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Abstract—As the power grid becomes more complex and
integrated with communication networks, cyber-attacks become
an increasingly relevant threat. CYPRES (Cyber-Physical Re-
silient Energy Systems) introduces a cyber-physical energy man-
agement system for end-to-end defense whose design involves
simulating cyber and physical attacks on a power grid by
comprehensively modeling a cyber-physical hardware-in-the-loop
power system. However, the CYPRES system is tedious to spin
up, as multiple subsystems of the framework involve interde-
pendencies across different applications. This paper details a
common automation framework for CYPRES that both removes
this manual overhead from running the system and drasti-
cally improves CYPRES’s initialization speed. With Jenkins, a
continuous integration/continuous development tool, the authors
have established this automation infrastructure, RESAuto, for
CYPRES system and demonstrated the benefits and effectiveness
of automating manually intensive operations with simplified
operations and less time consumption. This automation system
makes it easier to test more complex threat scenarios for larger,
more realistic, and manually intensive scenarios.

Index Terms—modeling, simulation, automation, virtualization

I. INTRODUCTION

The field of power grid simulation is by no means a new
one. One of the most common power system simulators, Pow-
erWorld, was first released in 1994. Simulations of this kind
are commonly used to model the physical interconnections
of the power grid accurately. However, the so-called “Smart
Grids” of today are networks of interconnected systems that
can include everything from load shifting to pricing to user-
interaction with home area networks, etc.; such properties
make modern power systems a far cry from the more isolated
systems of past grid iterations. Colak has defined smart grids
as self-sufficient systems that allow integration of any type
and any scale of generation sources to the grid and that
reduce the workforce, targeting sustainable, reliable, safe and
quality electricity to consumers [1]. The benefits of smart
grids are many, but the increasing linkage of the power grid
with communication networks also lends itself to new forms
of cyber-attack. John er al. posit that the power system is
made even more vulnerable to cyber-attacks due to the in-
creasingly open architecture of electric power communication
networks and the utilization of unsecured standard IP based
protocols [2]. Threats of concern include that an adversary
can re-distribute power away from loads that need it, de-
couple the network linking the grid together, or even shut

down generation facilities without needing physical access to
these targets themselves. A modern power simulation must
also model these cyber integrations if it hopes to accurately
represent the nuances and vulnerabilities of the smart grids of
today.

To counter these cyber-attacks, the Cyber-Physical Resilient
Energy Systems (CYPRES) models [3] a full-scale, cyber
and physical power grid, which is subjected to various cyber
attacks such as DDOS, ARP cache poisoning, and man-in-
the-middle (MiTM) attacks. This differentiates CYPRES from
other grid-security systems such as GridAttackSim, which
does not incorporate physical hardware [4]. The CYPRES
model’s cyber and physical response to these attacks illumi-
nates many trends that would otherwise not be apparent when
modeling either of these systems in isolation.

Much of the CYPRES system is already active in Resilient
Energy Systems Lab testbed (RESLab Testbed) [5]. However,
running a CYPRES simulation has a huge manual overhead.
Each component of the system is controlled by a separate Vir-
tual Machine (VM) in a virtualized network. Because each of
these VMs must be manually started, monitored, and stopped,
they form a critical bottleneck preventing researchers from
testing full-scale network topologies. Another major CYPRES
bottleneck is processing data once an attack is completed. To
dissect the grid’s response to attacks, a researcher must parse
the log files of up to 7 Virtual Machines completely manually,
making it very difficult to draw conclusions about the system’s
response to a cyber attack.

In this paper, a comprehensive testing automation infras-
tructure, RESAuto, is proposed. This infrastructure is the first
automation attempt intended to handle every aspect of the
cyber-physical power system simulation and emulation, from
instancing the modeling programs, to collecting data, to aggre-
gating data into a legible and actionable report, transforming
the previously arduous task of running an attack into a single
button press. This infrastructure will include both an automa-
tion platform that facilitates the spin-up / shutdown process of
CYPRES sub-systems as well as a results reporting webapp
that processes data from the previously run simulations.

