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Abstract—Machine learning-based detection of false data in-
jection attacks (FDIAs) in smart grids relies on labeled mea-
surement data for training and testing. The majority of existing
detectors are developed assuming that the adopted datasets for
training have correct labeling information. However, such an
assumption is not always valid as training data might include
measurement samples that are incorrectly labeled as benign,
namely, adversarial data poisoning samples, which have not
been detected before. Neglecting such an aspect makes detectors
susceptible to data poisoning. Our investigations revealed that
detection rates (DRs) of existing detectors significantly deteriorate
by up to 9− 29% when subject to data poisoning in generalized
and topology-specific settings. Thus, we propose a generalized
graph neural network (GNN)-based anomaly detector that is
robust against FDIAs and data poisoning. It requires only
benign datasets for training and employs an autoencoder with
Chebyshev graph convolutional recurrent layers with attention
mechanism to capture the spatial and temporal correlations
within measurement data. The proposed convolutional recurrent
graph autoencoder (CR-GAE) model is trained and tested on
various topologies (from 14, 39, and 118-bus systems). Due to
such factors, it yields stable generalized detection performance
that is degraded by only 1.6− 3.7% in DR against high levels of
data poisoning and unseen FDIAs in unobserved topologies.

Impact Statement—Artificial Intelligence (AI) systems are used
in smart grids to detect cyberattacks. They can automatically
detect malicious actions carried out by malicious entities that
falsify measurement data within power grids. The majority
of such systems are data-driven and rely on labeled data for
model training and testing. However, datasets are not always
correctly labeled since malicious entities might be carrying out
cyberattacks without being detected, which leads to training on
mislabeled datasets. Such actions might degrade the detection
rate (DR) of existing AI-based detectors by up to 29%, which
causes misinformed decision-making by system operators. In
this paper, we overcome this limitation by proposing a robust
generalized AI-based detector of cyberattacks that captures
spatial topological aspects and temporal correlations within the
measurement data. Hence, it could offer a stable DR of 97%
against unseen cyberattacks within unseen topologies despite the
presence of mislabeled training samples. The proposed data-
driven solution could be extended and applied in wider applica-
tions such as cyber-physical security of industrial infrastructures,
Internet of Things (IoT), and sensor networks.
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NOMENCLATURE

E, D Graph encoder and decoder, respectively.
G = (V, E ,W ) Graph G with V vertices, E edges, and W

weights.
Xb(i, t) Benign sample at bus i and timestamp t with

true y = 0 benign label.
Xm(i, t) Correctly labeled FDIA malicious sample

with true y = 1 malicious label.
Xs(i, t) Adversarial data poisoning sample with false

y = 0 benign label.
Φ Model parameters.
ζ Reconstruction error.
ψ Detection threshold.

I. INTRODUCTION

THE cyber-physical nature of a smart power grid makes
it a complex system where lots of measurement data

are being continuously interchanged among its components
[1]. For proper operation, decision-making, and situational
awareness, smart power grids rely on measurement data.
Hence, ensuring the integrity of such data is a critical objective
when it comes to power system reliability. Unfortunately, when
power systems encounter false data injection attacks (FDIAs),
the integrity of the data is jeopardized since measurement data
is manipulated by malicious entities [2]. Such actions might
overload the system due to the resultant incorrect operational
decisions [3]. FDIAs present a major challenge since they
might be performed in a stealthy manner [4], which can bypass
the conventional bad data detection (BDD) systems [5].

A. Related Work and Limitations

Data-driven machine learning (ML)-based approaches were
used to detect FDIAs. Such defenses employ (1) ML models
with shallow or deep neural network (DNN) structures, or
(2) graph-based approaches employing graph signal processing
(GSP) filters [6] or graph neural networks (GNNs). Although
such mechanisms exhibit promising detection performance,
they still present drawbacks, as reviewed next.
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1) ML-Based Detection Schemes: When it comes to shallow
ML models, F1-Scores of 82% and 88% were reported using
support vector machine (SVM) [7] and decision tree [8]
detection schemes, respectively. A detection rate (DR) of 93%
was offered with a random forest-based detection scheme [9].
However, since measurement data within smart power grids
present complex patterns [10], the aforementioned shallow
models fail to fully capture such patterns, which explains their
relatively poor detection performance.

