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Abstract—Power systems are critical infrastructure for reliable
and secure electric energy delivery. Incidents are increasing, as
unexpected multiple hazards ranging from natural disasters to
cyberattacks threaten the security and functionality of society.
Inspired by resilient ecosystems, this paper presents a resilient
network design approach with an ecological robustness (RECO)-
oriented optimization to improve power systems’ ability to
maintain a secure operating state throughout unknown hazards.
The approach uses RECO, a surprisal-based metric that captures
key features of an ecosystem’s resilient structure, as an objective
to strategically design the electrical network. The approach
enables solvability and practicality by introducing a stochastic-
based candidate branch creation algorithm and a Taylor series
expansion for relaxation of the RECO formulation. Finally, studies
are conducted on the RECO-oriented approach using the IEEE
24 Bus RTS and the ACTIVSg200 systems. Results demonstrate
improvement of the system’s reliability under multiple hazards,
network properties of robust structure and equally distributed
power flows, and survivability against cascading failures. From
the analysis, we observe that a more redundant network structure
with equally distributed power flows benefits its resilience.

Index Terms—Power Networks Design; Ecological Robustness;
Mixed-Integer Nonlinear Programming; Power System Reliabil-
ity; Power System Resilience

I. INTRODUCTION

Power systems deliver the electric energy that ensures the
functionality of modern society. However, the infrastructure
is aging and remains vulnerable to physical disturbances and
natural disasters [1], such as the Winter Storm Uri in Texas
in 2021. The integration of communication networks into
critical infrastructure enables improved functionality but also
increases the risk of cyber-originated and combined cyber-
physical attacks to cause unexpected outages [2], [3]. The de-
sign of a resilient grid network is thus an essential foundation
for its inherent abilities to withstand such hazards.

Resilience is a property of systems that represents their
ability to recover from adverse conditions. From a regional
transmission operator perspective, Chen et al. emphasize the
necessity of constructing a robust grid to allow operators to
address various contingencies on any given day [4]. In [5],
Gholami et al. list different areas of resilience enhancement
regarding system planning and operations, where long-term
planning resilience enhancements lay the foundation for short-
term operational resilience enhancements. Both [6], [7] find
that redundant and robust network structures are effective for
improving power system resilience under extreme conditions.
These works highlight the importance of network design for
enhancing power system resilience, while motivating the need

to better understand and characterize the effective use of de-
sign against extreme events. Inspired by resilient ecosystems,
this work develops a resilience-oriented design approach for
large scale power systems that improves their inherently ability
to absorb the disturbances from multiple hazards. The novelty
of this work is to introduce an optimization based resilient
design approach that is realistic, scalable, and extensible to
translate the long-term resilient trait of ecosystems, ecological
robustness (RECO), into power network design with the con-
sideration of power system constraints, including the power
balance, power flow equations, and operational limits. The
goal of the proposed RECO Oriented Power Network Design
Problem is to strategically add redundancy to power networks
and satisfy the constraints of power systems for improving the
system’s resilience. The main contributions of this paper are
as follows:

• This paper presents a resilience-oriented approach to
improve power systems’ inherent ability to tolerate unex-
pected high-impact disturbances and maintain function-
ality securely. A quantitative resilience metric, RECO, is
formulated as an objective for network optimization con-
sidering the power system’s constraints to guide resilient
power network design, ahead-of-time without intelligence
of the threat.

• A stochastic-based algorithm to create candidate branches
and a Taylor Series Expansion of the logarithm function
in the formulation are proposed to scalably solve the opti-
mization, and the RECO-oriented design problem is solved
for 24- and 200-bus systems under different scenarios.

• The RECO-oriented power networks are examined under
different levels of N-x contingencies, and their network
properties and power flow distributions are analyzed. The
analyses show that a more redundant power network
structure with more equally distributed power flows con-
tributes to a more resilient power system.

• RECO is shown to be an effective metric to help measure
and improve the inherent resilience of power networks.
The formulation can guide design of power network struc-
tures considering power flows and ecosystems’ resilient
traits to achieve power systems’ long-term resilience.

Section II reviews other resilient power network design
approaches and introduces the research objective of this work.
Section III presents related work on unexpected critical multi-
hazards in power systems and the background of RECO. Sec-
tion IV introduces the proposed RECO-oriented approach for
improving power system resilience through resilient network
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design. Section V applies the RECO-oriented approach to a 24-
and a 200-bus system, respectively. Section VI analyzes opti-
mized networks regarding the system reliability under different
levels of N-x contingencies and network properties. More
discussions are in Section VII, and Section VIII concludes
the paper.

II. BACKGROUND AND RESEARCH OBJECTIVES

Recently, several works have been proposed to optimally
design and plan transmission and distribution systems to
improve a system’s resilience against natural disasters. In
[8], Ma et al. present a two-stage stochastic mixed-integer
linear program to optimally design the network with minimum
investment and minimum expected loss of load during climate
hazards. In [9], a framework is proposed to analyze the in-
vestment in power network enhancements with the evaluation
of system resilience under natural disasters. In [10], a tri-
level planning approach is proposed to expand and harden
the coupled power distribution and transportation systems
for improved resilience under random natural disasters with
minimum investment. In [11], Garifi et al. propose a method to
harden the power grid structure with minimum investment. The
investment decision will improve the grid’s recovery against
natural disasters. All above works consider the adverse impact
of natural disasters with stochastic models and formulate the
resilient network design problem from the cost-effectiveness
perspective. The improvement of resilience is observed and
validated with less loss of load under the adverse scenarios.
These works address resilience through different economic
incentives for targeted hazards. However, there is a lack of
an accepted and unified resilience objective that captures the
inherent property of resilience considering the power network
structure. By comparison, the research question addressed in
this paper is how to design a resilient power network structure
that can enhance power systems’ inherent ability to tolerate
disturbances and maintain functionality securely regardless of
the source of threats. RECO captures the inherent property
of resilience regarding the network design and power flow
distribution, and it represents the inherent ability to absorb
disturbances regardless of their sources or causes.

As presented in [12], design, preparedness, and planning
have been recognized as the top three needs to enhance grid
resilience; importantly, design and construction standards for
higher performance are required. The research gap addressed
in this paper is to integrate the property of resilience into
power network design for enhanced inherent resiliency. This
paper presents a resilience-driven approach for power network
design with its inspiration from naturally resilient ecosystems.
The proposed approach translates ecosystems’ survivability
and resilience traits to power grids under the guidance of a
quantitative resilience objective.