The automation platform runs on a modified implementation
of Jenkins [6], a CI/CD (Continuous Integration / Continuous
Development) tool commonly used in the software engineering
sphere. Jenkins facilitates the segmentation of multi-step tasks
(referred to as Pipelines) into discrete, sequenceable steps.



Jenkins is unique in its ability to run and monitor these
steps on remote machines, independent of the host machine’s
operating system, and report the resulting error logs and
artifacts back to the job sequencer. While Jenkins’ original use
case is for automation of software build pipelines, especially
in server-less cloud infrastructure [7], many institutions, such
as the Novartis Institutes for Biomedical Research, have had
success with integrating Jenkins in execution of data collection
tasks across distributed compute resources [8]. The Jenkins
system slots seamlessly into the distributed VM infrastructure
already in place for CYPRES.

II. SYSTEM INFRASTRUCTURE
A. Existing CYPRES Infrastructure

The CYPRES power system modeler is formed of many
different subsystems. Each of these subsystems consists of a
VM and a program that models one aspect of an interconnected
power system. These VMs are managed through vSphere,
which not only segments a central server into multiple virtual
machines but also models the networks that connect them.
Note that these virtual networks are only used to administrate
the VMs. A dedicated VM with software modeler is used to
simulate the attack network. The main subsystems modeled
by CYPRES and a brief description of their functionality are
listed below.

o CORE: This subsystem uses the open-source tool Com-
mon Open Research Emulator (CORE) [9] in a dedicated
Ubuntu Linux VM to simulate network connections inside
and between substations, generators, and loads in a power
system. It also models routers, switches and firewalls
inside of the network itself.

o« RTAC: RTAC stands for Real-Time Automation Con-
troller [10], and refers to a specific type of programmable
logic controllers that can communicate and control power
system components. This subsystem implements a DNP3
master using the proprietary RTAC AcSELerator program
in a dedicated Windows VM. CYPRES can also use a
Python implementation of a DNP3 Master to achieve
this task, but the manual overhead of using AcSELerator
makes this subsystem a prime candidate for automation.

o PowerWorld Dynamics Studio: This subsystem uses Pow-
erWorld Dynamics Studio (PowerWorld DS) [11] in a
dedicated Windows 10 VM to simulate the physical
power system. It connects with the RTAC AcSELerator
DNP3 Master over the CORE virtual network with Dis-
tributed Network Protocol version 3 (DNP3) [12].

o Adversary [13]: This subsystem is often run from within
the CORE VM. It implements the adversary’s actions
in an attempt to gain access to restricted controls over
the power system. MiTM, Denial of Services (DoS), and
portscanning attacks have been implemented in this VM
[13]-[15].

o DataFusion: This subsystem compiles data from other
subsystems’ monitoring software through the use of Elas-
ticsearch, Packetbeat, Snort, Cicflowmeter, and Kibana
[14].

Note that this list of CYPRES subsystems is by no means
all-encompassing. These subsystems have been selected for
their difficulty of manual operation and importance overall.

B. Jenkins Implementation

Jenkins handles remote script execution for the automation
framework, and it provides a graphical user interface (GUI)
frontend for attack sequencing and remote script execution
This section is a brief overview of the Jenkins features used
by the framework.

At it’s core, Jenkins consists of an interactive web-interface
called the Jenkins controller. Through a webpage hosted on the
Jenkins controller’s machine, Jenkins provides the user with
a dashboard that facilitates creating, editing, and executing
jobs. The Jenkins controller also administrates the Jenkins
instance: new remote executors can be added, access control
can be configured, and the instance can be restarted from this
frontend.
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Fig. 1. Jenkins based Implementation of RESAuto for RESLab Testbed

Jenkins’ suitability to this project becomes apparent with
the introduction of the Jenkins Agent. A Jenkins agent, or
node, is a computer that can be remotely controlled by Jenkins.
Any computer connected to the same network as the Jenkins
controller can be an agent, regardless of operating system,
as long as it is actively running the agent script provided
by the Jenkins controller. Agents usually have some form of
automation script that a user would like to run remotely. The
Jenkins controller is used to remotely invoke a local execution
of this script, meaning that a program invoked by Jenkins
operates as if a user had executed it manually.