Unlike shallow models, DNNs can capture more complex
patterns and can offer improved detection performance. For ex-
ample, feedforward neural network (FNN) detection schemes
reported accuracy scores of 90% [11] and 99% [12]. Recurrent
neural network (RNN) [13] and autoencoder [14] detection
schemes achieved DRs of 96% and 96.2%, respectively. Con-
volutional neural network (CNN) detection schemes exhibited
accuracy scores of 93% [15] and 99% [16]. Nevertheless,
these numbers do not wholly reflect the practicality of these
schemes since their performance is evaluated based on only
one network topology without being tested on different topo-
logical configurations. Also, these schemes present topology-
unaware detectors that fail to capture the spatial aspects and
relationships within the power grid data.

Due to the aforementioned limitations of the ML-based
detection schemes, according to our investigations presented
in Section IV-D, detection schemes based on shallow models
and DNNs are highly vulnerable to data poisoning, where their
DRs deteriorate by 17− 29% and 10− 21%, respectively.

2) Graph-based Detection Schemes: To exploit the spa-
tial relationships within power measurements and the grid
topology information, graph-based FDIAs detection schemes
(GSP and GNN) were proposed in the literature. GSP models
exhibited DRs of 90% [17], [18]. A limitation of GSP models
is that they necessitate manual and custom filter design, which
constrains their scalability. Convolutional GNN (C-GNN) de-
tection schemes present DRs of 83 − 96% [5]. However, the
reported performance is still based on only one topological
configuration, without considering different topological re-
configurations [5]. Despite capturing the spatial relationships,
the simulation results presented in Section IV-D show that
the C-GNN detector is still susceptible to data poisoning
exhibiting a 9 − 11% degradation in DR. This is because it
fails to generalize in the presence of power system topology
reconfigurations that may take place for various reasons. Also,
it does not fully capture the temporal correlations within
the power grid time-series data. Furthermore, such detection
schemes are vulnerable to zero-day (unseen) attacks since they
are only trained on a predefined set of FDIAs.

It is worth mentioning that the aforementioned studies report
different performance metrics for various FDIAs and system
sizes, which makes it challenging to compare them due to
the lack of common ground. In addition to the aforemen-
tioned limitations of existing FDIAs detection schemes, most
importantly, they are trained on datasets assuming that the
samples have correct labeling information. Neglecting such
an aspect makes the detectors susceptible to data poisoning,
where malicious samples are incorrectly labeled as benign
since they have not been detected before.

3) Data Poisoning Detection Schemes: Only a few studies
investigated the impact of data poisoning in smart power
grids. For example, linear regression and neural network-
based models were proposed to detect data poisoning in load
forecasting [19]. Also, a sequential ensemble learning (SEL)-
based detector offered high robustness against data poisoning
in smart meters [20]. In different contexts, other studies
proposed traditional defense schemes against data poisoning
using outlier detection [21], local intrinsic dimensionality [22],
and federated learning [23]. However, these detectors still
present the same limitations as the aforementioned studies
(in Sections I-A1 and I-A2) since they do not capture the
spatial relationships within the power grid measurement data.
Also, these detectors present impractical solutions since they
fail in the presence of topological reconfigurations (i.e., lack
generalization abilities). Furthermore, the schemes in [19],
[21], [22], and [23] are designed specifically to detect data
poisoning, without considering other cyberattacks (e.g., other
FDIA types). Thus, employing them alone is insufficient when
it comes to detecting multiple attack types. Besides requiring
an additional data poisoning-filtering step before the actual
FDIAs detection scheme, they present data poisoning detection
designed only for a specific machine learning model (e.g.,
SVM) [22], or they are probabilistic, which requires additional
computations at the server-side [23]. Therefore, in this work,
we seek to create a robust detector that is marginally affected
by data poisoning and at the same time, provides a stable
detection performance against various types of FDIAs without
requiring additional data filtering operations or computations.

Due to the aforementioned limitations of existing detection
schemes, there is a need to develop a robust detector that
takes into consideration several aspects, including capturing
the (i) complex patterns within the measurement data, (ii)
spatial aspects of the power system topology, (iii) and temporal
correlations within the time-series measurements. Also, the
detector should be topology-aware that (iv) offers general-
ization abilities to capture new topological reconfiguration of
the power grid. Due to the lack of correctly labeled data, the
detector should be robust against (v) unseen correctly labeled
FDIAs within unseen topologies as well as (vi) data poisoning
(vii) without the need for an additional data filtering operation.
In this paper, we will show that capturing such aspects leads
to a robust detection scheme that offers an improved detection
performance (by 7− 25% in DR compared to benchmarks, as
presented in Section IV-D2) that is stable despite the presence
of data poisoning and unseen FDIAs.

