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Abstract
Highly connected smart power systems are subject to increasing vulnerabilities and
adversarial threats. Defenders need to proactively identify and defend new high‐risk
access paths of cyber intruders that target grid resilience. However, cyber‐physical risk
analysis and defense in power systems often requires making assumptions on adversary
behaviour, and these assumptions can be wrong. Thus, this work examines the problem
of inferring adversary behaviour in power systems to improve risk‐based defense and
detection. To achieve this, a Bayesian approach for inference of the Cyber‐Adversarial
Power System (Bayes‐CAPS) is proposed that uses Bayesian networks (BNs) to define
and solve the inference problem of adversarial movement in the grid infrastructure to-
wards targets of physical impact. Specifically, BNs are used to compute conditional
probabilities to queries, such as the probability of observing an event given a set of alerts.
Bayes‐CAPS builds initial Bayesian attack graphs for realistic power system cyber‐physical
models. These models are adaptable using collected data from the system under study.
Then, Bayes‐CAPS computes the posterior probabilities of the occurrence of a security
breach event in power systems. Experiments are conducted that evaluate algorithms
based on time complexity, accuracy and impact of evidence for different scales and
densities of network. The performance is evaluated and compared for five realistic cyber‐
physical power system models of increasing size and complexities ranging from 8 to 300
substations based on computation and accuracy impacts.
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1 | INTRODUCTION

Power systems are cyber‐physical critical infrastructure that need
defense against a wide range of threats involving various ad-
versary motivations, capabilities and tactics. Hence, it is indis-
pensable to prioritize grid resilience to cyber threats. The need is
evidenced from major historical events, for example, Stuxnet in
2008 [1], Ukraine in 2015 [2] and an intrusion into the European
Network of Transmission System Operators for Electricity
(ENTSO‐E) in 2020 with potential to compromise 42 trans-
mission system operators across 35member states in Europe [3].

The behavioural characteristics of threat actors are
important to study to assess the potential of early events to

propagate to physical impact. How threats can propagate
through adversarial movement in a network with vulnerability
exploitation and privilege escalation is crucial knowledge for
stakeholders. The way to obtain such knowledge is a cyber‐
security risk assessment [4]. Risk assessments are often assis-
ted by attack trees or attack graphs, a type of graph formalism
for analysing network and host vulnerabilities in terms of ac-
cess paths to compromise a target [5]. An attack graph captures
the relationships among various vulnerability exploits that
could be incorporated by the intruder, along with the privileges
escalated, to compromise a single or a set of targets.

Despite the importance and the need, major challenges
exist in inferring the point of intrusion and compromised
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elements. While intrusion detection systems (IDSs), system
logs and various cyber and physical side features contain evi-
dence, the evidence only observes symptoms of an event and
must be interpreted. Two types of uncertainty contribute to
this challenge, that is, aleatory, caused by random behaviour of
systems, and epistemic, caused by the lack of complete
knowledge of the system. Three types of methods from
probability theory are relevant to address both types of un-
certainty in intrusion analysis: a) Monte‐Carlo, b) Bayesian and
c) Dempster‐Shafer theory [6]. Among these, Bayesian Net-
works (BNs) are adopted in this work for four major reasons:

1. The BN formalism is versatile and allows ease of con-
struction from many sources, for example, cybersecurity
domain experts' prior knowledge, different threat models
and by learning from raw data. By comparison, the Inter‐
Domain Evidence theoretic Approach for Inference
(IDEA‐I) based on Dempster Shafer Theory of Evidence
(DSTE) [7] is shown to assist in reducing false alarms, but
has challenges with incorporating domain knowledge, high
computational expense and inability to capture causal re-
lationships between events. Compared to DSTE, BNs are
advantageous for incorporating prior model information in
the defense of power systems.

2. BNs are probabilistic graphical models (PGMs) that help
account for uncertainty of an adversary's behaviour. For
instance, in the 2015 Ukraine attack, after the intruder
obtained remote access to the operational technology (OT)
network, it focused on a malicious firmware update to
deploy in the HMI [2], while in the Colonial Pipeline attack
of 2021, after a threat affiliate obtained remote access by
exploiting a vulnerability (CVE‐2021‐20016) in SonicWall
SMA100 SSL VPN, it planted a backdoor, SmokedHam,
and issued a press release of the compromised state of the
firm in NASDAQ and demanded ransom [8], which con-
veys that from a same security state, an adversary can
adopt different trajectory.

3. The BN formalism is capable of performing the important
function of causal reasoning between each step in the access
paths of the adversary's trajectory to compromise the target.

4. For decision‐making problems, Bayesian Reinforcement
Learning (BRL) is being extensively studied [9] and relies
upon the accuracy of the inferences, further motivating the
study of BNs for their safety and accuracy within a critical
infrastructure environment.

Using BN, two related problems can be formulated and
addressed: (a) Bayesian inference, and (b) Bayesian structure
learning. This work extends [10] that considered the Bayesian
structure learning problem to learn the structure of the attack
graph, given the raw data, with constraint‐based and score‐
based techniques. By comparison, this work focuses on
Bayesian inference, with application to detection as well as
response under uncertainty using BRL. Hence, a ‘Bayesian
approach for inference of the Cyber‐Adversarial Power Sys‐
tem’ (Bayes‐CAPS) is presented that leverages the BN
formalism for constructing and inferring the Bayesian attack

graphs (BAGs) in power systems. Performing Bayesian infer-
ence on these graphs enables Bayes‐CAPS to compute the
likelihood that a host in the network is compromised or not
given a set of alerts [11] and maps exactly to the detailed power
system cyber‐physical topology. The major contributions are as
follows:

1. The OT threat scenario is considered in high fidelity, which
differs from IT, with OT and IT prioritizing low latency and
throughput, respectively. Similarly, peer‐to‐peer communi-
cation is rarely observed in OT but supported in the
Internet. An IEC 61850 Type 1A/P1 message for fault
isolation and protection has a delay constraint of 3 ms,
while for a less time‐critical Type 3 message, it is 500 ms
[12]. Hence, generation of Bayesian attack graphs in a
cyber‐physical power system is a mixture of different types
of networks and a contribution of this work.

2. The five case studies used to generate BAGs in Bayes‐CAPS
are constructed based on detailed realistic data flow models
that capture the NERC‐CIP‐005 standards on electronic
security perimeters for bulk energy systems.

3. From the communication networks, Bayes‐CAPS contrib-
utes a method to construct BAGs using the power system
threat and data‐flow models [13].

4. Bayes‐CAPS assesses how different evidence sources
impact inference. Results with respect to varying threat
strength, and on the basis of scale, accuracy, computation
time, dependence on evidence and loops are detailed for
five power system use cases. This is crucial to the accuracy
of Partially Observable Markov Decision Processes
(POMDP) for estimating cyber‐physical state in power
systems, since the Bayes‐CAPS inference would update its
belief state. The POMDP's belief state is crucial to rein-
forcement learning (RL) and hence its potential to be safely
used in power system critical infrastructures.

5. The work integrates the Bayesian inference and structure
learning framework into the Resilient Energy Systems Lab
(RESLab) testbed as a plugin named Bayes‐CAPS.

The paper proceeds as follows. Section 2 positions Bayes‐
CAPS with respect to related work. The Bayes‐CAPS frame-
work is presented in Section 3. Section 4 presents the BAG
generation step. Section 5 details the five cyber‐physical power
system use cases. Section 6 presents the inference step and
impact analysis of evidence. Section 7 provides the Bayes‐
CAPS pseudocode. Section 8 evaluates Bayes‐CAPS and Sec-
tion 9 concludes the paper.

