities in a network
can be sequentially or parallely exploited, showing diverse
paths an adversary can take to get to its targeted victim. AGs
can be state-based or logical [18]. In state-based AGs, each
node represents a unique security state within the network,
where a combination of hosts is compromised. Scalability
issues exist here, particularly when there is increased network
density due to higher connectivity. Logical AGs represent
dependencies, e.g., AND and OR, between exploits and
security conditions.

ICS attack graph: This scenario is based on a cyber topol-
ogy that mimics the control center of the Iranian Nuclear
plant compromised by the Stuxnet worm (Fig. 1). The En-
terprise Control Network has the WinCC, Historian, and
PCST web clients. WinCC' is a SCADA-HMI system, and
PCS7 is a Distributed Control System by Siemens. These
clients access the web server through the Web Navigator,
PCS7 Web Server, and CAS Server in the Demilitiarized
Zone (DMZ). These web servers interact with process control
network components such as Engineering Workstation,
Simatic Process Historian, PCS7 OS which may control
PLCs, relays, or controllers for circuit breakers, isolators, etc.

The configurations of Access Control Lists (ACLs) in the
two firewalls, the vulnerabilities in the web servers in the
DMZ, and the probable attack target, e.g., getting root access
to WinCC or Eng. Workstation are used to create the
logical AG (Fig. 1). The security conditions such as F' :
Win CC Server represented as the circle nodes, meaning
the intruder from Web Nav Server get the privilege now
over the host Win C'C Server by exploiting the vulnerability
Network Share(D, F') represented as rectangle nodes. The
probability of the exploitation of the vulnerability to reach a
security condition is assumed to be based on the CVSS scores
associated with the vulnerability.

B. Bayesian Attack Graph (BAG)

Making use of a Bayesian Network (BN) on the AG makes
it a BAG. A BN is a directed graphical model, with the
nodes represented through random variables and the inter-
dependencies between them is captured through the directed
edges, forming a DAG [18]. Assuming the monotonicity
principle of an AG, where once an attacker escalate a privilege
never relinquishes it, one can remove duplicated paths to
construct a DAG, hence it is suitable to model AGs as BAGs.
The BAG in the rightmost figure of Fig. 1, have a joint
probability distribution as:

p(A,B,C,D,E,F7G,H) Zp(A)p(B)p(C | A)
p(E | C)p(D | B)p(F' | D,B)p(G | D)p(H | E, F,G)

The BN is first introduced for the dynamic analysis of attack
graphs in [19], where the attacker’s probability to reach a
security state is computed, given the prior probability. A
node in the BAGs is represented by a security condition, e.g.
Privilege(A) , shown in the rightmost side in Fig. 1. The
Conditional Probability Table (CPT) of the BAG is computed
as the combined effect of vulnerability in a network, as used
in [20]. The local C'PT of the nodes with logical AN D and
OR conditions in the BAG are computed as Eqn. 2 [18]. A
logical AN D signifies all the permissives suffice to compro-
mise the node X;. A logical OR signifies any one permissive
is sufficient to compromise a node. The immediate parents of
the node X; is pa; and the probability that the vulnerability
v; is exploited is py;.

(D

0, 3X; € pa,|X; = 0
p(Xilpai) = { 5 € Pl

[L.x, Po;s otherwise

X 2

X _ 0, VXJ‘ Epai|Xj:O @
p(Xilpa;)) =< {_ I1;.x, (1—py,), otherwise

C. Application in Cyber Physical Testbed

A large scale synthetic power system [21], its commu-
nication network, and its associated threat models are uti-
lized to synthesize AGs. The AGs generated in our previous
works [22], [23] were non-Bayesian in nature. This work
generates BAGs from the cyber-physical models validated in
RESLab testbed [24]. Further, this work seeks to provide a
verdict on preferring a specific algorithm over another, given
the data in the form of alerts.

We generate synthetic clustered BAGs, with each cluster
associated with one substation. The size of each cluster NV
depends on the number of vulnerabilities and the number of
intruder entry points in each substation. For example, a power
network with three substations having two vulnerabilities and
one entry points each, will have a cluster size of at least 3
nodes, with a total of four clusters (three substations plus the
main control center), resulting in a total of 12 nodes in the
complete synthetic BAG. Fig. 2 shows a synthetic BAG of
a substation and its control center with a cluster size of 10
each, resulting in a 20-node BAG. This work analyzes the
impact of the graph size and density on computation time
and accuracy in learning structures in an ICS network. The
dynamic update of the structure based on alerts will help
update access paths to critical assets such as PLCs, relay
controllers, etc. These updates on access paths will enable
dynamic situational awareness of the CPS.