Fig. 1 illustrates the pipeline of the automated process
of CYPRES using Jenkins automation infrastructure. First of



all, the user runs Jenkins jobs to start CORE, PowerWorld,
and RTAC from the Jenkins Controller. Jenkins will then
distribute these jobs to their specified agents, spinning-up
each subsystem on its own dedicated machine. Once these
subsystems are online, the CORE job runs attack scripts on
the network through the CORE machine.

Jenkins’ bread and butter is the Pipeline: a scripted sequence
of commands (called steps) that split up a more complex
process. Each step in a pipeline can be executed on a different
Jenkins agent, and these steps can be run in series or in
parallel. For example, a pipeline could consist of a step that
starts the CORE subsystem, then a step that runs the attack
script, and finally a step that shuts down the CORE subsystem.
Each step on a pipeline is individually timed and can return
errors and log files.

The Jenkins controller also features a tool that attaches a
GUI of user-configurable checkboxes and text fields to each
job. The values held in these parameters can be used in the
job’s scripting pipeline: these variables can even be passed as
arguments into the locally run file. This allows users to set
arguments without ever touching code.

At the conclusion of a job, these logs are saved so that
previous executions of the pipeline can be compared to current
ones. Any files created by the build process can also be
saved to these logs as “Artifacts.” Artifacts are accessible
to processes outside of Jenkins via the Jenkins application
programming interface (API).

III. AUTOMATION METHODS

Jenkins is only used to facilitate remote execution of scripts;
to sequence and automate the subsystem software locally, a
local scripting language is needed. Though each subsystem
in CYPRES can be controlled headlessly through an API,
an user-interactable GUI is needed to control the subsystem
once it has been initialized. As a result, RESAuto focuses on
automating system startup through scripted interactions with
a GUL

Linux machines with the BASH shell are blessed with a
rich scripting language out-of-the-box, and many open-source
programs (such as the CORE emulator) provide functions
for command-line program automation. To fill in the gaps
where BASH scripts lack, such as command-line terminal
user interface (TUI) interaction, transaction control languages
(TCL) offshoot Expect Script is used. Windows machines are
more difficult: proprietary software rarely provides an API
for programmatic control of a GUI. Automating these GUI
programs is made simple through use of open-source tool
AutoHotkey.

A. AutoHotkey

AutoHotkey provides an open-source scripting language
with extensive documentation centered around control of
Windows-based desktop programs, and a program that scrapes
window metadata from programs for more accurate scripting
(WindowSpy) [16]. Scripting commands in AutoHotkey are

varied, but generally use the same syntax. Nearly all com-
mands contain a Command, a Control, and an Argument.
These fields are explained below.

e Commands describe how to interact with an object,
similar to a function in other scripting languages.

o Controls are arguments that determine which field, win-
dow, or selection to interact. This can be set to match
window titles, program .exe file names, and myriad
other distinguishing factors.

o Arguments are required supplementary information. For
example, a command that auto-fills text would need to be
provided the desired text as an argument.

Part of AutoHotkey’s power lies in it’s selector syntax.
Most automation software works by sending click events and
keystrokes to x-y positions on the current screen. This is inher-
ently unstable, since windows can be resized and moved, or the
resolution of the attached monitor changed. Through the use
of CSS-style selectors, AutoHotkey can send events directly to
the desired fields of the desired window. These selectors, called
matching groups, are used in the background by Windows but
can be scraped from windows using WindowSpy.

B. Expect Scripting

Expect scripts [17], at their most basic, allow a programmer
to run a command line program, and conditionally react to
said program’s output. A program can be Spawned, which
means it is being actively listened to. After a spawn step,
the Expect step halts the execution of the code until the
output of the spawned process matches the expect step’s input
string. The Send command inserts the supplied text directly
to the terminal the expect script was first spawned. Through
a combination of these three steps, a scripted “conversation”
can be formed, which can be run to automate any number of
TUI programs.

IV. AUTOMATION IMPLEMENTATION

The following sections describe how the combination
of Jenkins, Expect, and AutoHotkey have been applied to
CYPRES to automate the manual overhead of simulating a
full power grid through simplified operation.