2 | POWER SYSTEM SECURITY
INFERENCE BACKGROUND

A significant amount of background is relevant, as this work
stems from several distinct areas; detailed coverage is beyond
the scope of this paper. Hence, the focus in this section is on
background aspects that are most relevant and critical to
positioning this work, categorized into key aspects that enabled
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us to attain this new solution and can enable others to un-
derstand, repeat and extend this work.

2.1 | The problem of power system critical
infrastructure cyber‐physical security inference

A power system as a graph has cyber, physical and cyber‐
physical interconnected nodes. Intrusions may propagate
within the cyber portion of the network, to sequentially exploit
vulnerabilities and escalate privileges over cyber nodes, finally
targeting the interconnecting nodes, to affect physical devices
such as breakers. The propagation is uncertain from both
intruder and defender perspectives. An intruder can follow any
strategy depending on its successful tactics, while a defender
can only observe symptoms such as resulting network latency
or contingencies.

This motivates Bayes‐CAPS to use PGMs. A specific PGM
variant called a Bayesian Network (BN) is considered for
modelling threats using inference on attack graphs. Conven-
tionally, for intrusion analysis, a dedicated Security Information
and Event Management is deployed to combine and show
security information, and it is isolated from an Energy Man-
agement System (EMS). By comparison, a cyber‐physical EMS
is a new type of EMS currently being developed by researchers
with industry partners [14], which includes an early‐stage attack
detection and response capability based on cyber and power
information. For the research and development of this capa-
bility, a cyber‐physical large‐scale power system testbed,
RESLab, has been built and continues to be expanded to
simulate complex threat and defense scenarios, build theoret-
ical models [15], infer intrusions and respond optimally.
RESLab supports generation and emulation of power models
and their communication networks [16] and allows ICS traffic
such as MODBUS, DNP3, etc., to flow realistically through the
network. In multi‐stage cyber intrusions, there is a causal
relationship between the events in the stages [17]. Hence,
Bayes‐CAPS develops and adopts BAGs in the cyber‐physical
power system setting to perform causal reasoning between
each step in access paths towards an adversary's physical target.

2.2 | BNs in security

BNs are well‐known for modelling decision problems under
uncertainty. In network security, BNs have been proposed for
over a decade. The first work on modelling attack graphs
through BNs was published in 2008 [18]. BNs have also been
suggested in IDSs, such as [19] that builds an adaptive IDS for
attack signature recognition and [20] that proposes an intrusion
intention recognition system. Despite work on BNs for
network security, recognizing adversary intention and strategy
has remained challenging due to numerous uncertainties in an
IT network. By contrast, OT power networks have more static
architectures and prior knowledge can be applied to lessen the
uncertainty and make BNs a useful tool.

2.3 | BNs in power systems

In power systems, a main use of BNs is to perform model‐
based diagnostics. In Ref. [21], authors propose a
probabilistic‐based approach, where the electric power system
is represented as a BN in the testbed at the NASA Ames
Research Center. The idea of an inference‐based expert system
is proposed in Ref. [22] to support control centre decision‐
making under emergency. Similarly, a recent work on equip-
ment failure estimation of power distribution system equip-
ment, such as on‐load tap changers and switched capacitors,
using Bayesian inference, is presented in Ref. [23].

The use of PGMs for combined cyber‐physical security
analysis is less explored. Authors in Ref. [19] provide a
framework for an adaptive IDS that uses BNs, and Ref. [24]
performs an exact inferencing algorithm using junction tree
and Belief Propagation (BP). An anomaly reasoning engine is
proposed in Ref. [25] that utilizes Bayesian inference on causal
polytrees to produce a high‐level view of the security state in a
supervisory control and data acquisition (SCADA) network.
The work in Bayes‐CAPS is motivated by Refs. [24, 25] to
propose Bayesian inference algorithms for networks of realistic
size and complexity, and to recommend viable inference so-
lutions for these networks using dynamic evidences.

2.4 | Automatic attack graph generation

Numerous works address automatic attack graph generation.
Researchers in Ref. [26] propose novel approaches for gener-
ating attack privilege fields as prerequisites and post‐conditions
based on the Common Vulnerability Scoring System (CVSS)
and the National Vulnerability Database (NVD). The NVD
and CVSS are widely used and detailed in Ref. [27]. Authors in
Ref. [28] propose an approach to construct knowledge graphs
from structured data, while Ref. [29] proposes an algorithm
that optimizes the network topology before generating the
graph. Instead of using CVSS scores to approximate attack
characteristics, our work constructs the initial BAG parameters
based on the CVSS score distribution.

2.5 | Bayesian inference algorithms

Bayesian inference is used to calculate the posterior probability
of query variables, given a set of evidences. In Ref. [30], au-
thors propose an improved likelihood weighting algorithm to
extrapolate network security states using attack graphs and
intrusion evidence. Authors in Ref. [18] propose to model
probability metrics based on a special BAG using conditional
probabilities to model interdependencies between vulnerabil-
ities. A graphical inference engine for multiple‐intrusion
detection is proposed in Ref. [17] that performs BP on an
appropriately constructed weighted bipartite graph. Variable
Elimination (VE) is used in Ref. [31] to improve the accuracy
and efficiency of a dynamic BN to infer intention and behavior
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in human‐robot interaction. Authors in Ref. [32] propose an
intrusion detection and prevention system for zero‐day attacks
using Bayesian structural and parametric learning. Junction
tree‐based Bayesian inference is adopted in Ref. [33] to trace
the most probable access paths from all possible atomic paths.
In our work, we adopt BP using Factor Graphs (BP_FG) [34],
VE [35], Pearl's Belief Propagation (PBP) [36] and Junction
Trees (JT) [37].

2.6 | Context of Bayes‐CAPS

By comparison, this work details a Bayesian framework for
defining and solving the inference problem of adversarial
behaviour, based on realistic power system electric and cyber
model information, using cyber‐physical attack graph analysis
and Bayesian networks, as a way to better understand adver-
sarial movement towards a physical target in these systems. The
applicability to the real‐world power systems is a major benefit
of Bayes‐CAPS as opposed to other methods with a similar
objective. Of particular note is the ability to incorporate known
system information, which is a key benefit and highly advan-
tageous to grid defense.

For crucial power system computation and control envi-
ronments, Bayes‐CAPS is versatile and allows ease of con-
struction from cybersecurity domain experts' prior knowledge,
threat models and learning from raw data. Further, BNs are
PGMs that help account for uncertainty of an adversary's
behaviour, which is a serious and major issue in power systems,
and this work is an important contribution towards addressing
that need. The approach is capable of performing the impor-
tant and currently lacking function of causal reasoning between
each step in the access paths of the adversary's trajectory to
compromise the target.