B. Contributions

We overcome the limitations exhibited by data-driven
FDIAs benchmark detectors by proposing a generalized GNN-
based anomaly detector that is robust against correctly labeled
FDIAs as well as data poisoning. The proposed detector
requires only benign datasets for training and employs an
autoencoder with Chebyshev graph convolutional recurrent
layers with attention mechanism to capture the spatial and
temporal correlations within measurement data. The proposed
convolutional recurrent graph autoencoder (CR-GAE) model
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is trained and tested on multiple topologies corresponding to
systems of different sizes. The contributions of this work are
next summarized.

• We quantify the impact of data poisoning by injecting
adversarial samples into the train sets of the detectors
using multiple injection levels and assess the detection
performance degradation. Adversarial samples are gen-
erated using six cyberattack functions that bypass tra-
ditional BDD. Adversarial samples present manipulated
measurements that are incorrectly labeled as benign and
are injected in multiple levels that represent 10%, 20%, or
30% of the train set. The simulation studies are conducted
on 14, 39, and 118-bus systems, where detectors either
utilize multiple topologies (generalized setting) or one
topology (topology-specific setting).

• Our investigations revealed that benchmark detectors, in-
cluding topology-unaware (shallow and deep models) and
topology-aware (C-GNN model) are highly vulnerable to
data poisoning. Specifically, DRs of shallow and deep
models degrade by 17−29% and 10−21%, respectively,
with the highest injection levels. The C-GNN model
offers slightly improved DR that degrades by 9−11% due
to its topology-aware nature, but it still requires labeled
benign and malicious data for its supervised training.
Generalized benchmark detectors degrade by 9 − 26%,
whereas topology-specific ones degrade by 10−29% with
highest data poisoning injection levels.

• We propose a robust detector against data poisoning and
correctly labeled FDIAs based on a CR-GAE model that
exhibits the following features. First, it offers topology-
aware detection that captures the spatial relationships
within the power systems data. Second, it provides a gen-
eralization ability and can detect cyberattacks within un-
seen topologies. Third, it offers an unsupervised anomaly
detection that necessitates only benign data for training
and offers detection against totally unseen FDIAs, hence
offering robustness against zero-day attacks. Fourth, it
employs an autoencoder equipped with Chebyshev graph
convolutional recurrent layers and attention mechanism
to capture the complex patterns as well as the spatial and
temporal correlations within the measurement data.

• The features offered by the proposed CR-GAE detector
enhance the detection performance. Specifically, it offers
a stable detection performance that degrades only by
1.6 − 3.7% in the presence of high levels of adversarial
data poisoning and unseen correctly labeled malicious
samples in the train and test sets of unseen topologies,
respectively. This means that it enhances the DR degra-
dation by 16− 25%, 8− 17%, and 7− 8% compared to
shallow, deep, and C-GNN models, respectively.

The remainder of the paper is organized as follows. Section
II describes the dataset generation in terms of generating
various power grid topologies, benign power measurements,
and the threat model including the FDIA functions used to
generate adversarial and malicious samples along with the
attack injection levels. Section III presents the structure of
the proposed CR-GAE detector that is robust against data
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Fig. 1. Three topological configurations of a 14-bus system.

poisoning. Section IV introduces the benchmark detectors and
analyzes the impact of data poisoning on them compared to
the proposed detector. Section V concludes this paper.

II. DATA GENERATION

We herein discuss the modeling of smart grids via graphs
and present the process of generating different bus system
topologies and their respective power measurements. We also
describe the threat model and attack functions used to gen-
erate adversarial and malicious samples. We then present the
investigated generalized and topology-specific detection types.

A. Modeling Smart Power Grid Via Graphs

The motivation behind modeling power systems with graphs
is to capture the spatial patterns and ascertain the system
state (i.e., normal operation or under cyberattack). The tree
structure of the power system enables its modeling using
GNNs, which can be utilized to identify the system state using
both temporal (power injections and flows) and topological
(vertices spatial distribution and connections) features. Fig. 1
illustrates a system with 14 buses that are connected in three
different configurations.