IV. STRUCTURAL LEARNING

Now that we have introduced the basics of attack graphs,
BAG and its application in a CPS testbed, we briefly present
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Fig. 2. Synthetic BAG generated for a substation and control center with 20
nodes with cluster size (N = 10).

the learning algorithm considered for the evaluation on the
synthetic BAGs. We evaluate three score-based algorithm:
Cooper and Herskovits K2 [13], Monte Carlo Markov Chain
(MCMC) [25], Chow Liu [26] and a constraint-based algo-
rithm: Partially Directed Acyclic Graph (PDAG) PC [27].

A. Cooper and Herskovits K2 Algorithm

A Bayesian Network is defined through its structure, B,
and parameterized by B,. The K2 algorithm compares the
joint distribution of P (B, D), for all possible By and B,
combination. D here refers to the distribution of the data
generated. The objective of the K2 algorithm is to maximize
the joint distribution for all possible B; as:

max [P (B, D)] =
3)

n di
Hrrlrax P (m; — x;) H

(r; = 1)!
N;
i=1 i= L (NG +7“z—1'H i#!

N is the number of data points in D in which a variable x;
equals v;k and 7; instantiated as w;;, and IV;; = Z;l Nijk.
The above maximisation operation (Eq. 3) is performed using a
heurestic search method. The algorithm initiates with a parent-
less node and then incrementally add parents, whose addition
improves the probability of the resulting structure the most and
stops when cannot further increase the probability. But finding
the most likely belief network structure is computationally
feasible under the assumptions of node ordering and existence
of tight limits on the number of possible parents. In the
synthetic BAG, the topology ordering of the nodes can be
ensured, but the existence of tight limits on the number of
parents cannot be ensured as for a larger network there can
have many vantage points for an intruder to target preventing
the parent size for any node.

The time complexity of this method is O(mn2u?r), where
u is the maximum number of allowable parents of a variable.
In the current work we will study how the w impacts the
computation time. Higher the number of parents, it implies
the attacker has more paths to compromise a node. So we
want to study how a more vulnerable network increases the
computation time of determining the structure of the BAGs.
We also study the impact of the number of datapoints m
considered for learning the structure.

B. Monte Carlo Markov Chain (MCMC) Algorithm

The Bayesnet library makes use of the paper [27], for
performing MCMC learning. It uses the Metropolis-Hastings
method, which constructs a Markov chain with the objective
of maximizing the posterior distribution p(g|z), where x is
given data. The method comprises of evaluating at each step
in the Markov chain, whether a candidate model ¢’ replace
the current model g with an acceptance probability.

This method first makes all the digraphs that differ from
the initial G, by a single edge deletion, addition or reversal
operation, with acyclicity constraint [27]. Further with every
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new sample in the markov chain, it updates the digraph from
g to ¢’ with the probability of min(1, R,), where R, is

#(nbd(g))p (¢'|z)
# (nbd (¢')) p(glz)

where, #(nbd(g)) refers to the cardinality of collection of
graph that can be reached from ¢ in one step and the ratio

of ’; ((gg/‘lj)) is the Bayes Factor computed using the likelihood

ratios, which varies for addition, removal and reversal op-
erations [27]. The steps involved consists of proposing a ¢’
and moving to g’ from g processes. The computation time
for proposing for the addition operation is O(1) and O(n)
for the reversal operation, while the computation time for
moving for the addition operation is O(n) and atmost O(n?)
for removal [27]. Unlike the K2 algorithm the time complexity
is independent of the maximum number of allowable parents
hence its performance will not vary with the complexity
of the network. Hence, learning for the denser 8 substation
model [23] would not be quite high in comparison to the sparse
IEEE 24 bus cyber model [23]. Sample size increases compu-
tation time, hence more trustworthy samples is essential.

C. Chow Liu Algorithm

The Chow Liu algorithm is based on computing the mutual
information (H) between the pair-wise features in the data-set.

HUV) = 300 o [p(“)} )

R, =

“4)

p(u)p(v)

Then utilizing this H as the weight, it constructs a Maximum
Weight Spanning Tree (MWST) using Kruskal’s algorithm.
This tree is the Chow Liu Tree. There have been numerous
variations of the algorithm since 1968 implementation, but
they are not considered in current implementation. The Chow-
Liu Algorithm has a time complexity of O(n?), as it takes
O(n?) to compute H for all pairs, and O(n?) to compute
the MWST. The Bayesnet library of MATLAB didnt include
the Chow Liu algorithm for structural learning. Hence, it is
incorporated in MATLAB using the algorithm in [26].