Power system cyber‐physical critical infrastructure systems
are considered in high fidelity, with threats targeting OT and
grid operational reliability. Critical infrastructure systems are
distinct based on the essential nature of the societal functions
they protect. In cyber‐physical critical infrastructure, avail-
ability and integrity are of utmost importance. Integrity, avail-
ability and timeliness are crucial; power systems must remain
online. Timely delivery of accurate commands and measure-
ments must always occur, even under extreme scenarios. Pre-
senting and demonstrating Bayes‐CAPS for five realistic power
system cyber‐physical case studies is a contribution of this
work to advance critical infrastructure defense. Bayes‐CAPS
shows how BAGs can be automatically constructed and
applied based on detailed realistic data flow models that real
utilities will be using based on NERC CIP standards for bulk
energy systems. Hence, this work will help achieve deploy-
ability and applicability in real world power systems. To further
aid deployability in utilities, it is important to understand how
to place and configure the monitoring tools (e.g., budget may
be limited, monitoring must be prioritized based on risk and
observability). Hence, the experiments and test cases in this
work can also lend guidance on how the most useful evidence
may be collected.

3 | BAYESIAN FRAMEWORK IN CYPRES
EMS

The Cyber‐Physical Resilient Energy Systems (CYPRES) EMS
[14] is a prototype cyber‐physical EMS being developed and
evaluated in RESLab [38]. The work in Bayes‐CAPS is
implemented in the CYPRES EMS and leverages the pgmpy
package [39] for inference algorithms such as VE, BP and
Infer.NET [40], as shown in the left side of the tool (Figure 1).
The inference and learning engines in CYPRES are running as
python scripts. This work integrates these libraries in the
CYPRES EMS to (1) provide core functionality for causal
inference and (2) to provide a framework for performing in-
ferences for various cyber‐physical power system use cases.

The inference engine is at the utility control centre and at
the substation level in the hierarchy (see Figure 4). In Figure 1,
the sub‐graph of the utility control center network is selected,
then the inference type and node are selected. The screenshot of
the tool shows a sample of the analysis and results described in
this paper. Specifically, the tool shows the conditional proba-
bility table (CPT) associated with the selected firewall, that is,
Utility 39.Firewall 1368 in the model. The scores show the
conditional probability of the host being compromised if the
selected firewall is compromised. The right side of the tool
shows the learned structure of the BN, given raw alerts in the
form of the Pandas dataframe. In the current tool, the graph‐
based structure learning algorithms are incorporated based on
Ref. [10].

4 | BAYESIAN ATTACK GRAPH MODEL
GENERATION

Cyber‐induced threats often initiate from the cyber layer of a
cyber‐physical network, as witnessed in events such as Stuxnet,
Ukraine and Colonial Pipeline attacks. Hence, for studying
intruder propagation to reach its target, it is essential to model
the communication network for each physical system in detail.

F I GURE 1 Screenshot of Bayes‐CAPS tool for Bayesian inference and
learning in the CYPRES Energy Management System (EMS) prototype to
infer adversary behaviour in a cyber‐physical power system.
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Hence, this work first constructs the communication network
for the power systems under study, following the approach for
the synthetic communication network built for a 2000‐bus
electric grid model [16]. Further, this work interfaces the
network models with the power systems and constructs a
Bayesian variant of attack graphs for cyber‐physical systems. In
the revision, Sections 2, 5 and 9 are updated accordingly, (1) to
enhance reproducability now by clarifying details about the
datasets and models available now, and (2) to explain the next
steps in the direction to opensource additional code and data.

An attack graph is a graphical model that represents how
the vulnerabilities in a network can be sequentially or parallelly
exploited, showing different paths an adversary can take to
reach its target. Attack graphs can be expressed in many forms
and may be state‐based or logical [24]. A node in a state‐based
attack graph represents the security state as the combination of
compromised hosts. Scalability is an issue, as the network be-
comes dense with increasing host connectivity. Logical attack
graphs represent dependencies between exploits and security
conditions. In this work, logical attack graphs are studied.

4.1 | Logical attack graph creation

A scenario is adopted for purposes of illustration, mimicking the
control center of the IranianNatanz plant targeted by the Stuxnet
worm (Figure 2, left, adopted from Figure 5 of [41]). The en-
terprise control network contains WinCC Web Client, Histo‐
rian Web Client and PCS7 web client. WinCC is a SCADA and
HMI system, and PCS7 is theDistributed Control System. These
clients accessed the web server through Web Navigator, PCS7

Web Server and CAS Server in the demilitiarized zone (DMZ).
These servers could interact with the process control compo-
nents such as Engineering Workstation, Simatic Process His‐
torian andPCS7OS server to control the PLCs and field devices.

To create the logical attack graph (Figure 2, center), several
inputs are used: (1) the configurations of the Access Control
Lists in the three firewalls, (2) the vulnerabilities in the web
servers in the DMZ, and (3) the potential target, for example,
root access to Engineering Workstation or WinCC SCADA
server. Security conditions are represented as circle nodes, for
example, adversary has privilege over the host D: PCS7 Web
server. Vulnerabilities are represented as rectangle nodes, for
example, in Xss_attack(A, B) an adversary with privilege over A:
PCS7 Web client can then exploit the cross‐site scripting
vulnerability in B:PCS7 Web server. The probability of the
exploitation of the vulnerability to reach a security condition is
considered to be based on the Base Score of the CVSS (CS) [27].
CVSS scores are in the range of 0–10. For each day in the NVD,
the number of exploits and distribution across CVSS scores is
calculated (Figure 3), based on actual reported findings. Then,
using this distribution, the attack graph's nodes are allocated for
a vulnerability (v) with its probability of being exploited (pv),
where pv is based on the linear relation pv = f(CS).

4.2 | Conversion to bayesian attack graph

The fusion of a BN with the attack graph makes it a BAG. A
BN is introduced for dynamic analysis of attack graphs in Ref.
[42]. The nodes represent random variables, and the directed
edges represent dependencies between them, forming a

F I GURE 2 Bayesian Attack Graph (BAG) modelling example: An industrial control system (ICS) supervisory control and data acquisition (SCADA)
network (left) is converted to a logical attack graph model (centre, Section 4.1), then to a BAG using a Bayesian network (BN) (right, Section 4.2).
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Directed Acyclic Graph (DAG) [24]. If monotonicity is
assumed, once an adversary escalates a privilege, it never re-
linquishes it; then, one can remove duplicate paths to construct
the DAG. The joint probability distribution of the BAG
(Figure 2, right) can be written as:

PðA;B;C;D;E; F ;G;H ; I ; J; PLCsÞ ¼ PðAÞPðBÞ
PðCÞPðD ∣ AÞPðG ∣ DÞPðH ∣ GÞPðE ∣ BÞPðF ∣ C;EÞ

PðI ∣ F ;EÞPðJ ∣ FÞPðPLCs ∣ H ; I ; JÞ
ð1Þ

Each node in the BAG represents a security condition, for
example, Privilege(A). The CPT of the BAG is then computed
as the combined effect of a vulnerability in a network, as used
in Ref. [43]. The local CPT of the nodes with logical AND and
OR conditions in the BAG are computed as Equation (2),
from Ref. [24]. A logical AND signifies that all the permissives
are necessary to compromise a node Xi. A logical OR signifies
any one permissive is sufficient to compromise a node. The
immediate parents of the node Xi are pai, and the probability
that vulnerability vj is exploited is pvj .

P Xijpaið Þ ¼
0; ∃Xj ∈ paijXj ¼ 0
∏j:Xj pvj; otherwise

(

P Xijpaið Þ ¼

0; ∀Xj ∈ paijXj ¼ 0

1 − ∏j:Xj 1 − pvj

� �
; otherwise

(

ð2Þ

The computational steps of the BAG model generation of
Bayes‐CAPS are detailed in Lines 1–10 of Alg. 1. Five use cases
are considered in this work, described next.