Our goal is to design a generalized detection scheme that
captures topological reconfigurations within the power system,
which requires huge amounts of datasets reflecting spatial
and temporal features of various configurations of topologies
from different system sizes. Unfortunately, such datasets with
such features are not readily available. Existing graph-based
modeling methods [24], [25], [26] present one of the following
limitations. First, they offer unrealistic random graphs that
are impractical as they do not capture temporal and spatial
topological features. Second, they depend on a particular IEEE
bus system topology, and hence, lack the generalization ability
towards topological reconfigurations. Third, they adopt infor-
mation limited to certain cities without disclosing temporal and
spatial aspects due to security reasons and agreement policies.

B. Data Generative Model

To counter the aforementioned limitations, we adopt a gen-
erative model that creates various topological configurations
that belong to practical power systems with different sizes. We
adopt stochastic geometry [27] since it allows us to capture
physical constraints when connecting different power elements
[28] as well as taking into account the spatial coupling
and correlations of the electrical elements [29]. In fact, the
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stochastic geometric morphogenesis of cities adopting iterated
Poisson tessellations offers high similarity with the real world
[30], which was validated further against IEEE test systems
and real power grids [27]. Given the advantages offered by
stochastic geometry, we adopt it herein to generate multiple
topological configurations that are similar to real power grids.

To generate a topological configuration, we model the
geographical area as a disk with radius R. Inside the desk,
there are |M | = 2πλmR lines created based on a Poisson
line process (PLP) with density λm, where each line m is
characterized by a line direction of 0 ≤ θm < 2π and a line
location of 0 ≤ υm < R. Then, on each Poisson line m, we
create |V|m buses based on a one-dimensional homogeneous
Poisson point process (HPPP) with density λVm . Specifically,
buses within the system represent an HPPP with density
expressed as λV =

∑|M |
m=1 λVm

. Buses are linked based on
the physical paths via a potential near-geodesic route and the
shifted sum of exponential distributions of their degree [28].
Disconnected buses are linked according to the shortest path-
ways to ensure power supply to the loads and avoid power loss.
To assign electrical parameters, we allocate active/reactive
powers to buses following the exponential distribution with
a mean parameter equal to the mean of active/reactive powers
of an actual or test power system that has the same size
[24]. Moreover, line impedance values are assigned using the
empirical data of IEEE bus systems and New York independent
system operator (NYISO) based on [31, Table V], which
models the impedance using different distributions depending
on the system. The obtained values are then matched with the
real values of a similar-sized actual or test power system. By
statistically matching the obtained parameters with those of
an actual or test power system, we assign the remaining bus
and branch electrical parameters (voltage magnitude, voltage
angle, megavolt amperes rating, etc.).

Once the topological data (spatial features) are created, we
generate the time-series data (temporal features) that simulate
the power flow in each topology. For each topology, using
MATLAB’s MATPOWER toolbox [32], we run the power flow
analysis using Newton’s method to ascertain the active and
reactive power flows. To generate the time-series active and
reactive power values, we first normalize the load data profile
from the Electric Reliability Council of Texas (ERCOT) [33]
into a zero mean and unit standard deviation scalar vector 𭟋 =
𭟋1,𭟋2, ...,𭟋T ], to easily adapt it to our test system, where 𭟋t

is the scalar value at timestamp t. We multiply the active P and
reactive Q power values at the previous timestamp by a scaling
sample drawn from a normal distribution with 1 + 0.025 ∗𭟋t

mean and 0.01 standard deviation to get a dynamic variation
in the time-series values (P and Q) with respect to their static
case (fixed values). Thus, a dynamic range of load values due
to the properties of the normal distribution is generated.

C. Generating Benign and Malicious Dataset

In order to create multiple topological reconfigurations us-
ing stochastic geometry [27], we replicate the aforementioned
processes with a constant λ|V|. This way, the spatial fea-
tures, including nodal degree, degree centrality, and eigenvalue
spread of the topological configurations of a given system size

are similar to real power systems. For example, in Fig. 1, we
model three different 14-bus system topological configurations
that have matching spatial features, with a high degree, to the
IEEE 14-bus system. Such an approach helps us create mul-
tiple topological configurations that can be fed into a GNN-
based FDIA detector to enhance its generalization ability to
be effective against new unseen topological reconfigurations.