The concept of resilience that we adopt dates back to the
1970s when C.S. Holling defined the resilience in ecology as
“a measure of the ability to absorb changes of variables and
parameters in systems [13].” Over millions of years’ growth
and development, ecosystems have survived from various
large-scale and unexpected disturbances, showing the ability to

absorb sudden changes in the system and maintain their state.
This long-term resilience contributes to an ecosystem’s unique
network structure, and it results in a novel and practical bench-
mark for robust, sustainable, and resilient human networks
design. This benchmark is quantified as ecological robustness
(RECO) [14], [15] that adopts a surprisal model from informa-
tion theory [16]. By modeling ecosystems as directional graph
representations of energy transfer, the optimal RECO recognizes
a balance of the pathway efficiency and redundancy in resilient
ecosystems. Based on the similarity between ecosystems and
power systems, [17], [18] introduce the potential of RECO
to guide power network design for improved reliability. In
[19], the authors propose a RECO-oriented optimal power flow
to improve power systems’ survivability against unexpected
contingencies. All above works show the potential of applying
RECO into power systems to improve resilience. However, the
approach in [17] would not be practical to implement. For a
14-bus power grid, it is unrealistic to construct 80 branches to
improve its resilience. Besides, [17], [18] are limited to small-
scale power systems due to the mathematical formulation
of the RECO and its optimization, while [19] only optimizes
the power flow dispatch. Therefore, this paper introduces a
comprehensive RECO-oriented resilient power network design
approach that facilitates scalability and practicality for large-
scale power systems.

Three challenges previously impeded the application of
RECO for large-scale power network design. First, the nature of
network design is a mixed-integer problem, which is a typical
class of NP hard problem. With the increase of case size,
the search domain expands exponentially, which adversely
limits the efficiency for finding a global optimal. Second, the
optimized networks in [17] directly connect buses in different
voltage levels, which are impractical in power systems. Third,
the formulation of RECO involves several layers of logarithm
functions which need the input variables to be positive, namely
the power flow direction needs to be the same during the
solving process. However, power flow direction changes are
prevalent in large-scale power systems, and it makes the
mixed-integer nonlinear programming (MINLP) problem in
[18] invalid for larger power systems. To deal with above chal-
lenges, this paper first introduces a stochastic based algorithm
to create candidate branches with realistic electric parameters
for large-scale power systems. It greatly reduces the search
domain for the optimal structure and keeps the realism of the
network structure. Then, we relax the formulation of RECO
with a Taylor series expansion for the logarithm functions. The
change of flow direction during the solving process will not
cause the problem to be invalid. This improves the solvability
and efficiency of the network design problem and ensures the
practicality of the optimized resilient network design.

III. RELATED WORK

A. Unexpected Multi-Hazard Scenarios

N-1 reliability is the basic requirement for modern power
systems planning and operation [20]. However, the integration
of communication networks and the increasing of system size
expose power systems to more threats from both cyber and

2

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3262501

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



physical domains. Thus, the abruptness of contingencies is
increasingly harder to predict [21]. In [22], [23], authors have
utilized Line Outage Distribution Factors (LODFs) and Group
Betweenness Centrality (GBC) to identify sets of critical
elements in large scale synthetic grids [24]. These sets of
critical elements consist of multiple (3 to 8) branches across
the wide area, which are statistically unexpected and can ad-
versely disrupt power systems’ operation and security. In [25],
those unexpected multi-hazards have been achieved through
Man-in-the-Middle attacks (MiTM) in a high fidelity cyber-
physical power system testbed. Those incidents make the
system experience operational stress, threatening grid security
and resilience. The above multi-hazard scenarios provide a
touchstone for measuring power system resilience against
unexpected cyberattacks and natural disasters. Under unex-
pected multi-hazards, the system’s inherent ability to absorb
disturbances can be measured by its resulting operational
violations as an indicator of its resilience.

B. Background of Ecological Robustness (RECO)

Ulanowicz et al. and Fath et al. utilize a model of surprisal
from Information Theory [16] to quantify the resilience of
ecosystems as RECO. It considers the network structure and
the transitions of energy and material among all species over
the network [14], [15], [26]. Its formulation represents a given
network’s robustness as a function of its energy flow pathway’s
redundancy and efficiency.

Surprisal is defined with the following expression,

si = −k × log(pi) (1)

where si is one’s “surprisal” at observing an event i that occurs
with probability pi, and k is a positive scalar constant [27].

The indeterminacy (hi) of an event i is then formulated as
the product of the presence of an event pi and its absence si:

hi = −k × pi × log(pi) = si × pi (2)

It measures how likely the event i will change for a given
event i, if we know the probability of event i will occur
(pi >> 0) and the surprisal of event i that the system is
doing something else most of the time (si >> 0). It can
be interpreted as follows: for a given system, those low
probability events can cause high impacts to the system,
because they happen so rarely that the system doesn’t expect;
high probability events possess a low impact because they
occur often and the system adapts to them [28].

With the above models of surprisal and indeterminacy,
RECO is formulated with the following metrics.

The Total System Throughput (TSTp) is the sum of all
flows within the system, which represents the system size [29],

TSTp =

N+3∑
i=1

N+3∑
j=1

Tij (3)

where Tij is the entry in Ecological Flow Matrix (EFM) [T].
Following the ecologists’ modeling of food webs, the EFM is
constructed with a system boundary. Fig 1 shows a hypothet-
ical ecosystem and its conversion to [T]. The actors (species)

that exchange energy based on a prey-predator relationship are
within the system boundary, and the energy providers, energy
consumers, and energy dissipation are placed outside of the
system boundary [29]. Thus, [T] is a square (N+3) × (N+3)
matrix containing flow magnitudes of transferred energy. N is
the number of actors inside the system boundary, and the extra
three rows/columns represent the system inputs, useful system
exports, and dissipation or system exports [30]. It captures the
energy interactions within and across the system boundary.

Fig. 1: The conversion of a hypothetical ecosystem into
Ecological Flow Matrix. Replicated from [17].

The Ascendency (ASC) measures the scaled mutual con-
straint for system size and flow organization that describes
the process of ecosystems’ growth and development [31] with
following expression,

ASC = −TSTp×
N+3∑
i=1

N+3∑
j=1

(
Tij

TSTp
log2

(
TijTSTp
TiTj

))
(4)

where Tij

TSTp is recognized as the probability of an event
that interrupts Tij with respect to all flows circulated in
the system. TijTSTp

TiTj
measures the conditional probability

of joint event i and j with knowledge of source node (i)
and end node (j), where Ti =

∑m=N+3
m=1 Tim and Tj =∑n=N+3

n=1 Tnj . With the model of indeterminacy (Eqn. 2), the
sum of Tij

TSTp log2(
TijTSTp

TiTj
) multiplies with TSTp, giving a

dimensional version of network uncertainty. For the same size
systems, a higher value of ASC means that a network has fewer
options of pathways for flows moving from any one actor to
another, resulting in a lower level of uncertainty.