5 | POWER SYSTEM BAG MODEL
GENERATION

Since power systems are critical infrastructure, the real systems
have constraints on data sharing, and the real model is Critical
Energy/Electric Infrastructure Information (CEII). Hence, the
term synthetic is adopted to refer to models based on char-
acteristics of real systems that are of the same level of detail,
scale and complexity, but do not contain any CEII or represent
any specific real‐world system, and hence can be shared. For
the synthetic models below, Bayes‐CAPS generates BAGs,
based on cyber‐physical architecture and components as
detailed in Ref. [16], and performs studies that utilize the
models to understand how well the inference techniques work
in this environment.

5.1 | Threat model

The threat model in the BAGs that we generate captures the
type of vulnerability exploited, as well as the set of permissives
that need to be satisfied to exploit the vulnerability in the suc-
ceeding node (child node). Based on the type of vulnerability,
the CVSS score implicitly reflects the attack strength based on
its exploitability component. The set of permissives is based on
the parameter pOR, the probability of incorporating OR logic (as
opposed to AND logic) in the step(s) between the parent and
child nodes. Hence, the threat model for adversary movement is
logical in nature, considering OR and AND gates for vulnera-
bility exploitation, with threat intensity regulated through pOR.
The notion can be explained through the Darkside
Ransomware‐as‐a‐Service attack on the Colonial Pipeline,

F I GURE 3 Exploitation distribution of different vulnerabilities across
Common Vulnerability Scoring System (CVSS) scores existing in the
National Vulnerability database (NVD) database [27], over the range of 0–
10 on the day of inference.

F I GURE 4 Hierarchical architecture of the communication network of
Power System with the links indicating the IT and ICS traffic.
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where three different parents or affiliates were involved to plant
the Backdoor Smokedham in the victim's environment. The
UNC2659 affiliate first exploited the CVE‐2021‐20016
vulnerability of a SonicWall firewall to install Teamviewer and
get remote access, while the affiliate UNC2628 utilized the
Beacon command and control Botnet framework to run the
Mimikatz, a credential theft tool for privilege escalation. Finally,
the affiliate UNC2465 plants the .NET backdoor, Smokedham,
by sending a phishing email. Hence, for this incident, the event
of backdoor access had a pOR = 0 as all affiliates needed to
execute their steps to finally accomplish the goal. The higher the
value of pOR, the higher the chance of exploitability, because
there would be more successful ways to target the victim. This
method of modelling the threat makes the threat framework
generic to attacks of diverse intensity and exploitability.

Other threat scenarios of a false data and command in-
jection attack using an Address Resolution Protocol (ARP)
spoof based Man‐in‐The‐Middle (MiTM) attack in the RESLab
testbed [44], as well as communication loss via Denial of
Service [38], are considered for learning the BAG based on the
sensor data from different locations in the emulated network.
The specific targets in these attacks are branch statuses and
generator set points, based on multiple element contingency
selection in large‐scale power systems [45]. For extracting real‐
time data during the threat emulation, the fusion engine [46] is
used. The scenario's dataset is available at IEEE Dataport [47].
Bayesian structure learning is considered to understand the
dynamics of the attack by modelling the nodes of the BAG as
the cyber and physical features extracted at different location
of the network. The dynamic details of the attack are elabo-
rated in Figure 2 of Ref. [44], including a detailed timing dia-
gram of the ARP cache poisoning attack on the substation
router and the field devices. This forms the basis for utilizing
the IP and MAC address‐based features from four different
locations in the network. The learning techniques are adopted
from Ref. [10]. Interested readers are encouraged to review the
prior works for an in‐depth grasp of this threat model, since
the details are outside the scope of this paper.

5.2 | Case studies

Using the steps described in Section 4 and Algorithm 1, the
BAGs are generated for different communication networks
based on a hierarchical network [16] illustrated in Figure 4. In
these networks, an electric grid is divided among several util-
ities, where each utility owns a set of substations. The utilities
or the market participants interact with the balancing author-
ities at the highest level of the hierarchy. Modelled components
include firewalls, routers, RTACs, switches, DMZs and relays.
The cases are detailed in Refs. [15, 48] and available [49].

The construction of the graphs is automatic, with the test
system generation based on realistic power systems [16, 48] as
the first step. An Attack Graph Template is used to construct
the attack graph based on inputs that would be collected from
the real world power systems, detailed in Refs. [50, 51]: the

firewall rules and information about ports and services running
to translate into CVSS scores. Those data can be collected using
existing available tools. From those inputs, a cyber‐physical
attack graph is built (detailed in Ref. [50], code for CYPSA‐
Live [52]) that gives the access paths that can be exploited to
reach a high‐impact target. The process is documented in detail
in Refs. [16, 48], with data in Ref. [49]. The attack graph con-
struction and subsequent physics‐based risk analysis enables a
key value proposition for many different cyber‐physical ana-
lyses, including this one, that moves from static attack graph to
dynamic attack graph in aim of continually mapping a dynamic
adversary.

When the attack graph is constructed, it is based on the
connectivity model and refined based on the known vulner-
ability information to preclude links that are unlikely based on
the lack of available vulnerability information. To address
zero‐day vulnerabilities, it is important to note that data‐driven
probabilistic models depend on the symptoms of an intrusion.
Assuming the probability a given node X is compromised is P
(x), even if a vulnerability is missed while constructing the
BAG (e.g., zero‐day exploit), the symptoms of the intrusion
would enforce the update of the posterior probability of P
(x)post. However, symptoms may not be reliable due to un-
trustworthy sensors. Hence, other works, for example, Ref. [7],
that address aleatory uncertainty through the notion of igno-
rance (analogous to the impact of a zero‐day exploit on
the symptoms of an intrusion), can be considered. Further,
alerts generated from IDS can act as a data source for the
structure learning problem to learn the structure of an attack
graph based on the prior structure provided by experts [10].

5.2.1 | Single substation model

A utility control centre with a single substation (Figure 4)
provides a simple benchmark test case for evaluating effects of
different parameters on the performance of Bayes‐CAPS. The
single substation model also serves as a module in the code
that is able to be replicated and parameterized in larger models.
This model forms a BN with 29 nodes (17 in the UCC, 12 in
the substation). Figure 5 shows the BAG.

5.2.2 | WSCC case with 3 substations

A three‐substation network is created based on the WSCC 9‐
bus case [54], which consists of 4 broadcast domains, one
each for the substation and one for the main control centre
(Figure 6). This forms a BN with 47 nodes (17 in the UCC, 30
in 3 substations).

5.2.3 | CyPSA 8‐substation model

The cyber‐physical situational awareness (CyPSA) 8‐substation
test case [48] contains a node‐breaker topology with detailed
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cyber and physical interconnections at the substation level.
Each substation has multiple buses and control devices, which
makes the model dense. There are 52 electrical nodes. Relays,
breakers, firewalls and routers are modelled and detailed in Ref.
[48]. This forms a BN with 98 nodes (17 in the UCC, 81 in 8
substations).

5.2.4 | IEEE 300‐bus system

The IEEE 300‐bus power system case is made cyber‐physical
as detailed in Ref. [55]. This case is used to study the scalability
of the proposed model, as it consists of 4500 IP‐addressable
devices, with 1301 operational devices, that is, relays, and
2384 non‐operational devices, for example, fault recorders,
alarm systems and batteries. The model has 300 substations,
grouped into 20 areas for the experiments. Hence, a total of 21
broadcast domains are considered, and the BN has 217 nodes.
This grouping reduces model complexity by reducing the
number of nodes from 4500 to 217.