Let G = (V, E ,W ) denote a weighted undirected graph G
that consists of a set of vertices/nodes (buses) V with n = |V|
number of vertices. E denotes the edges within G representing
power lines of the grid and W ∈ Rn×n depicts the weighted
adjacency matrix representing the line admittance within the
power grid. For example, Wij refers to the weight assigned to
edge e = (i, j) between the connected i and j buses. For each
topological configuration, vertices are feature-labeled. For a
given G, the generated vertex data is composed of active power
Pi (MW) and reactive power Qi (MVAr).

To design detectors with generalization abilities, we create
ten distinct topological configurations for each of the three
investigated power system sizes, namely, 14, 39, and 118-
bus systems. For each configuration, we include 96 power
dynamics timestamps per day for a total period of six months,
which leads to having 17, 520 timestamps. Using the generated
data, we end up with three different types of data samples.
First, the simulation of power flow resulted in generating
benign data, where a benign sample Xb(t, i) at timestamp
t and bus i has correct labeling information of y = 0,
reflecting normal operation of the system. Second, using the
attack functions to be described in Section II-D1, we generate
adversarial data, where an adversarial sample Xs(t, i) has
incorrect labeling information, reflecting data poisoning within
the system. Samples Xs represent FDIAs that were mislabeled
by the grid operator as benign data because they were not
detected previously as attack samples. Hence, when they are
used to train the detector, they represent poisoned data samples
as they have false labels. Third, using the FDIA functions to be
described in Section II-D1, we also generate correctly labeled
FDIA malicious data, where a malicious sample Xm(t, i)
has correct labeling information reflecting operation when the
system undergoes FDIAs.

D. Threat Model

In this work, we consider a smart power grid that undergoes
two realistic cybersecurity threats:

• The first threat is data poisoning, which refers to cases
where a system operator trains a model on mislabeled
datasets, which leads to feeding the model with samples
that are associated with false labels [20]. Data poisoning
occurs if an attack sample has not been detected before,
and is being fed to under-development detectors with a
false benign label. The threat herein is that the decision
boundary of the trained detector will be shifted since it is
trained on mislabeled data, which results in falsely mark-
ing future malicious data as benign samples [34]. This
threat does not assume any special capability, system ac-
cess, or adopted detector knowledge by the attacker since
it reflects previous undetected attack samples present in
the training set of the detector with false benign labels.
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• The second threat is correctly labeled FDIAs where
an attacker manipulates measurement data in a stealthy
manner to bypass traditional BDD systems and falsify the
actual state of the power system [2]. The threat herein
is that falsifying measurement data could lead to making
inaccurate decisions and overloading the system [3]. This
threat only requires the attacker to capture a specific
reading or a series of readings using network traffic
monitoring tools (e.g., Wireshark) and falsely manipulate
previous samples then inject them into the system without
special capability nor prior knowledge about the system,
graph structure, or adopted detector.

The goal is to design a detector that is robust against the
aforementioned threats while offering generalization ability.
Such a robust detector can be implemented by the system
operators in order to detect data poisoning and correctly
labeled FDIAs, which will allow system operators to make
more accurate decisions and improve the stability of the power
grid. Next, we discuss the details of the attack datasets along
with the generation process of attack samples to simulate the
presence of the two aforementioned threats.

We consider six FDIA functions to generate adversarial
data poisoning and correctly labeled FDIA malicious samples.
First, adversarial data poisoning samples Xs are injected into
the training sets to simulate data poisoning with incorrect la-
beling information. Second, correctly labeled FDIA malicious
samples Xm are injected into the test set of supervised and un-
supervised detectors (and train set of supervised detectors) to
simulate correctly labeled FDIAs. We consider multiple FDIA
functions [35] including a random attack, four data replay
attacks, and a general attack. To ensure the stealthiness of
such attacks while not being detected, the difference between
the altered and true measurement data is maintained below
a threshold value that is deemed acceptable yet effective to
bypass the conventional BDD of power systems.