The Development Capacity (DC) is the upper bound of
ASC as the development and growth of ecosystems are limited
[32],

DC = −TSTp
N+3∑
i=1

N+3∑
j=1

(
Tij

TSTp
log2

( Tij
TSTp

))
(5)

Similar to ASC, DC is also the aggregate uncertainty, but
without considering the source and end nodes. It captures the
aggregated impacts (uncertainty) from all events (surprisals).

Then, RECO is then formulated as follows:

RECO = −
(

ASC
DC

)
ln

(
ASC
DC

)
(6)

The ratio of ASC and DC reflects the pathway efficiency
for a given network, while its natural logarithm shows the
network’s pathway redundancy [14]. Thus, RECO is a function
of these two opposing but complementary attributes, where
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their balance achieves the optimal RECO that directly affects a
system’s long-term survival [14]. Multi-element contingency
analyses in systems controlled for optimal RECO [19] have
shown the ability for RECO to account for the presence of
unknown events, or interruptions, that can happen in the
system.

IV. ECOLOGICAL ROBUSTNESS-ORIENTED APPROACH
FOR RESILIENT POWER NETWORKS

Modeling a power system analogous to an ecosystem en-
ables construction of [T] with real power flows which en-
ables RECO optimization and analysis [17], [18]. The analogy
adopted between power grids and food webs sets the food web
actors as generators and buses, the system inputs as energy
supplied to generators from outside the system boundaries,
the useful exports as loads (demand), and the dissipation as
real power losses. Fig 2 shows an exemplar [T] for a grid with
n generators and m buses.

With [T] constructed from real power flows, DC estimates
the aggregated impacts of all events as the maximum power
flow changes that can happen in the system. ASC estimates the
dependence between events, and RECO estimates the robustness
of the system. Then, by including RECO as an objective
to guide network design, the optimized networks can better
inherently absorb disturbances while maintaining functionality
securely, thus improving their resilience.

A. Mixed-Integer Optimization Model

The RECO-Oriented Power Network Design Problem is built
upon the Transmission Network Expansion Planning (TNEP)
problem and implemented using PowerModels.jl with the
objective of achieving optimal RECO. The problem is formu-
lated through Equation (7)-(17) with the direct current (DC)
power flow model. The novelty of this model is integrating
knowledge of this resilient property from ecosystems with the
physics in power systems for resilient power network design.

Objective:

Max(RECO) (7)

Subject to:

[T] = f(Pij , Pgeni
, Ploadi

, αij)

=



0, Pgeni
, 0, ... ... 0

0, ... Pgeni , 0, ... 0
0, ... ... ... ... 0
0, ... Pij , ... Ploadi

, 0
0, ... ... ... ... 0
0, ... ... αijPij , Ploadi

, 0
0, ... ... ... ... 0


(8)

RECO = −
(

ASC
DC

)
ln

(
ASC
DC

)
(9)

ASC = −TSTp
N+3∑
i=1

N+3∑
j=1

(
Tij

TSTp
log2

(
TijTSTp
TiTj

))
(10)

DC = −TSTp
N+3∑
i=1

N+3∑
j=1

(
Tij

TSTp
log2

( Tij
TSTp

))
(11)

TSTp =

N+3∑
i=1

N+3∑
j=1

Tij (12)

P l
ij 6 Pij 6 Pu

ij (∀(i, j) ∈ B ∪ NB) (13)

P l
geni

6 Pgeni
6 Pu

geni
(∀i ∈ G) (14)

Pij = Bij(θi − θj) (∀(i, j) ∈ B) (15)

Pij = αijBij(θi − θj) (∀(i, j) ∈ NB) (16)

Pi = Ploadi − Pgeni =
∑
j

Pij (∀j ∈M) (17)

where B is the set of existing branches, NB is the set of
candidates of new branches, M is the set of buses, and G is
the set of generators; P l

ij and Pu
ij are the lower and upper

bound of branch limit, respectively; P l
geni

and Pu
geni

are the
lower and upper bound of generator output, respectively.

Gen 1 .  .  . Gen n Bus 1 .  .  . Bus m Output Dissipation
Input 0 P gen1 .  .  . P genn 0 .  .  . 0 0 0
Gen 1 0 0 .  .  . 0 P gen1 .  .  . 0 0 0

. . . .  .  . . . .  .  . . . .
Gen n 0 0 .  .  . 0 0 0 P genn 0 0
Bus 1 0 0 .  .  . 0 0 .  .  . P 1m P load 1 P loss 1

. . . .  .  . . P ne i1 .  .  . . . .

. . . .  .  . . . P ij P ne im . .

. . . .  .  . . . P ne ij . . .
Bus m 0 0 .  .  . 0 P m1 .  .  . 0 P load m P loss m

0 0 .  .  . 0 0 .  .  . 0 0 0
0 0 .  .  . 0 0 .  .  . 0 0 0

Fig. 2: An exemplar of Ecological Flow Matrix [T] for a
grid with n generators and m buses. The entries of [T] are
Pgeni

, Pij and Pneij , Ploadi
, Plossi . The Pgeni

is the real
power output from generator i, which locates at the input
row and the flow between generator and corresponding bus.
The generators are treated as lossless with no dissipation. The
Ploadi

and Plossi are the real power consumption and real
power loss, respectively, at Bus i. The Pij and Pneij are the
real power flows on the corresponding existing branch and
candidate branch, respectively. Entries with zero values mean
there is no power flow interaction among buses and generators.

The TNEP problem is formulated as a mixed-integer opti-
mization problem where each candidate branch has a binary
decision variable αij for the candidate branch from bus i
to bus j. The initial value of αij equals to zero if the
corresponding branch does not exist in the original network. If
αij after optimization equals one, the branch is built to reach
a maximum RECO.

The calculation of RECO depends on [T] as expressed in
Eqn. 8 with generator real power output Pgeni of each gener-
ator, real power flow Pij and Pneij from existing branches and
candidate branches, power consumption at each load Ploadi

,
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and binary decision variables αij for candidate branches. Fig.
2 illustrates the detailed formulation of [T] using the above
variables. Power flow dispatch (Pij and Pneij ) depends on
the real (Pi) and reactive power (Qi) injection at each bus,
bus voltage (voltage magnitude Vi, voltage angle θi), and the
network structure (αij) [33]. In this formulation, a DC power
flow model is used, so voltage magnitude Vi is one, reactive
power Qi and real power losses Plossi are zero. Therefore,
the decision variables of the RECO-Oriented Power Network
Design Problem include each generator’s real power input
Pgeni

, voltage angle θi of each bus, and the binary decision
variable αij for candidate branches. In this way, the proposed
RECO-oriented approach will optimize the network structure
(αij) and power flow dispatch (Pgeni and θi) to maximize
RECO. Eqn. (9)-(12) are the calculation of RECO using [T]
through several layers of logarithm functions. Eqn. (13)-(17)
are the power flow constraints for operating limits and power
balance. This MINLP problem is thus a nonlinear non-convex
optimization problem.