5.2.5 | 2000‐Bus synthetic grid

The cyber‐physical synthetic electric grid test case [16, 56] with
1250 substations, 2000 buses, 3206 branches and 544 genera-
tors is considered in emulation in RESLab under threat sce-
narios that cause multiple element contingencies. The model is
built based on public information and statistical analysis of real
power systems, without disclosing any real system information.
The emulation of this system is detailed in Ref. [38].

5.3 | Discussion

This work is the first attempt on building BAGs for a large‐
scale power system model. For BAG nodes that represent
the compromise of a relay or RTU, it causes a contingency in
the physical (electrical) domain, modelled in Power World
Dynamic Studio (PWDS). In the present work, the power
domain impact is modeled in a deterministic manner, dictated
by the circuit behaviour. For instance, outage of a generator
may cause a transmission line to overload and trigger an over‐
current relay, say R1, to open a circuit breaker, which changes
the power flow based on the circuit's characteristics, and may
trigger some other protection device, say R2. In this scenario,
the conditional probability of P(R2|R1) is 1, assuming R1 to
be the parent and R2 a child in a sub‐graph of the BAG.
Integration of renewable generation and variable load profiles
can be considered in future work to model probabilistic
behaviour of multi‐stage contingencies in the physical domain.

A major goal driving our work is to provide a decision
support capability under the loss of visibility caused by cyber
threats. Conventionally, the control problems in power systems
have been considered and addressed using optimization theory.
Instead, our work considers how to apply known model in-
formation while leveraging RL to improve both the timeliness
and accuracy of stakeholder decision‐making. Using RESLab

F I GURE 5 Bayesian attack graph for the single substation model; nodes circled in red indicate evidence of compromise.

F I GURE 6 WSCC 9‐bus cyber‐physical model with control center and
substations, figure adopted from [53].
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developed for this purpose, it supports formulating and vali-
dating the problem as a POMDP. Using Bayesian inference, we
compute the posterior probabilities that act as the belief state
within the POMDP. In POMDP, once the belief states are
learnt, the agent is agnostic to how the posterior probabilities
were computed. The solution for the POMDP makes use of
BRL which is based on Bayesian inference. Hence, in the
current work, we synthetically update the inference against the
BAG by altering the pOR values. The environment in the RL
space would encounter variability from updated inferences
with every evidence. Hence, we analyse the impact of evidence
on the inference.

It is important to help stakeholders understand how
different evidences impact the inference, which impacts the
ability of RL to provide decision support. Analysing the
impact on decision support thoroughly involves the funda-
mentals of RL and is outside this paper's scope. However, as
an example, consider an RL episode, where an intruder goal's
is to compromise a PLC controller, as in Figure 2. In the
episode, the adversary will be compromising the CAS server,
PCS7 OS client, WinCC Server, etc., sequentially. Similarly,
the defender engine will have to take certain steps to prevent
the intrusion. At every stage, the IDS within the RL envi-
ronment finds an evidence, and the belief state is updated
based on Bayesian inference, which impacts the decision/
policy of the defender.

This research with power system BAGs reveals a challenge,
as it would benefit from real adversary behavioural data to
compare. Modelling the prior probabilities of the BAGs needs
emulation of red team activities over a long‐term duration to
capture how an intruder thinks and executes. Estimating the
prior probabilities with a large‐scale dataset would require
exposing the RESLab testbed to an outside world for threat
integration, which is currently out of scope due to constraints
on allowing outside researchers to deploy their threat strate-
gies. For simplicity, we have hence limited the usage of the data
from the emulation to a small network within RESLab for
learning the structure of the BN.

6 | APPROACH FOR INFERENCE ON
THE BAGS

The BAGs generated based on the cyber‐physical model have
static attributes if the events within the system do not update
the properties like the posterior conditional properties. Each
event of intrusion detection must update the BAG attribute by
performing inference, called Bayesian inference. It is used to
calculate the posterior probability of query variables, given a set
of evidences (Figure 7). It computes the unconditional prob-
ability distributions to determine the probability that an ad-
versary can reach a security condition. The inference algorithm
performs marginalization, that is, summing out the probability
of a random variable given the joint probability distribution
with other variables. In this work, we adopt and compare four
different inference algorithms.

6.1 | Understanding the notion of evidence

To illustrate the notion of evidence, we consider a simple BAG
from the Ref. [57], shown in Figure 7. Here, the remote ad-
versary targets root access to an ftp server by performing
buffer overflow attacks by means of two paths, through B
(exploiting an ftp vulnerability) or C (exploiting a ssh vulner-
ability). The figures shown in the edges of the BAG are the
CVSS scores. The unconditional probability for the given
BAG, given the prior probability of P(D) = 0.7, is computed as:

PðBÞ ¼
X

D
PðBjDÞPðDÞ ¼ 0:595

PðCÞ ¼
X

D

PðCjDÞPðDÞ ¼ 0:49

PðAÞ ¼
X

B;C;D

PðA;B;C;DÞ ¼ 0:606

ð3Þ

Then, assume an evidence is obtained at the node A that
confirms it to be compromised, that is, P(A) = 1. Then, the
posterior probabilities at node C, B and D are altered based on
Bayes theorem:

PðCjAÞ ¼ PðAjCÞPðCÞ=PðAÞ ¼ 0:49=0:606¼ 0:81

PðBjAÞ ¼ PðAjBÞPðBÞ=PðAÞ ¼ 0:806; as

PðAjBÞ ¼
X

C

PðAjB¼ 1;CÞPðCÞ ¼ 0:8215

PðDjB;CÞ ¼ PðB;CjDÞPðDÞ=PðB;CÞ ¼ 1:0; as

PðB;CjDÞ ¼ PðBjDÞPðCjDÞ ¼ 0:85� 0:7¼ 0:595

PðB;CÞ ¼
X

A;D
PðA;B;C;DÞ ¼ 0:4265

ð4Þ

Every time a new evidence is obtained, the BAG is
dynamically updated, as in Figure 7. Updating the posterior
based on multiple evidences is similar to our prior work on
multi‐sensor fusion work [7] based on DSTE and its rules of
combination.

F I GURE 7 Evaluation of the impact of evidence in a small a BAG,
showing CPTs for each node. Initial prior probabilities (e.g., the prior on D
is P(D) = 0.7) are shown in green. Posteriors (given evidence that A is
compromised) are shown in red.
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6.2 | Belief propagation with factor graphs
(BP_FG)

A factor graph is a bipartite graph containing variable nodes
and factor nodes, and the edges always connect nodes of
different types. The joint probability distribution for the BAG
in Figure 7, is the following,

Pða; b; c; dÞ ¼ PaðaÞPbðbÞPcja;bðcja; bÞPdjcðdjcÞ ð5Þ

whose factor graph is shown in Figure 8, where green and
yellow denote the variable and factor nodes, respectively.We
then compute the marginals and conditionals by passing
messages (or propagating beliefs) on the factor graph. This
algorithm is widely known as the sum‐product algorithm,
based on three steps:

1. Marginalization at variable node: Marginals are the
product of all incoming messages from neighbour factors
(Equation (6)),