1) Attack Functions: Below are the FDIA functions that
create data poisoning and correctly labeled malicious samples.

a) Random Attack: Altering measurement data herein is
carried out where a small perturbation value α is applied
into benign samples and affect their integrity. An adversarial
sample Xs(t, i) at timestamp t and bus i is generated as
follows

Xs(t, i) = Xb(t, i) + α.Xb(t, i), (1)

where −0.05 ≤ α ≤ 0.05 is a random variable denoting the
perturbation magnitude that is randomly applied to a given
benign sample Xb(t, i) to maliciously alter the measurement.
Fig. 2a illustrates a random attack occurring at t = 2 and
t = 6 in a 14-bus system compared to a normal operation.

b) General Attack: Generating samples using the general
attack is carried out such that

Xs(t, i) = Xb(t, i) + (−1)βα.γ.Range(Xb(t, i)), (2)

where β and α denote a binary random variable and the
attack magnitude, respectively. γ is a uniform random variable
between (0, 1). The last term in (2) depicts the true measure-
ments range at timestamp t and bus i. Fig. 2b illustrates a
comparison between benign and attack sample values gener-
ated via (2) over a two-hour period in a 14-bus system.
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Fig. 2. P and Q of benign and attack samples.

c) Replay Attacks: We consider four cases of replay
attacks. The first two attacks, namely, one-step and random
replay attacks, require selecting a benign sample and replacing
it with a true measurement value from a previous timestamp.
In the one-step replay attack, data from a previous timestamp
(t− 1) is repeated, where Xs(t, i) is generated as follows

Xs(t, i) = Xb(t− 1, i). (3)

An illustration of a one-step replay attack occurring at t = 3
and t = 7 compared to a normal operation is presented in Fig.
2c. In the random replay attack, data from a randomly selected
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previous timestamp 2 ≤ t̂ ≤ 5 is repeated, where Xs(t, i) is
generated as follows

Xs(t, i) = Xb(t− t̂, i). (4)

An illustration of a random replay attack taking place at t = 4
and t = 7 compared to a normal operation is presented
in Fig. 2d. The previous two replay attacks target repeating
one attack sample at a time. The remaining replay attacks,
namely, interval replay and strategic replay attacks repeat a
series of benign readings and hence are considered to be
stealthier since they introduce a series of consecutive attack
samples that follow benign patterns. Specifically, the interval
replay and strategic replay attacks require selecting a series of
consecutive benign samples [Xb(tn, i), · · · ,Xb(tm, i)] within
time interval [tn, · · · , tm] and replacing them with a series
of consecutive true measurement values from previous times-
tamps. In the interval replay attack, a random series of benign
readings gets replaced with [Xb(tn̂, i), · · · ,Xb(tm̂, i)] from
a random previous time interval [tn̂, · · · , tm̂] such that

[Xs(tn, i), · · · ,Xs(tm, i)] = [Xb(tn̂, i), · · · ,Xb(tm̂, i)]. (5)

An illustration of an interval replay attack occurring at
timestamps 6, 7 and 8 compared to a normal operation
is presented in Fig. 2e. In the strategic replay attack,
[Xb(tn, i), · · · ,Xb(tm, i)] get replaced with benign measure-
ments from a previous time interval [tṅ, · · · , tṁ] such that

[Xs(tn, i), · · · ,Xs(tm, i)] = [Xb(tṅ, i), · · · ,Xb(tṁ, i)], (6)

where samples [Xb(tṅ, i), · · · ,Xb(tṁ, i)] must present higher
/lower measurement values than [Xb(tn, i), · · · ,Xb(tm, i)].
This way, a series of relatively high measurement values get
replaced with previous values that are lower and vice versa. An
illustration of a strategic replay attack occurring at timestamps
5 and 6 compared to a normal operation is presented in Fig. 2f.
In the interval replay and strategic replay attacks, the length of
the time interval is randomly selected to be between 2 and 5
since, according to our experiments, replay attacks with longer
time intervals can be easily spotted by the detectors.