B. Stochastic Based Candidate Branches Creation

In the proposed MINLP problem in Section IV-A, rather
than considering all potential branches to build, a set of can-
didate branches is considered. This represents that in reality,
the planners have some a priori information about new lines to
consider. To represent the impact of the variability of such a set
on the formulation and its solution, assuming here that we do
not know and cannot control what lines they will choose, and
to serve as a proxy for this set, we implement the hypothetical
scenario where this set is chosen randomly. This selection
mechanism can be considered as a worst case scenario, which
is suitable to study, as the true planners may be able to choose
a better set than a random selection. Hence, by demonstrating
algorithm’s effectiveness even when it is assumed that no
information is given about the candidate branch locations, it
shows the potential of the approach to be this good or better
in reality. This introduces opportunity for future study. Since
the test cases do not include a candidate branch set, Algorithm
1 is used, with suitable electric parameters for each branch
based on the existing grid information. This fills the gap of
the lacked information for candidate branches to expand power
networks. Unlike [17], [34] that use heuristics or pre-screening
methods to find an optimal network structure, Algorithm 1 is
a stochastic approach to select candidate lines that supports
direct inclusion of RECO with power system constraints to
optimize power network structure for inherent resilience.

The input for Algorithm 1 is the bus and branch information
of a given power network, including identifier information,
voltage levels, and branches’ electric parameters. Algorithm
1 first classifies the existing branches into different voltage
levels. The normal distribution is then used to represent
the real-valued random variables. Thus, we take branches’
electric parameters, including series resistance (R), series
reactance (X), and shunt conductance (C), and capacity (MVA
limit), as real-valued random variables following the normal
distribution. Based on the case information, Algorithm 1
generates normal distributions for different electric parameters

Algorithm 1 Stochastic Based Realistic Candidate Branches
Selection and Creation

Input = All branches’ information from the case, the total
number of candidate branches (M )
Classify branches based on the voltage level
while The number of candidate branches < M do

for Each Voltage Level do
Collect the branch information for all parameters
for Each Parameter do

Compute the mean (µ) and variance (σ2)
Generate a Normal Distribution (N (µ,σ2) )

end for
end for
Select the from bus and to bus at the same voltage level

using a Uniform Distribution (U(0, M))
Insert the parameter for the candidate branch from the

Normal Distribution (N (µ,σ2) ).
end while

of branches at each voltage level. Algorithm 1 takes a 40%
confidence interval to create valid and different electric param-
eters of R, X , and C in per unit for candidate branches in our
case studies. The candidate branches’ capacity are twice the
average capacity of existing cases’ branches. From ecologists’
perspective, power networks are more efficient than redundant.
Each network has a corresponding value of RECO, and any
new branch could contribute to the improvement of RECO. In
selecting the initial candidate branches, we hypothesize that all
network structures have approximately the same probability
of being the most resilient network based on RECO; hence,
all branches are assumed to have the same probability to be
selected using the uniform distribution. Algorithm 1 will select
M candidate branches from all possible branches with the
uniform distribution to reduce the searching domain. With a
specified number of candidate branches (M), the probability
of selecting candidate branches is ( 1

M )
Additional information such as geographic location, cost,

and government policies can further improve the realism
for choosing candidate branches and validating the cost-
effectiveness for the network construction. Such information
can help stakeholders determine the candidate branches instead
of using Algorithm 1. The material, electrical parameters,
and construction cost of candidate branches can also then be
practically and accurately estimated.

One potential issue that may arise when adding branches
is the so-called Braess paradox where adding one or more
roads can cause congestion and slow down the traffic [35].
A similar situation has been observed in power systems
where added branches induced congestion in the system [36],
[37]. The Braess paradox is avoided in the proposed RECO-
oriented power network design in Section IV-A because the
optimization model will reject the branches that can cause
congestion in the system. The results and analyses from the
case studies also show this.

C. Relaxation of the Ecological Robustness Formulation

The formulation of RECO involves with several layers of
logarithm functions, whose hard constraint is that its inputs
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must remain positive during the solving process for the pro-
posed optimization problem using state-of-art MINLP solvers.
However, the inputs for calculating RECO are the power flows,
and their directions can be reversed during the solving process.
In [18], its formulation fails to capture the feasible space
for even small scale power systems, since the inputs are
not constantly positive for the logarithm functions during the
solving process. This creates a problem for large cases, where
flow direction changes are more prevalent during the solving
process. A Taylor Series Expansion of the natural logarithm
function is thus used here to relax the formulation of RECO
to ensure the feasibility of the proposed RECO-oriented power
network design problem.

Considering the domain for the expansion, this paper utilizes
the following relaxation, with x > 0 [38]:

ln(x) = 2

∞∑
n=1

((x− 1)/(x+ 1))(2n−1)

(2n− 1)

= 2[
(x− 1)

(x+ 1)
+

1

3
(
(x− 1)

(x+ 1)
)3 +

1

5
(
(x− 1)

(x+ 1)
)5 + ...]

(18)

The logarithm function has a base of 2 in Equations (5) and
(4). Using a property of logarithm functions,

log2(x) =
ln(x)

ln(2)
(19)

the Taylor Series Expansion of log2(x) can be expanded:

log2(x) =
2

ln(2)
[
(x− 1)

(x+ 1)
+

1

3
(
(x− 1)

(x+ 1)
)3 +

1

5
(
(x− 1)

(x+ 1)
)5 + ...]

(20)
By adapting the first order Taylor Series Expansion of Equa-

tions (18) and (20) into Equation (9) - (11), the formulation of
RECO can keep valid even with flow direction changes during
the optimization process. The above formulation requires the
input x not equal to -1. The x for the logarithm function in
Equations (9)-(11) are ASC

DC , TijTSTp
TiTj

, and Tij

TSTp , respectively.
ASC
DC and Tij

TSTp are guaranteed within (-1,1) and TijTSTp
TiTj

is
not equal to -1 for power systems. Then, the relaxed RECO in
the proposed approach can thus be solved with large power
grid networks.

V. CASE STUDIES

This section applies the RECO-oriented approach for two
power system cases: the IEEE 24 Bus RTS [39] and the 200-
bus synthetic grid from [24], to improve their inherent ability
to tolerate disturbances and maintain functionality securely.
Algorithm 1 created 50, 100, 150, and 200 candidate branches
for each case, respectively. Each case has a unique set of
candidate branches, and each set of candidate branches does
not belong to the others. For example, the set with 100
candidate branches does not include the set with 50 candidate
branches. These candidate branches constitute 250, 2100, 2150,
and 2200 different network structures to find the optimal RECO-
oriented structure through solving the proposed RECO-oriented
design problem.