A. Anatomy of an Attack

Before this automation framework, a user would have to
remotely connect into every virtual machine in the RESLab
Testbed, manually start and configure each sub-system, then
remote into the emulated adversary’s device and administer the
desired attack. The automation framework splits these steps
into automated, user-friendly steps. This section describes a
new workflow, or attack anatomy.

On logging into Jenkins, users are presented with the
dashboard pictured in Fig 2. This dashboard has a job for
each currently automated subsystem: CORE (+ the Man in
the Middle attack), PowerWorld DS, and RTAC AcSELerator.

Selecting the desired subsystem and the Build with Pa-
rameters option brings the user to an options form. Options
selected on this form change commonly-used parameters for
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that subsystem; options could include which power system
case to simulate, which communication topology to emulate,
whether to run specific monitoring software, or whether to
defend CYPRES from attack. The form shown in Fig. 3 allows
the user to select options for the MiTM attack.
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Fig. 4. Job Run Screen.

To spin up the desired sub-system, the user will press the
Build button at the bottom of Fig. 3. This will bring up

the screen in Fig. 4. Each subsystem is split into the start,
confirm, and stop steps. Once the start step has concluded,
Jenkins will wait for the user to click the blue box in the
confirm step, which will notify Jenkins that the attack has
concluded. In the time between the subsystem spin-up and this
confirmation, the user will make any necessary adjustments to
the subsystem and administer the cyber-attack. After the user
notifies Jenkins that the attack has ended, Jenkins will spin
down all the previously started programs. Logs from previous
executions can be accessed from this screen as well.

B. Subsystem Details

A brief overview of each subsystem’s automation imple-
mentation is provided here.

1) CORE Subsystem: After the user runs CORE, the Jenk-
ins job, Jenkins will call the main script in this subsystem:
startCORE. sh. This script sequences all of the following
steps, takes into account the arguments specified in Jenkins,
and handles errors in the execution of starting the CORE
subsystem. The first job of this script is to start the CORE
GUI The logged-in user must have sudo privileges, so that
Jenkins can run scripts that require sudo. The script checks
to see if core—gui is running: the script will fail gracefully
if a simulation is already taking place. Then, it starts the
CORE daemon that the GUI will connect with. Starting the
core-gui program itself is a little more complicated. The
GUI can take command-line arguments, so the script pipes in
the path to the network topology file selected in Jenkins. To
account for core—gui’s tendency to crash without an error
code and require a restart, the process is spawned through
an expect script, which fails unless the core—gui program
comes online within a certain timeout.

Monitoring programs, including Packetbeat, Elasticsearch,
Logstash, and Kibana, are all started locally after core-gui
is started. Certain monitoring software, such as Snort and
Wireshark, must be run in the virtual router on the CORE
network. The router has a static IP address and is accessed
through Secure Shell (SSH). Because it is spun up at runtime
by CORE, SSH keys can not be uploaded to the machines,
forcing users to interact with SSH shell logins to start this
software. To get around this limitation, an expect script is again
used to automate the SSH login interaction and execution. This
script forwards the Wireshark GUI back to the CORE VM to
be interacted with, and starts Snort, a background network
traffic analyzer.

2) Man-in-the-Middle Attack: Since the MiTM attack only
relies on the CORE subsystem, it has been implemented into
the CORE Jenkins job. When the CORE job is selected, a
GUI for the MiTM attack appears. After CORE is fully spun
up, Jenkins will create a terminal, already running in the
adversary’s machine, with the attack script command already
typed in. To attack the power system, the user may choose
to modify the attack, or simply hit enter and begin collecting
data.

3) PowerWorld DS Subsystem: Once the real-time power
system simulation in PowerWorld DS is online, the buses



(substations) in the case act as DNP3 Outstations that generate
DNP3 packets containing power system data of the system
[18], [19]. The PowerWorld DS runs on a Windows machine.
This program is GUI-only for our applications: as such,
automating it requires AutoHotkey (AHK).