PðvÞ ¼ ∏
f ∈Fv

mf →vðvÞ ð6Þ

where the mf→v(v) is the message from neighbouring factor
node f to variable node v, and Fv is the set of all factor nodes
neighbour to v. Then, for example, P(c) in Figure 8 is the
following:

PðcÞ ¼mPcja;b−>cðcÞmPdjc−>cðcÞ ð7Þ

2. Operation at factor node: Messages from factors sum
out all variables except the receiving one. For example, the
message from factor node Pc|a,b, say f, to variable node c in
Figure 8 is the following:

mf −>cðcÞ ¼
X

a

X

b

f ðcja; bÞma−>f ðaÞmb−>f ðbÞ ð8Þ

3. Operation at intermediate variable node: Messages
from variables are the product of all incoming messages except
from the receiving factor. For example, the message from
variable node a to factor node Pc|a,b in Figure 8 is the
following:

ma−>f ðaÞ ¼mPa−>aðaÞ ð9Þ

6.3 | Pearl's belief propagation

PBP computes the belief distribution of a random variable X in
the BN. The distributions are computed using three types of
parameters: a) causal support (π), b) diagnostic support (λ) and
c) the CPT. The CPT is described in Ref. [25] and illustrated in
Figure 7. The algorithm initiates from the node where a new
evidence is obtained, following three steps [25]:

1. Belief updating: The node updates its belief based on
the message it receives from parents, through causal support
(π), and the message it receives from children, through diag-
nostic support (λ):

BelðXÞ ¼ αλðXÞπðXÞ ð10Þ

2. Bottom‐up propagation: The node computes a new
message λX(u) based on its CPT and messages λ received from
its children.

λXðuÞ ¼
X

X
λðXÞPðXjuÞ ð11Þ

3. Top‐down propagation: The node computes a new
message π and that it sends to its children. The new message
πYjðxÞ for its jth child Yj is calculated as follows:

πYjðXÞ ¼ απðXÞ∏
k≠j

λYkðXÞ ð12Þ

Two different variants are considered, PBP−P and PBP−T,
where PBP−P parallelly starts the BP and can update the
posteriors for BAGs with loops. PBP−T sequentially performs
BP and only works in BAGs without loops.

6.4 | Variable elimination

The VE method groups together factors that involve the same
variables, then marginalizes those variables. For example,
considering the BAG from Figure 2, the probability that an
adversary gains to access the PLCs is p(PLCs),

PðPLCsÞ ¼
X

A;B;C;D;E;F;G;H ;I ;J

PðAÞPðBÞPðCÞ

PðG ∣ DÞPðD ∣ AÞPðH ∣ GÞPðE ∣ BÞPðF ∣ C;EÞ

PðI ∣ F ;EÞPðJ ∣ FÞPðPLCs ∣ H ; I ; JÞ

ð13Þ

where after factorization, that is, splitting the joint distribution
into conditional and marginal probabilities, Equation (13)
above becomes:

F I GURE 8 The factor graph with message passing for the BAG in
Figure 7
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PðPLCsÞ ¼
X

H ;I ;J
PðPLCs ∣ H ; I; JÞ

X

F ;E;G
PðH ∣ GÞ

P ðJ ∣ FÞPðI ∣ F ;EÞ
X

C

PðCÞPðF ∣ C;EÞ

X

B

PðBÞPðE ∣ BÞ
X

D

PðG ∣ DÞ
X

A

PðAÞPðD ∣ AÞ

ð14Þ

Then, Equation (14) is evaluated from right to left by recur-
sively eliminating all the variables in the BAG except the PLCs
by following the elimination order = A, D, B, C, F, E, G, H, I, J
using the bucket elimination algorithm [35]. The complexity of
the bucket elimination algorithm is O(nw∗), where n is the
number of nodes, and w∗ is the induced tree width [35]. The
induced tree width is dependent on the BAG structure.

The VE method is advisable for BAGs with more depth
and less induced tree width, that is, when number of vulner-
abilities per node is low or access paths are long. For large
systems, exponential blow‐up while computing marginal
probabilities is addressed by identifying factors in the joint
distribution that depend on selected variables, then computing
them once and storing the results [24]. Finding optimal elim-
ination order is dependent on the induced graph (a graph
generated at every stage of VE). The optimal order depends on
the BAG topology and node elimination order criteria such as
min‐neighbours, min‐fill [24].

6.5 | Junction tree

The Junction Tree (JT) method uses the message passing al-
gorithm as in Ref. [34] for loopy BNs. The objective is to
create a tree where each node represents a collection of
random variables (security states in BAGs) and apply the
message passing scheme to compute the unconditional prob-
abilities. We use the chordal graph method for obtaining the JT
in this work, as shown in Figure 9. A chordal graph is a graph
in which every cycle of length four and greater has a cycle
chord. Moralization converts the BAG to an undirected graph,
triangulazation converts the undirected graph to a chordal
graph and the chordal graph is converted to the JT.

Assuming the BAG has discrete nodes with binary values
(compromised or not), JTs scale in time and space as O(|F|rs),
where |F| is the number of factors, r = 2 possible discrete
values and s is the size of the largest factor [24], which depends
on the network topology. Higher interconnectivity correlates
with a larger s value.

7 | BAG INFERENCING PSEUDOCODE

The following variables and parameters are defined for the
experiments. N is the total number of nodes, u is the maximum
number of parents per node, C is the number of clusters,
N_Per_Ctr is the number of nodes per cluster, Sim_Count is
the number of simulation for a unique configuration, dag is the
adjacency matrix representing the graph, etc.

Algorithm 1 provides the overall Bayes‐CAPS pseudocode.
First, it constructs the DAG (ConstructDAG( ), Algorithm 2).
Then, it converts the DAG to a BAG by building the CPT for
each node (CreateCPD( ), Algorithm 3). For the use cases,
Bayes‐CAPS constructs the initial BAGs. Then, Alg. 1 infers
the posterior probabilities using four different techniques
(Section 6). The inference algorithms are tested by changing
the engine variable. Bayes‐CAPS uses var_eli-
m_inf_engine for VE, pearl_inf_engine for Pearl's
BP, and jtree_inf_engine for junction tree based
inference. The functions mk_net, bnet_to_fgraph,
belprop_fg_inf_engine, enter_evidence and
marginal_nodes are utilized from BayesNet libraries.

Algorithm 2 and Algorithm 3 are used in Algorithm 1 as
follows. ConstructDAG( ) (Algorithm 2) creates initial DAGs,
without assuming knowledge of the network ahead of time, by
randomly picking edges while meeting the constraint of u. The
variable dag_mod is the modified DAG used to update the dag
for each cluster; dag is then used to create links between the
clusters. For the cyber‐physical power system models, the
DAGs are constructed based on the topology generated from
the hierarchical synthetic communication models (Section 5)
instead of Algorithm 2. To convert the DAGs to BAGs, Cre‐
ateCPD( ) (Algorithm 3) constructs the conditional probability
distribution of each node. The npa computes the number of
parents of node i. Parentless nodes are assigned the prior
probabilities based on the CVSS scores, CS, discussed in
Section 4.2. The nodes with parents are assigned the condi-
tional probabilities depending on the probability of logical OR,
pOR, and Equation (2) (Line 6–10 of Algorithm 3).