D. Partial DAG PC Algorithm

In some scenarios, it may not be possible to learn a DAG, in-
stead we learn a partial DAG or PDAG. A PDAG is an acyclic
graph containing both directed and undirected edges. The PC
(Peter and Clark) algorithm is based on the d-separation test
of conditional independence [13]. This algorithm basically
consist of two steps: it first identifies the skeleton, then learns
the complete PDAG. Learning using this algorithm assumes
all variables to be observed. The output P is an adjacency
matrix, in which P(i,j) = —1, if there is an ¢ — j edge.
P(i,j) = P(j,1) = 1 if there is an undirected edge i <> j [28].
This algorithm may take O(n™) time if there are n variables
and v is the maximum fan-in or allowable parents. One major
disadvantage of this method is, even for the sparse networks,
the algorithm gets infeasible with increasing number of nodes.

V. PSEUDO-CODE OF THE IMPLEMENTATION

Alg. 1 provides the pseudo-code to construct the DAG,
the function ConstructDAG() and convert it to a BAG by
building the CPT for each node GetC' PD(), then finally learn
the structure using different learning methods. The rightmost
figure in Fig. 1 can be divided into two clusters, with each
cluster having 3 and 4 nodes each. Hence, we generate the
synthetic DAG based on the number of clusters C' and nodes
per cluster as N. Sim_Count is the number of simulation

for a unique configuration, dag is the adjancency matrix
representing the graph, etc. Alg. 1 shows the learning using
learn_struct_K?2. Similarly, other learning algorithms are
tested by calling a different function.

The Construct DAG() in Alg. 2 creates the clustered DAG
by randomly picking edges, keeping the maximum parent
nodes to be w. The updated dag_mod is used to update
the dag structure for each cluster and finally dag is used
to create links between clusters. The GetCPD() constructs
the conditional probability distribution of each node based on
the CVSS scores and Eqns. 2 utilized in lines 3 and 4 of
Alg. 3. The source codes for the BAG generation and structure
learning are available at [29].

Algorithm 1 BAG Structure Learning Implementation

1: Define C,N,Sim_Count,dag,por, samples.
2: for u =2 to 5 do

3: for sim =1 to 20 do

4: dag = ConstructDAG(u, C, N, dag)

. > Create DAG
using Alg. 2 passing attributes u, C, N, dag

5: bnet = mk_net(dag, C * N, node_type) > Create a BN
bnet from DAG using the mk_net of Bayesnet

6: fori=1to Cx N do > for each node in the BN

7.

: bnet.CPDgi) = CreateCPD(por, dag, i, bnet) >
Obtain the CPD table for each node using Alg. 3
8: end for

9: data = zeros(C x N, samples)

10: for m = 1 to samples do

11: data(m) = sample_bnet(bnet) > Create data
samples for each node in the BN

12: end for

13: infer_dag = learn_struct_K2(data) > Learn the
structure. For example, this is learning using K2 algorithm

14: accuracy = compare(dag, infer_dag) > compare the

edges between actual dag with infer_dag
15: end for
16: Compute avg_accuracy and avg_comp_time
17: end for

Algorithm 2 ConstructDAG(u, C, N, dag)

1: for j =1to C do
2: Define dag_mod for cluster j
3: for i =2 to N do
4: Create edges randomly for each node ¢ in cluster j having
maximum number of parents u
Update dag_mod

end for

Update dag for cluster j from dag_mod

Create random edges between any node in the cluster 5 and
the rest of the clusters.

Update dag with new edges.
: end for
11: return dag

AR

—
=

Algorithm 3 GetCPD(por, dag, bnet)

npa = sum(dag)
: prob = getCV SS(npa) > Extract probability based on CVSS
: if rand(1) < por then cpt = createORT able(prob)

: else cpt = create AN DT able(prob)
end if

: return tabular_C PD(bnet, i, cpt)

> Construct CPD table

VI. RESULTS AND ANALYSIS

In this section, we present our experimental results compar-
ing the performance and accuracy of the four learning tech-
niques introduced, based on the network size, data dependency,
computation time and accuracy.
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A. Experimental setup

Experiments are carried out using synthetic CVSS scores
and BAGs generated using the methods discussed in Section V.
The number of nodes in attack graphs as well as the density
is varied across different experiments to study the impact of
inference algorithms. In every experiment, 20 simulations are
performed for calculating the average computation time for
each scenario. The maximum in-degree (input edges) of the
node, u , is varied from 2 to 5, as in most cases, the causes of
an attack have an in-degree in that range. For complex attacks,
the in-degree may be high but usually an attacker is resource-
limited. The experiments are performed using a PC' with an
i7 1.80 GHz processor and 16 GB RAM. In our experiments,
the sampled data generated from the synthetic BAGs in line
11 of the Alg. 1 is based on discrete random variables that
indicate if the privilege over a component is escalated or not.
We can generate samples for water or power networks based
on continuous random variables.