The candidate branches are selected with the highest voltage
rating for each case, since the highest voltage transmission
lines are the backbone of the system for power transfer.
The proposed approach (Equation 7-17) not only solves the
network structure (αij), it also solves the optimal power flow
dispatch with an output vector of generator real power and
bus voltage setpoints (Pgeni and θi). The resultant network
design is analyzed with both the optimized network structure
and the optimized network structure with the output vector,
respectively. Thus, there two types of optimized networks
analyzed for each scenario under each case study. The naming
convention used for each network follows the pattern of Origi-
nal Case Name-Number of Candidate Branches-Structure/Str-
OPF. For the -Structure cases, they are the optimized network
structure with the selected branches (αij) from the solution
to analyze the optimized resilient network structure under
original operating points; while for the -Str-OPF cases, they
are the optimized network structure with the operating points
of each generator’s output and bus voltage (αij , Pgeni and
θi). The detailed case information have been made publicly
available at [40].

The solver for the MINLP problem uses Ipopt [41], Ju-
niper [42], and Cbc [43]. Since the MINLP in Section IV-A
is a nonlinear non-convex problem, the solver can only find
the local optimal point. All the problems were solved using
a laptop with a 2.4 GHz processor and 8 GB memory. The
value of the Optimal RECO from the solver is 0.3431. It
is the mathematical optimal value of RECO with the Taylor
Series Expansion. The results in Table I and II show the
Achieved RECO, the Operational Cost, the Number of
Added Branches, the Real Power Losses, the Reactive
Power Losses, and the Computation Time for the IEEE 24
Bus RTS system and ACTIVSg200 system, respectively. The
Achieved RECO is based on the optimized network structure
with/without the output vector of generator real power output
and bus voltage after solving the power flows of optimized
case with the alternative current (AC) power flow model. The
Operational Cost is based on the marginal cost (Ci) $/MWhr
and generator’s output (Pi) MW with Eq. (21), so the unit is
$/hr.

Cost =

G∑
i=1

Ci(Pi) (21)

A. IEEE 24 Bus Reliability Test System (RTS)

The IEEE 24 Bus Reliability Test System (RTS) [39] has 24
buses and 37 branches. With 24 buses, there are 276 links that
can be selected as candidate branches to expand the network
structure. Fig 3 shows the RECO optimized network for the
IEEE 24 Bus RTS system with 50 candidate branches (250

different network structures), and 21 branches are added after
the optimization.

Table I shows the results of all four scenarios for the IEEE
24 Bus RTS cases. The results of Achieved RECO show that
the optimized networks have a higher value of RECO than
the original case, and the -Str-OPF networks have a higher
value of RECO than the -Structure networks (except for the
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100 candidate branch scenario). The value of optimized RECO
is close to the ‘Window of Vitality’ (0.3469-0.3679), which is
the unique range of RECO for the resilient ecosystems [44].

With more branches constructed, the system has fewer real
power losses but more reactive power losses, and the apparent
power losses (MVA) are increasing as shown in Table I (except
IEEE 24 Bus RTS-200-Structure and -Str-OPF). However,
the extra losses from the new branches do not incur extra
operational cost. When we compared the -Structure cases to
the original case, the operational cost is reduced. On the other
hand, the operational cost of all -Str-OPF cases increases with
a slightly higher RECO values (except IEEE 24 Bus RTS-100-
Str-OPF). With the optimized output vectors, Pgeni

and θi,
the generators are also more equally contributing to the power
supply for improving the RECO. Some expensive generators
are generating more power, while some cheaper generators
are producing less. It shows that the operational cost will not
change much if only the network structure is more robust. As
mentioned in Section IV-B, each set of candidate branches is
unique. With the increasing numbers of candidate branches,
the number of added branches does not increase. The added
redundancy does not necessarily depend on the number of
candidate branches. This confirms that RECO can strategically
construct the network structure and operate power systems to
improve the system’s resilience and maintain power system
constraints.

Fig. 3: RECO-oriented IEEE 24 Bus RTS network topology
with 50 candidate branches (21 branches are constructed)

B. ACTIVSg200

The ACTIVSg200 case [45] has 200 buses and 246
branches. With 200 buses, there are 19900 links that can
be selected as candidate branches, which contains 219900

different network structures to be explored. Fig 4 shows the
RECO optimized network for the ACTIVSg200 system with 50
candidate branches (250 different network structures), and 26
branches are added after the optimization.

TABLE I: Results of RECO-Oriented Power Network Design
for IEEE 24 Bus RTS

Use Case Achieved
RECO

Operational
Cost
($/hr)

Number
of Added
Branches

Real Power
Losses
(MW)

Reactive
Power Losses

(MVar)

Computation
Time

(seconds)
IEEE 24 Bus RTS 0.3382 62263 0 51.22 650.27 0

IEEE 24 Bus
RTS-50-Structure 0.3492 61061 21 29.91 789.69 1.74

IEEE 24 Bus
RTS-50-Str-OPF 0.3496 78433 21 24.01 799.34 1.74

IEEE 24 Bus
RTS-100-Structure 0.3514* 60716 25 19.92 891.52 8.54

IEEE 24 Bus
RTS-100-Str-OPF 0.3502 71582 25 19.19 898.74 8.54

IEEE 24 Bus
RTS-150-Structure 0.3454 60925 12 24.19 682.01 75.90

IEEE 24 Bus
RTS-150-Str-OPF 0.3459 75525 12 22.39 691.87 75.90

IEEE 24 Bus
RTS-200-Structure 0.3474 61432 8 34.40 598.75 23.02

IEEE 24 Bus
RTS-200-Str-OPF 0.3479 78211 8 27.82 617.91 23.02

Fig. 4: RECO-oriented ACTVISg200 network topology with 50
candidate branches (26 branches are constructed)
TABLE II: Results of RECO-Oriented Power Network Design
for ACTIVSg200

Use Case Achieved
RECO

Operational
Cost

($/hr)

Number
of Added
Branches

Real Power
Losses
(MW)

Reactive
Power Losses

(MVar)

Computation
Time

(seconds)
ACTIVSg200 0.2510 49000 0 24.77 435.64 0
ACTIVSg200-
50-Structure 0.2651 48909 26 19.21 598.83 58.64

ACTIVSg200-
50-Str-OPF 0.2655 49725 26 18.04 593.64 58.64

ACTIVSg200-
100-Structure 0.2578 51264 15 20.92 523.41 35.46

ACTIVSg200-
100-Str-OPF 0.2599 51264 15 21.55 526.00 35.46

ACTIVSg200-
150-Structure 0.2531 48923 5 22.23 471.84 84.09

ACTIVSg200-
150-Str-OPF 0.2557 50044 5 22.73 470.65 84.09

ACTIVSg200-
200-Structure 0.2671 52104 51 17.63 748.15 45.80

ACTIVSg200-
200-Str-OPF 0.2708* 52014 51 16.75 764.93 45.80

All four scenarios are successfully solved and the results
are shown in Table II. Compared to the IEEE 24 Bus RTS,
the Achieved RECO values are much smaller in ACTIVSg200
cases. The original synthetic power grids are highly close to
the real U.S power grids, which are quite sparse and efficient.
Considering there are 219900 different structures that can be
explored, the created candidate branches may not have the
exact optimal structure. Thus, the RECO for this synthetic grid
is not improved as much as the IEEE 24 Bus RTS system.