2) Adversarial Data Poisoning Samples (Xs): Data poison-
ing refers to cases where a model is trained on data with
the implicit assumption that the training samples have correct
information with true benign samples labeled as benign. How-
ever, in reality, this assumption is not always valid as sample
values and labels fed into a given machine learning model are
not always necessarily true. Consider the case where malicious
entities have been altering measurement data (e.g., manipu-
lating the sensor data) and carrying out FDIAs without being
detected by traditional BDD. These altered measurements gen-
erated using cyberattacks will be incorrectly marked as benign
with incorrect labeling information. Such generated samples
are called adversarial data poisoning samples Xs. When such
poisoned data is used to train detectors of FDIAs, the train set
will falsely contain adversarial samples with benign labels.
Thus, detectors will be trained on and dealing with such
adversarial patterns as if they present benign measurements
[20]. These cases are depicted as data poisoning, which lead
to shifting the detectors’ decision boundary and degrading the
FDIAs detection ability [34]. To quantify the impact of data

poisoning, the aforementioned attack functions (1) - (6) are
used to create adversarial samples that are injected into the
train sets of the investigated detectors with a false benign label
of y = 0 instead of the true malicious y = 1 label. The attack
functions are used to generate an equal number of adversarial
samples where samples from each attack function present 1/6
of Xs.

3) Correctly Labeled FDIA Malicious Samples (Xm): The
attack functions (1) - (6) are also adopted to generate correctly
labeled FDIA malicious samples Xm and are assigned the
true malicious label of y = 1. The attack functions are
used to generate an equal number of correctly labeled FDIA
samples where samples from each attack function present 1/6
of Xm. Samples Xm present in the test set of the investigated
(supervised and unsupervised) detectors mimic a detector that
is encountering FDIAs. Samples Xm are also present in the
train sets of the supervised benchmark detectors denoting
correctly labeled FDIAs that were previously detected.

4) Train and Test Sets: Benign samples Xb have correct
labeling information of y = 0. Adversarial data poisoning
samples Xs have incorrect labeling information of y = 0.
Correctly labeled FDIA malicious samples Xm have correct
labeling information of y = 1. Since supervised detectors
perform binary classification, they require training on samples
with y = 0 and y = 1 labels. Thus, supervised detectors are
trained on Xb with y = 0 labels, Xs with y = 0 labels,
and Xm with y = 1 labels, whereas they are tested on Xb
with y = 0 labels and Xm with y = 1 labels. However,
unsupervised anomaly detectors require training on samples
with one label (y = 0). Thus, unsupervised detectors are
trained on Xb with y = 0 labels and Xs with y = 0 labels,
whereas they are tested on Xb with y = 0 labels and Xm with
y = 1 labels. Since data poisoning denotes mislabeled samples
Xs that have not been detected before, they are only present
in the train sets. However, samples Xm are present in the test
set of the investigated (supervised and unsupervised) detectors
to mimic a situation when a system is encountering FDIAs.
Samples Xm are also present in the train sets of the supervised
benchmark detectors denoting correctly labeled FDIAs that
were previously detected. The percentages of the samples are
discussed in Section II-D5

5) Attack Injection Levels: Since data poisoning is only
present in the training stage, we investigate their impact by
launching adversarial samples Xs into XTR using four levels
for each training topology. We generate equal numbers of
adversarial samples using (1) - (6) and inject them into XTR

through multiple attack injection levels where Xb and Xs are
split as follows. The first level contains 0% adversarial samples
(100% true benign samples). The second level contains 10%
adversarial samples (90% true benign samples). The third level
contains 20% adversarial samples (80% true benign samples).
The fourth level contains 30% adversarial samples (70% true
benign samples). The rationale behind investigating the impact
of data poisoning using such levels is that deep and graph
benchmark detectors (as will be shown in Table II) offer DR
of 69−90% and false alarm rate (FAR) of 8−31% with correct
labeling information (without the presence of data poisoning).
This means that around 10 − 31% of malicious samples
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go undetected and are falsely labeled as normal operation.
Similarly, 8− 31% of benign samples are incorrectly labeled
as malicious. Thus, we conclude that false labeling could
take place in up to 30% of the readings. The aforementioned
portions represent the entire XTR of unsupervised detectors.
However, in supervised detectors, such portions represent 50%
of XTR and the rest presents malicious samples Xm. In XTST

of supervised and unsupervised detectors, the number of Xb
and Xm samples is the same.

E. Detection Type

For comprehensive comparisons, we adopt two detection
types: generalized and topology-specific. The investigated de-
tectors are examined using both detection mechanisms.