B. Analysis of Structural Learning

A prior BAG is constructed as illustrated in the previous
section. Based on the prior BAG, a sample_bnet function in
Bayesnet library is used to generate a random sample for each
node. All the nodes in the BAG has a CPD defined based on
the CVSS score. Hence, the sample_bnet() function generates
samples based on the CPD, which are used for learning the
structure. For the experiments, the number of data samples
used is 1000 except for MCMC technique where the number
od data samples is altered. To explore the scalability factor,
the number of nodes in the BAGs are altered from N = 6 to
20 while evaluating the average computation time (c;) and the
accuracy (acc). The accuracy is computed by comparing the
adjacency matrix of the original and the learned BAG.

1) Learning with K2 Algorithm: The time complexity using
K2 algorithm is theoretically O(mn?u?r), which can be
validated from the Fig. 3(a), where the c¢; increased from
0.05 sec to 0.6 sec for n = 6 to n = 20. When wu is increased
from u = 2 to u = 5, the acc reduces for all scales of network
(Fig. 4(a)). Hence, we conclude that as the fan-in (or in-degree)
increases, the learning accuracy decreases, but since the acc
is above 80% hence, K2 is not bad for learning. But since,
the method’s time complexity is of the order of 2, for n, it
takes a long time to learn a large graph. This technique can
be utilized to infer the structure of attack graphs locally in a
small network. Hence, K2 algorithm can be implemented for
larger networks by segregating the network prior to learning.

2) Learning with MCMC Algorithm: The MCMC learning
time complexity is dependent on the number of nodes as
well as total and burn-in samples. We observed that with the
increase in samples and graph density (represented through
u), the ¢; increased (Fig. 3(b)). Similar trends are observed
for acc(Fig. 4(b)) but relatively low acc compared to K2
algorithm. Even the c; is relatively higher in the case of
MCMC i.e. 1000 samples it is around 2 sec (Fig. 3(b)), unlike
K2 which is less than 0.1 sec (Fig. 3(a)). For case u = 5, where
the acc improved when the number of samples increased
from 1000 to 5000. Hence, MCMC cannot be preferred for
techniques where there are not enough samples to estimate
the structure. Therefore, it is suggested to deploy more number
IDS with higher sensitivity (i.e. high probing rate) for learning
using MCMC. In this method, there is a tradeoff between the
¢ and acc. A higher acc for a dense network is ensured by
taking more samples which results in higher c;.

3) Learning with Chou Liu Algorithm: Similarly, the im-
plemented Chow Liu algorithm is validated for 1000 samples
with varying N and u. The u have less impact on the ¢; of the

TABLE I
COMPARATIVE STUDY OF LEARNING TECHNIQUES BASED ON SCALE,
DATA DEPENDENCY, AVG. COMPUTATION TIME, AND ACCURACY

Technique Scale | Data Dep. | c¢ acc

Cooper and Herskovits (K2) 4 X v [ /()
MCMC X v X | /3

Chou Liu X X X | /()

PDAG PC X X v N.A

algorithm, as it is an approximation algorithm which cannot
capture the complete structure of the original distribution as it
only consider second order interaction (i.e. mutual information
between two features). The acc is affected negatively as the u
increased (Fig. 4(c)). The time complexity seemed to follow
the theoretical O(n?), but the value is too high in comparison
to other methods (Fig. 3(c)). The last stage in the Chow Liu
technique involves computation of the spanning tree. In our
implementation we have used the Kruskal’s algorithm using
the graph toolbox of MATLAB, which may be one probable
reason of high c;.

4) Learning with PCAG PC Algorithm: Finally, the PDAG
PC algorithm is tested for the synthetic BAG generated for
different scenario. Similar trends are observed i.e. ¢; increasing
with n and u as observed from Fig. 5. It is difficult to compute
the accuracy of this algorithm with the current Bayesnet
implementation, which can be further performed in the future.

The comparative study based on the scale, data dependency,
¢; and acc (ranked) is presented in Table I.

VII. CONCLUSION

The major contributions of this paper are the generation
of BAGs for CPS, integration of Chow Liu algorithm in
Bayesnet alongwith the analysis and comparison of other
structural learning algorithms based on scale, data dependency,
time complexity, and accuracy for BAGs in the cyber-physical
power systems. It is observed that among the score-based
learning techniques, K2 algorithm outperforms the Chow Liu
and MCMC techniques with respect to all factors. The Chow
Liu computation can be improved by incorporating the latest
extensions. The computation time of the constraint-based
PDAG PC is comparable to the score-based techniques but
found to be unscalable as well as difficult to evaluate the
accuracy. Apart from these techniques, recently developed
Graph Neural Networks for DAG structure learning [30] can
be considered in the area of cyber security in power systems.
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