For the ACTIVSg200 cases, all -Str-OPF networks have
higher RECO than their corresponding -Structure networks. The
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new built branches incur extra whole power losses. Similar to
the IEEE 24 RTS case, the real power losses also decrease
while the reactive power losses increase. The operational
cost of the ACTIVSg200-50-Structure and ACTIVSg200-150-
Structure cases are less than the original operational cost even
though there are extra branches and losses. The operational
cost of other RECO-oriented cases increase slightly compared
to the original case. The number of built branches does
not increase with the increasing of candidate branches. This
also demonstrates the RECO is strategically constructing the
network structure and operating power systems.

VI. NETWORK ANALYSES

The optimized networks are analyzed and compared with
their original network for their reliability under multi-hazard
scenarios and network properties regarding their structure and
power flow distribution. All analyses are performed using AC
power flow model.

A. Network Reliability Analysis

The multi-hazard contingencies are applied as different
levels of N-x contingencies for each case. For x=1, they are
planned contingencies; for x>1, they are unexpected contin-
gencies. Under the contingencies, if there is one branch’s
power flow is over the limit or the voltage magnitude is out
of the required limit, it is counted as one violation. If the
power flow cannot be solved, then the contingency is marked
as unsolved.

As for different case studies, the generation of N-x con-
tingencies are different since the IEEE 24 Bus RTS system
is relatively small compared with the ACTIVSg200 system.
For the IEEE 24 Bus RTS cases, comprehensive N-1, N-2
and N-3 contingency analyses are performed for all power
system components, including branch, bus and generator. The
loss of any bus can cause more elements to be disconnected
simultaneously. Thus, the N-3 bus contingencies can cause
multiple components (generators and branches) disconnected.
This can have a similar impact on generator unavailability like
the Texas Winter Storm [46]. For the ACTIVSg200 cases, a
comprehensive N-2 and N-3 contingency analysis is difficult
to complete, due to the large number of components. The
N-1 contingency analysis is done for the branch, bus, and
substations, respectively. Since all generators in ACTIVSg200
case are connected through transformers, the N-1 branch
contingencies include all N-1 generator contingencies. The loss
of one bus and one substation can catastrophically impact the
entire system with multiple components (N-x) disconnected.
It provides validation of the redesigned system’s ability to
tolerate disturbances and maintain functionality securely. For
the ACTIVSg200 cases, the unexpected critical multi-hazard
contingencies from [22], [23] are also considered. As men-
tioned in Section III-A, such critical N-x contingencies (x
ranges from 3 to 8) are selected through LODFs and GBC
as multiple branches widely spread in the system, whose
loss may cause catastrophic impact to the system. Such
critical contingencies are both geographically wide spread
and statistically rare, which make them a touchstone to study

resilience in large-scale systems. All the contingency analyses
investigated here are performed without remedial actions. The
basic control mechanism, such as automatic generation control
(AGC) and automatic voltage regulator (AVR), are retained
at their original settings. This provides a fair study about
each system’s inherent ability to tolerate unexpected multi-
hazard disturbances and maintain functionality securely, thus
justifying the improvement of resilience.

With more branches built after the optimization, there are
more N-1, N-2 and N-3 contingencies than the original case,
especially for the IEEE 24 Bus RTS case. To fairly compare
the reliability, we then normalize the number of violations
with the total number of N-x contingencies. Fig. 5 shows
the normalized violations (total violations/total number of
contingencies), and Fig. 6 shows the unsolved N-2 and N-3
contingencies for all variations of the IEEE 24 Bus RTS cases.
Overall, the RECO-oriented network structure and operation
schemes are more reliable than the original case with far fewer
normalized violations and unsolved contingencies. With the
proposed RECO-oriented approach, the unsolved N-2 contin-
gencies are completely resolved and the number of unsolved
N-3 contingencies reduced from 148 to less than 20. This
ensures the observability of the system during disturbances and
shows an outstanding improvement of resilience. The IEEE
24 Bus RTS-100-OPF case has the best performance among
all cases. Even though its achieved RECO is smaller than the
corresponding -Structure case, they have the same network
structure. The redundant network structure contributes to the
improved resilience.

Fig. 5: Normalized Violations Comparison of RECO-Oriented
Power Network for all variations of IEEE 24 Bus RTS cases
(Table I)

Fig 7 shows the contingency analysis for all ACTIVSg200
cases. Overall, the RECO-oriented networks are much more
resilient than the original network. All the optimized AC-
TIVSg200 cases maintain the same N-1 branch reliability
as the original network. Under the N-1 Bus, N-1 Substation
contingencies, and unexpected multi-hazard contingencies, all
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Fig. 6: Unsolved Contingencies Comparison of RECO-Oriented
Power Network for all variations of IEEE 24 Bus RTS cases
(Table I)

Fig. 7: Reliability Comparison of RECO-Oriented Power Net-
work for all variations of ACTIVSg200 cases (Table II)

the RECO-oriented networks are more reliable with much
fewer violations and unsolved situations. The ACTIVSg200-
200-OPF has the best performance out of all the optimized
networks with minimum violations and unsolved contingencies
with the highest achieved RECO.

B. Network Properties Analysis

An entropy based network robustness metric (RCF ) is used
to identify cascading failures in power systems [47]. The
analysis of RCF can capture how likely it is for the network
to experience cascading failures. With a higher value of RCF ,
the network is more robust and less likely to have a cascading
failure [47]. The calculation of RCF follows,

RCF =

N∑
i=1

Rn,iδi (22)

Rn,i = −
L∑

i=1

αipilog(pi) and δi =
Pi∑N
j=1 Pj

(23)

where αi is the ratio between the maximum capacity and the
load of corresponding line i; pi is the normalized flow values
on the out-going links; Pi is the total power distributed by
node i and N is the number of nodes in the network.