After Jenkins starts the correct PowerWorld version, the
AHK script uses the WinMenuSelectItem command to
open the correct power system case. These files are provided
by argument to the AHK script, and can be sent and modified
from Jenkins. This process is completed twice, once for the
power system case and once for the one-line diagram. The
AHK script then uses WinMenuSelectItem to start the
server, and simulation. The script will exit at the conclusion
of this step. To stop PowerWorld, the AHK script will first
pause the simulation, then abort. Doing so avoids a bug in
PowerWorld that causes the program to hang indefinitely.

4) RTAC AcSELerator: CYPRES’s RTAC subsystem is
functioned as a data concentrator that collects data and sends
control commands to the DNP3 outstations hosted in Power-
World DS [20]. RTAC’s control over these vital power system
functions makes it a desirable target for an adversary: an attack
chain can end with a command to trip a relay and influence
the physical reliability of the power system.

The RTAC subsystem is entirely implemented within the
proprietary program RTAC AcSELerator to load the config-
uration file. Similar to PowerWorld DS, AcSELerator has an
API, but it cannot be used due to the necessity of manual
operation once the subsystem has been spun up. Once the
Jenkins job for RTAC is executed, Jenkins runs the automation
script. This script opens up RTAC AcSELerator and waits
for the program to load. The script will then auto-fill the
correct key in the first of two password protect screens. Once
the password has been entered, the desired RTAC topology
file must be selected from a table. The individual cells in
the table do not possess AutoHotkey selectors, and will only
respond to keyboard and mouse inputs. To select the desired
file, the AHK script resorts to sending click events to x and
y coordinates. While this would normally be an unreliable
method of control, the script resizes the window to a known
size and uses coordinates relative to the window’s top corner.
This ensures that the control will always be in the same
place and will always receive the click event. After passing
through the second password protect screen, the RTAC is
online and can interact with PowerWorld DS and CORE (if
those subsystems are also running).

V. RESULTS
A. CORE Results

In timed trials, CORE took at least 253 total seconds to
spin up. The average number may even be higher, since the
timed user was familiar with the process of quickly running
these steps. This gives an improvement of 635% as shown
in Figure 5. Additionally, Jenkins allows these steps to be
run in paralell with the startup of other subsystems, further
compounding time savings. The automation also handles many
edge cases that trip up users. For example, if a user tries to
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start the CORE subsystem while it is already running, the
networks would interfere with each other and the operation of
CYPRES. The automation scripts handle this by notifying the
user and not allowing the script to continue.

B. PowerWorld Results
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In timed trials, PowerWorld DS took 65 seconds to spin
up. Automation trials took only 15 seconds, an improvement
of 433% (Fig. 6). As with CORE, these time savings are
compounded considering that many sub-systems can be spun
up in parallel. The PowerWorld sub-system also handles the
edge case of multiple programs running at once. The Jenkins
job will fail if a user tries to start a new PowerWorld instance
while one is already running.

C. RTAC Results

In timed trials, RTAC AcSELerator took 120 seconds to
spin up. Automation trials took 99 seconds, an improvement
of around 120% (Fig. 7). While this improvement initially
seems small, the main pain point of RTAC is the heavy manual
interaction of starting the subsystem. With two password
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prompts, the user may not be familiar with the passwords and
need to spend even more time searching documentation for
them.

The RTAC subsystem can also be used to validate the
full system. In the RTAC controller menu, one can check
the connection diagnostics of RTAC (Fig. 8). Two fields are
of interest here. If the Offline field reads FALSE, then
the RTAC is connected to the CORE virtual network. If the
Message_Success_Count counter continues to increase,
the RTAC is connected to the PowerWorld DNP3 Outstations.
With these two fields, the functionality of the network can be
confirmed.

VI. CONCLUSION AND FUTURE WORK

Modeling complex power systems often necessitates a mas-
sive manual overhead. In this paper, we propose RESAuto,
a common automation framework to increase speed and
facilitate usage of the CYPRES system. The effectiveness
of RESAuto is shown by automating three subsystems that
previously required extensive amounts of time and effort
to run. RESAuto decreased the time spent initializing these
subsystems by up to 635% and reduced the manual interaction
required to simply pressing a single button. Future work on
this project will include the integration of a results-processing
website, further extending the library of attacks that can be
automated, and expanding further on integration with RTAC
that will allow Jenkins-specified RTAC files to be selected.
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