In the experiments, N (Algorithm 1, line 1) and node
density dictated by u (Algorithm 1, line 2) are varied. In every
experiment, 20 simulations (Algorithm 1, line 1, Sim_Count)
are run for calculating the average computation time and
average accuracy. The u is varied from 2 to 5 (Algorithm 1, line
2), since most attack‐originating nodes exhibit a fan‐in in that
range (Figure 7 of [58]). The complexity and stealthiness of
attack depends on both u and pOR. The dynamic update of the
posterior probabilities (Algorithm 1, lines 13–19) based on the

F I GURE 9 The junction tree formed from the BAG, using
moralization followed by triangulization to construct the chordal graph, for
the example in Figure 7.
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alerts will help update access paths to critical assets such as
PLCs, relays, etc.

Algorithm 1 Bayes-CAPS Pseudocode

1: Define C, N, Sim_Count, dag, pOR
2: for u = 2 to 5 do
3: for e = 0 to 3 do
4: for sim = 1 to Sim_Count do
5: dag = ConstructDAG(u, C, N, dag)
6: bnet = mk_net(dag, C*N,

node_type)
7: for i = 1 to C*N do
8: d = dag(:, i)
9: bnet.cpd(i) = CreateCPD

(pOR, d, i, bnet)
10: end for
11: fg = bnet_to_fgraph(bnet)
12: eng = belprop_fg_inf_engine

(fg)
13: evi = vector with 1 to e set 1

rest 0
14: upd_eng = enter_evidence(eng,

evi)
15: defineposteriortostoreupdated

probabilities
16: for j = 1 to C*N do
17: marg = marginal_nodes

(upd_eng, j)
18: posterior(j) = marg
19: end for
20: end for
21: Compute average computation time
22: end for
23:end for

Algorithm 2 ConstructDAG(u, C, N, dag)

1: for j = 1 to C do
2: Define dag_mod for cluster j
3: for i = 2 to N do
4: Create edges randomly for each

node i in cluster j having maximum
number of parents u

5: Update dag_mod
6: end for
7: Update dag for cluster j from dag_mod
8: Create random edges between any node

in the cluster j and the rest of the
clusters.

9: Update dag with new edges.
10: end for
11: return dag

Algorithm 3 CreateCPD(pOR, dag, i, bnet)

1: npa = sum(dag(:, i))
2: if npa = 0 then
3: CS = getCVSS(npa)
4: cpt = f(CS) ▹ Assign prior

probabilities (Section 4.2)
5: else
6: if rand(1) ≤ pOR then
7: cpt = OR_CPT(prob)
8: else
9: cpt = AND_CPT(prob)
10: end if
11:end if
12:return tabular_CPD(bnet, i, cpt)

8 | RESULTS AND ANALYSIS

In this section, the experimental results are presented that
compare the performance and accuracy of the Bayes‐CAPS
algorithms. The results in this section leverage the BayesNet
MATLAB library [59].

8.1 | Analysis of inferencing algorithms on
random BAGs

Before considering the BAGs generated for the cyber‐physical
power system case‐studies, we first consider random con-
struction of BAGs to study the sensitivity of inference with
respect to graph density and impact of evidence. Since more
vulnerabilities make the BAG dense, evidence of intrusion
detection at a node is useful, because it assists in updating the
posterior belief on a node. The IDSs may not always detect a
specific exploitation, for example, due to disabled pre‐
processors to prevent latency. Moreover, the nodes moni-
tored for security may vary, effecting the evidence. Hence, in
the experiments, it is studied whether the evidence can reduce
the computation time and improve accuracy of inference.

The substation network in Figure 5 has 6 cyber nodes and
6 physical devices, for example, relays. In the experiments, N is
varied from 6 to 14. Figure 10a and Figure 10b evaluate
average computation time without and with evidence, respec-
tively, using BP_FG. Figure 10a shows that as N increases and
as u increases, the average computation time increases, for
example, 0.2 s (u = 2) to 0.27 s (u = 5) in the 14‐node BAG.
The probable reason is that an increase in u causes more
multiplicative operations in the factor node (step 3 of BP_FG,
Section 6.2). From Figure 10b, the evidence reduces compu-
tation time, for example, by ~50% in the 6‐node BAG.

Figure 11a and Figure 11b evaluate computation times
using VE. Figure 11a shows increased computation time with
increased number of nodes. Unlike in BP_FG, varying u did
not affect the computation time in a specific pattern. For a
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fixed number of nodes, as u increases, the induced width of the
tree must increase with a decrease in the depth of the tree.
Hence, we would expect the computation time to grow as u
increases, but the complexity also depends on the order of
elimination which affects the size of the intermediate factor.
The evidence reduces the computation time of VE. Figure 11b

shows the reduction from almost 0.06–0.02 s when a single
evidence was found (for N = 6, u = 2).

Figure 12a and Figure 12b evaluate computation times
using PBP. For larger N, it is observed that as u increases, the
computation time also increases from 0.1 s (u = 2) to 0.16 s
(u = 5) for the 14‐node BAG. The increase in computation

F I GURE 1 0 Evaluation of computation time using Belief Propagation using Factor Graphs (a) with no evidence, and (b) with evidence.

F I GURE 1 1 Evaluation of computation time using Variable Elimination (VE) (a) with no evidence, and (b) with evidence.

F I GURE 1 2 Evaluation of computation time using Pearl's Belief Propagation Algorithm (a) with no evidence, and (b) with evidence.
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time with u is due to increase in number of top‐down propa‐
gation operations that involve multiplicative operations, as
discussed in Section 6.3. In Figure 12b, the computation time
reduces from almost 0.07–0.02 s when a single evidence is
found (for N = 6, u = 2).

The JT method is preferred because it works when there
are loops in the BAGs. Figure 13a and Figure 13b evaluate the
JT method without and with evidence. Unlike the previous
three methods, the computation time does not increase as N
increases, because the number of nodes in the JT does not
dependent completely on the number of nodes in the original
graph. The structure and size of the JT is dependent on the
chordal graph, formed as discussed in Section 6.5.

8.2 | Comparison of bayesian inference
techniques

For comparing the inference algorithms, synthetic graphs are
generated as above, but now with a cluster structure [24],
where in each cluster, the number of nodes is the same. Such
BAGs with a clustered structure are considered, modelling the
ease of vulnerability exploitation within each LAN, broadcast

domain or cluster. Conventionally, there are more intra‐cluster
access paths in comparison to inter‐cluster paths. For each
cluster, we generate pseudo‐random subgraphs with a
maximum number of parents for each node u. Figure 14 show
the average computation time using the inference algorithms,
with u = 2 and u = 5, respectively. Drawing an analogy with
the single substation model (Figure 5) for the synthetic
network, 2 clusters with a cluster size of 10 are considered, as
shown in Figure 15a,b. It can be observed that the JT

F I GURE 1 3 Evaluation of computation time using Junction Tree with (a) no evidence, and (b) with evidence.

F I GURE 1 4 (a) Comparison of inference techniques with maximum allowed parents (u = 2), with varying no. of observed nodes; (b) Comparison of
inference techniques with maximum allowed parents (u = 5), with varying no. of observed nodes.

F I GURE 1 5 A clustered Bayesian Attack Graph with 2 clusters and
10 nodes in each cluster.
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algorithm is faster in comparison to other methods. Table 1
shows the comparison of the inference techniques on the basis
of scalability, evidence dependence, computation time, loops
and accuracy.

In our experiments, we alter the number of evidence
sources (observable nodes) from 0 to 3, which implies for
those nodes, the IDS sends an alert with 100% probability. As
the number of evidences increases, the computation time for
all the methods decreases.