All network structures are analyzed for typical complex
network properties, including the average node degree (d̄),
clustering coefficient (c̄), average betweenness centrality mea-
sures (b̄) and average shortest path (l̄) [48],

d̄ =

∑
e∑
n

; c̄ =

∑
i

∑
j,k AijAjkAki∑

j Aij(
∑

j Aij−1)∑
n

; (24)

l̄ =

∑
i,j dist(vi, vj)∑

i, jhas path(vi, vj)
; b̄ =

∑
s,t∈V

σ(s, t|e)
σ(s, t)

(25)

where e is the edge and n is the node in graph;
∑
n is the

total number of nodes in the graph; A is the adjacency matrix
of the graph; σ(s, t) represents the number of shortest paths in
the graph between s and t; σ(s, t|e) is the number of shortest
paths in the graph between s and t that contain edge e.

The power flow distribution is also investigated by calculat-
ing the Mean and Standard Deviation (STD) of all branches’
real power flow (pf), reactive power flow (rf), and the line
percentage of MVA limit (MVA%) using Eqn. (26). For the
power flow, the xi are all branches’ pf and rf, respectively. For
the line percentage, the xi are all branches’ MVA%. The N is
the total number of branches.

x =
1

N

n∑
i=i

xi ; s(x) =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (26)

Table III shows the network properties for all network
structures and the corresponding optimal power flow. The
RECO-oriented networks have better network properties than
their original counterparts. All the RECO-oriented networks
have higher RCF , showing that the RECO corresponds to an
improved RCF against cascading failures. Increasing RCF is
found to highly correlate with increasing RECO, except the
optimized results of the IEEE 24 Bus RTS with 100 candidate
branches. Although formulations of both RECO and RCF are
based on an entropy model, their modeling details are different.
RCF is based on branch flow limits, while RECO is based on
network structure, flow magnitudes, and flow directions. There
can be some discrepancies between these two metrics.

All the RECO-oriented networks have larger d̄ and c̄, and
reduced b̄ and l̄. It shows these networks are more robust,
reducing the significance of nodes (buses) and paths (branches)
in the system, which spreads out the system’s risks, from both
perspectives of severity and probability. For actual networks,
the d̄ is in the range of (2.58, 2.61), the c̄ is in the range
of (0.032, 0.058), the b̄ is in the range of (0.083, 0.40), and
the l̄ is in the range of (14.2, 29.2) [45]. The results show
that the optimized ACTIVSg200 networks’ d̄ and c̄ are close
to the actual systems, but the b̄ and l̄ are not. These can be
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explained by the way candidate branches were selected at their
highest voltage level for each case, whose distance is shorter
than branches between different voltage levels.

The Mean and STD of all the branches’ real power flow (pf),
reactive power flow (rf), and line percentage of MVA limits
(MVA%) show that the RECO-oriented networks distribute
power flow more equally than the original network with
reduced values in those measures. The Mean (pf) and STD
(pf) in each -Str-OPF network are smaller than the -Structure
network showing a more equally distributed real power flows,
while the -Structure networks more equally distribute reactive
power flows than -Str-OPF networks with smaller value of
Mean (rf) and STD (rf). These facts could explain that even
though the real power flows of the IEEE 24 Bus RTS-150-
Str-OPF are more equally distributed than IEEE 24 Bus RTS-
150-Structure, its RCF is smaller. The αi for RCF (Eqn. 23)
is the ratio between maximum line capacity considering real
and reactive power, while the line loading in its calculation is
only real power. With less equally distributed reactive power,
its RCF can be reduced. Similarly, since [T] and RECO only
consider the real power flows, the reactive power flows can
be distributed less equally to support the new built branches.
Thus, the -Str-OPF cases may less equally distribute the power
flows regarding the loading capacity, with higher value of the
Mean (MVA%) and STD (MVA%) than the corresponding -
Structure cases. In the optimized network, the reduced STD
(pf), STD (rf), and STD (MVA%), compared to their original
distributions, show that the power flows are closer to each
other, and the newly built branches do not cause power flow
increases on other branches. This also shows the proposed
approach does not cause Braess paradox.

VII. DISCUSSION

The proposed RECO oriented approach for resilient power
networks is a typical NP-hard problem. Although the cases
are different, the total number of topologies that the proposed
approach explored is the same, which are 250, 2100, 2150,
and 2200. With the case size increasing, the computation time
increases from 1.7 seconds to 84.09 seconds because of more
power system variables (Pi and θi) and more complicated
network structures. Thus, the computation time and complexity
of the proposed approach depend on the number of power
system variables and network structure.

Unlike a traditional network expansion problem using the
AC power flow model [49], [50], [34], this paper does not
consider auxiliary equipment for new branches in the for-
mulation. The proposed RECO-oriented power network design
problem is based on the DC power flow model. The optimized
network’s reliability and network properties are then analyzed
through solving the AC power flow model. From the analyses,
the optimized power network structures with more equally
distributed power flows have a greatly improved inherent
ability to tolerate disturbances and maintain functionality se-
curely. The improved resilience is shown by fewer operational
violations and unsolved contingencies under the conventional
N-1 and unexpected multi-hazard contingencies. The candidate
branches are created in Algorithm 1 without construction cost

data. Thus, we are not able to perform as detailed a cost
effectiveness analysis as in [8], [9], [10], [11].

Fig 8 shows the comparison of RECO for eight power grids
and a set of 38 food webs. The smaller power grids (5- to
14-bus cases) are optimized by a heuristic method in [17] and
the larger power grids are optimized by the proposed approach
in this paper. The RECO of the food webs fall into the range
of ‘Window of Vitality’, while the RECO of the original power
grids fall outside this range, especially the large and sparsely-
connected power grids. After the network optimization, their
RECO is improved, as well as their inherent ability to absorb
disturbances. However, the RECO is not within the ‘Window
of Vitality’ for the cases in this paper. Two possible reasons
for this are: (1) the desired ‘Window of Vitality’ values
may be different for power systems compared to food webs,
and (2) the sets of candidate branches do not include all
network structures, so it is possible that the solution is not
the exact optimal structure recognized by RECO. Compared
to the heuristic method in [17] whose optimized cases are
within ‘Window of Vitality,’ the proposed approach in this
paper is more realistic with far fewer branches built. The
approach in [17] is limited to a 14-bus system, thus we cannot
directly compare both methods. The 14-bus case constructs
60 branches in [17] with a global heuristic search, while the
proposed approach builds 51 branches for the ACTIVSg200
case. It shows that the proposed RECO-oriented approach
with power flow constraints and limited search domain can
realistically and strategically guide the power network design.
Although the added branches slightly increase the operational
cost for some scenarios, the improvement of reliability un-
der different levels of N-x contingencies and their network
properties justifies this increased cost. In [19], RECO was
used to optimize the power flow distribution. This paper uses
RECO to guide the power network design to further enhance
its inherent capability to tolerate disturbances and maintain
functionality securely. By strategically adding branches, the
RECO-oriented power networks are more resilient and sur-
vivable against multi-hazard contingencies, with much fewer
violations and unsolved contingencies. From Table I, Figure
5 and 6, the optimal RECO-oriented IEEE 24 Bus RTS system
reduces 70% violations and 96% unsolved contingencies with
25 added branches. From Table II and Figure 7 the optimal
RECO-oriented ACTIVSg200 case reduces 98% violations and
unsolved contingencies with 51 added branches. This level
of resilience enhancement was not achieved in [19]. It shows
that RECO can be an accepted and unified metric that captures
power networks’ inherent property of resilience.

The correlation among RECO, RCF, complex network proper-
ties and power flow distribution shows that the RECO-oriented
power network structure is more resilient against multi-hazard
and cascading failures due to the redundant network structure
with equally distributed power flows. It is worth noting that
the reactive power losses are predominant in transmission
network as observed in Table I and II. With more branches
built, the optimized systems have more reactive power losses.
There should be some auxiliary equipment along with the new
branches for reactive power compensation as in [34]. However,
to investigate the influence of network structure to resilience,
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TABLE III: Network properties for all variations of the IEEE 24 Bus RTS and ACTIVSg200 systems.

Use Case Achieved RECO RCF [47] d̄ c̄ b̄ l̄ Mean(pf) STD(pf) Mean(rf) STD(rf) Mean(MVA%) STD(MVA%)

IEEE 24 Bus RTS 0.3382 1.121 2.833 0.03472 0.10063 3.2138 117.19 86.83 27.95 23.52 32.35 19.04

IEEE 24 Bus RTS-50-Structure 0.3492 3.328 4 0.17698 0.07246 2.5942 67.01 53.33 19.79 19.31 19.54 16.35

IEEE 24 Bus RTS-50-Str-OPF 0.3496 3.413 4 0.17698 0.07246 2.5942 62.94 51.00 21.46 19.86 18.93 16.11

IEEE 24 Bus RTS-100-Structure 0.3514 4.009 4.333 0.175 0.06637 2.4601 56.34 43.71 18.91 19.02 17.02 15.97

IEEE 24 Bus RTS-100-Str-OPF ? 0.3502 4.043 4.333 0.175 0.06637 2.4601 51.47 42.57 19.57 19.67 16.48 17.22

IEEE 24 Bus RTS-150-Structure 0.3454 2.758 3.5 0.09861 0.08037 2.7681 69.68 60.11 20.32 22.60 21.24 18.22

IEEE 24 Bus RTS-150-Str-OPF 0.3459 2.495 3.5 0.09861 0.08037 2.7681 68.54 57.76 21.37 23.28 21.13 18.1

IEEE 24 Bus RTS-200-Structure 0.3474 1.979 3.417 0.11389 0.07790 2.7138 97.94 60.66 25.19 22.69 26.94 16.36

IEEE 24 Bus RTS-200-Str-OPF 0.3479 2.094 3.417 0.11389 0.07790 2.7138 88.79 52.59 24.74 24.22 25.13 15.72

ACTIVSg200 0.2510 1.565 2.46 0.03723 0.03531 7.9913 37.54 56.65 7.70 9.95 18.01 19.06

ACTIVSg200-50-Structure 0.2651 2.785 2.65 0.04399 0.02899 6.7396 34.00 51.06 5.94 7.28 16.11 18.19

ACTIVSg200-50-Str-OPF 0.2655 2.802 2.65 0.04399 0.02899 6.7396 33.18 50.61 5.96 7.27 15.57 17.30

ACTIVSg200-100-Structure 0.2578 2.204 2.55 0.03751 0.03061 7.0597 35.25 53.02 6.52 8.31 16.80 18.41

ACTIVSg200-100-Str-OPF 0.2599 2.168 2.55 0.03751 0.03061 7.0597 35.54 54.36 6.89 8.89 16.24 16.85

ACTIVSg200-150-Structure 0.2531 1.706 2.51 0.03654 0.03145 7.2272 36.90 55.29 7.18 8.95 17.59 18.78

ACTIVSg200-150-Str-OPF 0.2557 1.704 2.51 0.03654 0.03145 7.2272 37.48 58.73 7.51 9.40 16.91 16.94

ACTIVSg200-200-Structure 0.2671 4.207 2.82 0.05346 0.02787 6.5181 30.50 48.63 5.10 6.55 14.61 17.89

ACTIVSg200-200-Str-OPF ? 0.2708 4.207 2.82 0.05346 0.02787 6.5181 30.50 48.63 5.22 6.69 14.02 16.36
1 ?: Best reliability.

Fig. 8: RECO curve for eight power grids and their RECO-
oriented versions, as well as a set of 38 food webs (Data
source: [17]).

all systems keep their original real and reactive power capacity.
Thus, the improvement of resilience solely comes from the
RECO-oriented network structure. With extra auxiliary devices
for reactive power support, the optimized systems can be
more reliable and resilient under the contingencies. All above
analyses demonstrate the effectiveness of using RECO as a
guidance to strategically design and operate power grids to
improve its ability to absorb sudden and big disturbances in
the system while maintaining their functions securely, thereby
enhancing their resilience.

VIII. CONCLUSION

This work addresses a power system’s need to withstand dis-
tributed threats arising from natural, accidental, and intentional
causes that can create multi-hazard scenarios of x elements
across a wide area with severe impact. To achieve this, a
power system resilient design approach is presented, inspired
from long-term resilient ecosystems. The resilience-oriented
power grid network design problem is formulated and solved,

with the goal to improve power systems’ inherent ability
to tolerate disturbances and maintain functionality securely.
The RECO-oriented power networks are analyzed under N-x
contingencies, network properties, and operational cost. Re-
sults show the RECO-oriented networks have fewer operational
violations and unsolved contingencies with more redundant
network structure and more equally distributed power flows.
The RECO-oriented optimization is generalizable as a resilient
network design approach that improves a network’s ability to
withstand unknown threats.

Future work can extend upon this methodology from the
following two aspects. On the one hand, the impact of reactive
power for the calculation and optimization of RECO in power
networks can be investigated for reactive power planning for
better resiliency. On the other hand, the economic factors,
such as construction fee, electricity price, and penalty of
unserved load, can be integrated with the proposed model to
better understand the trade-offs between inherent resiliency
and economics. Further, the projection of load growth and
renewable energies integration can be taken into consideration
for future resilient and economic power network design.
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