8.3 | Evaluation of inferencing algorithms
on BAGs generated from power system use
cases

The accuracy of the inferred posterior probabilities are calcu-
lated based on the root mean square error with reference to an
exact inference algorithm such as the JT method. Among the
techniques considered in this work, BP_FG and PBP are the
approximate inference algorithms. Figure 16 evaluates the ac-
curacy of the inference techniques for the 8 − sub dense
network case with loops. BP_FG outperforms PBP−T variant
of PBP. The BAGs considered for the other use cases without
loops have no error in inference. With the increase in evidence,
the inference error is reduced for both techniques, except for
BP_FG with more error for evi = 3 compared to evi = 2.

Figure 17 indicates how the computation time increases
logarithmically as the size of the grid increases (from 29 nodes

in 1 − sub case to 217 nodes in IEEE 300 case). PBP−T
performs faster than other techniques. It can be observed that
the 8 − sub case cannot be solved using PBP−T due to loops
in the BAG. Results show that JT is the preferred technique.

8.4 | Evaluation with varying threat intensity

The threat intensity is varied by modifying pOR, as introduced
in Section 7. We evaluate how the accuracy of the approximate
inference algorithms are affected by altering pOR for the 8‐
substation case with loops. Table 2 indicates that as the
threat intensity increases (increase in pOR), the computation
time increases due to increased message passing. The accuracy
of inference using BP_FG decreases, while such trend is not
observed for PBP. Based on Figure 16 and Table 2, it can be
concluded that BP_FG is preferred over PBP, though the latter
technique is not highly dependent on threat intensity. With the
highest threat intensity of pOR = 1, BP_FG error is still less
than PBP.

8.5 | Feature‐based BAG structure learning

This section analyses the structure learning problem,
leveraging RESLab that emulates the MiTM attacks, as

F I GURE 1 6 Error evaluation of the approximate inference
algorithms.

F I GURE 1 7 Inference computation times for four power system
cases.

TABLE 2 Impact of pOR on the accuracy and computation times of
the approximate inference algorithms

pOR

8‐Sub

PBP BP_FG

RMSE Comp. Time RMSE Comp. Time

0.0 0.0763 0.5645 0.0027 1.4427

0.2 0.0639 0.5314 0.0056 1.4638

0.4 0.0495 0.6019 0.0079 1.4767

0.6 0.059 0.5855 0.0097 1.5102

0.8 0.0467 0.6195 0.0108 1.7923

1.0 0.0429 0.7113 0.0121 1.8869

TABLE 1 Inference method comparison

Technique Scale Evi. Dep. Comp. Loops Accuracy

BP_FG ✗ ✓ ✗ ✓ ✓

VE ✗ ✓ ✗ ✓ N.A.

PBP‐P ✓ ✓ ✓ ✓ ✓

JT ✓ ✓ ✓ ✓ N.A.

PBP‐T ✓ ✓ ✓ ✗ N.A.

SAHU AND DAVIS - 105

 23983396, 2023, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cps2.12047 by T

exas A
&

M
 U

niversity L
ibrary, W

iley O
nline L

ibrary on [24/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



introduced in Section 5.1 and 5.2.5. The cyber and physical
features extracted from the emulation, presented in Ref. [46],
form the nodes in the BAG. The relationships or causal links
between the nodes are learned using the Chow Liu and K2
algorithms in Ref. [10]. The experiment is performed on the
use case where the measurements are tampered [38]. First, two
physical measurements, the real power generation values in
MW of two generators that were targeted in the UC3 MiTM
attack, are extracted from three different locations in the
emulated network: the node where DNP3 master runs (M), the
substation router (R) and the node that runs PWDS, that is,
DNP3 outstations (O) (Figure 18), making a six‐node BAG
(two measurements per location). During the attack, the
measurement the router receives from the intruder spoofing
the outstation is a modified value compared to that sent by the
benign outstation. Hence, the learned structure for the dataset
with attack must reduce the correlation between node O and R
for both the measurements, that is, it either removes the link or
reduces the conditional probability P(R|O) in comparison to
the dataset with no compromise. The structure learned from
the Chow‐Liu algorithm (Figure 18) is (R1, M1), (M1, O1),
(M1, O2), (O2, R2), (R2, M2), while from the K2 algorithm is
(O1, M1), (R1, M1), (R1, O1), (R2, M2). The 1 and 2 indices in
the BAG nodes denote the first and second generator identi-
fiers, respectively. Since both (R1, M1) and (R2, M2) exist in
both solutions, it clearly shows that the intruder is in the
substation LAN, that is, modification of a measurement in the
DNP3 packet occurred before the packet left the substation
router R.

Next, cyber features of source and destination MAC
address from the three location are considered, making a six‐
node BAG. The structure learned from the Chow‐Liu algo-
rithm is (O1, R1), (O1, R2), (R2, O2), (R2, M1), (M1, M2) and
from the K2 algorithm is (M1, M2), (O2, R2), (O2, O1), (R2,
O1), (O1, R1). The 1 and 2 indices denote the source and
destination MAC address, respectively. In the ARP spoof
attack, the packet received at the router from the intruder will
have a different source MAC address from the MAC address of
the outstation. Similarly, the packet received at the outstation
from the intruder will have a different source MAC address
from the MAC address of the router. Existence of O1, R1 in
both the techniques indicate that both the router and the
outstation received packets from the intruder.

The existence of some unwanted links can be reduced by
collecting a dataset from emulation over a longer period. From
the law of large numbers, the average of the results from a large
number of trials should be close to the expected value. Hence,
computing the mean of the prior distribution, with less vari-
ance, will improve with more data.

9 | CONCLUSION

Better modelling and visibility of dynamic adversary behaviour
can improve power system attack‐resilience. The major con-
tributions of this paper are generation of BAGs, analysis and
comparison of inference algorithms based on scale, evidence
dependency, time complexity, accuracy and loops for different
power system use‐cases. Some major conclusions drawn are
the following: BP with factor graphs is computationally
expensive for BAGs with high average in‐degrees; hence, it can
only work when nodes have fewer vulnerabilities and in smaller
networks. Junction tree‐based inference outperformed the
other three techniques based on its low computation time and
scalability to large networks. Evidence plays a major role in
effecting the complexity of the inference algorithms. Hence,
the inference algorithms should be considered based on the
sensitivity of the IDSs to intrusions. Variable Elimination and
JT methods should be used for exact inference, and PBP can
be used for approximate inference in loopy BAGs. Accuracy of
the approximate inference algorithms depends on the network
density and the attack strength, regulated through pOR. BP_FG
should be considered for higher accuracy and PBP−P for faster
inference. Finally, a Bayesian framework is developed within a
cyber‐physical EMS for evaluation and comparison of infer-
ence algorithms for different power system use cases.

Future work remains on collecting the information in re-
ality, as the exact estimate of the complexity and cost associ-
ated with this approach for a given utility remains an open
challenge to be better understood. What is known is that
utilities are moving in this direction, and there are a lot of
existing data sources that are already being collected, with these
objectives in mind. Hence, this work intends to help electric
power utilities do this work in their own systems, as it can seed
new defense toolsets that domain experts can advise stake-
holders towards real implementation in practice. Bayes‐CAPS
is currently part of the suite of CYPRES prototype tools.
The current work provides the details of the approach and
implementation, including the pseudocode and algorithms.
Future work will look to create a standalone opensource tool
and data archive.
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