1) Generalized Training: To achieve a generalized detection
that performs well against unseen topology (i.e., when topo-
logical reconfigurations take place), we adopt a generalized
training approach utilizing ten different topologies for each
of the 14, 39, and 118-bus systems. The topologies are
represented as Γ = [1, 2, ..., 10] where training, testing, and
validating topologies are selected in each experiment following
a leave-one-out method [36]. We carry out eight different
generalized experiments for each of the 14, 39, and 118-
bus systems. Each experiment defines seven, one, and two
topologies as its own training XTR, validation XVAL, and test
set XTST, respectively. The average detection performance of
these eight experiments is reported in Section IV-D2a.

2) Topology-Specific Training: We also investigate the im-
pact of data poisoning on detectors that are built based on
a specific topological configuration. In such a detection type,
the models are trained (e.g., Γ = {1}) and validated (e.g.,
Γ = {2}) using one topological configuration and tested on
two unseen topological configurations (e.g., Γ = {3, 4}). The
leave-one-out is also carried out herein to perform multiple
iterations of the experiments, where the average detection
performance is reported in Section IV-D2b.

III. ROBUST DETECTION MECHANISM

This section introduces the proposed FDIA detector that is
robust against data poisoning and correctly labeled FDIAs.
The proposed CR-GAE anomaly detector offers unsupervised
training that requires only benign data Xb of normal operation
for training [37] since it employs an autoencoder. It also
offers generalized training that is carried out on multiple
graph representations of various topologies, with the abil-
ity of detecting unseen FDIA types within different unseen
topologies. The structure of the CR-GAE model allows it to
capture the complex patterns along with temporal and spatial
aspects within the data due to the presence of Chebyshev graph
convolutional recurrent layers equipped with attention mech-
anism [38]. Capturing such features allows it to distinguish
the different sample types, which makes it robust against data
poisoning as well as other unseen malicious FDIAs.

A. Proposed Model Architecture

The structure of the proposed CR-GAE detector is presented
in Fig. 3. Through the graph encoder and decoder, the model
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Fig. 3. Illustration of the proposed unsupervised CR-GAE detection.

learns the representations of different graphs of benign data
from normal operations using a graph-reconstruction process
[39]. During training, the input to the model is sampled with
y = 0 labels (i.e., benign samples Xb with true labels and
poisoned samples Xs with false labels). The input samples
hold temporal measurement values [Pi, Qi] ∈ Rn×2. The input
layer is followed by graph encoding hidden layers LE, which
are followed by an attention LA and latent layer LS . Then, the
graph decoding hidden layers LD are placed, followed by the
reconstructed outputs X̃ . Next, we describe each component
of the proposed CR-GAE model.

1) Graph Encoder E: The graph encoding hidden layers
LE present hidden Chebyshev graph convolutional recurrent
layers. The channels of an encoding layer lE are denoted as clE

.
Each lE outputs X lE ∈ Rn×clE and takes X lE−1 ∈ Rn×clE−1 as
an input. The presence of LE helps capture the spatial features
since such layers perform the graph convolution operation.
After each lE, bias and ReLU activation function are added
to enhance the model’s nonlinear capability [40]. The ReLU
function generates the output tensor X lE of lE such that

X lE = ReLU(µlE ∗G X lE−1 + blE), (7)

where µlE ∈ RK×clE−1×cl depicts the K order Chebyshev
coefficients, blE ∈ RclE depicts the bias, and ∗G represents
the graph convolution operator. Using a recurrent flow of
information that is controlled using long short-term memory
(LSTM) gates, LE are also able to capture the temporal
correlations within the time-series data as well as handling
the vanishing/exploding gradient problem during the learning
process of the time-series patterns, especially with long inter-
vals [41]. Specifically, at timestamp t, an LSTM cell presents
a cell state slE

t and outputs a cell hidden state hlE
t . Each LSTM

cell receives the cell state and hidden state of the previous cell
denoted as slE

t−1 and hlE

t−1, respectively. Access to an LSTM
cell is managed by three gates, namely, input ilE

t , output olE
t ,

and forget f lE
t gates. In particular,

• ilE
t = φ(W lE

i X
lE
t +U lE

i h
lE

t−1 + V lE

i s
lE

t−1 + blE

i )

• olE
t = φ(W lE

o X
lE
t +U lE

o h
lE

t−1 + V lE
o s

lE
t + blE

o )

• f lE
t = φ(W lE

f X
lE
t +U lE

f h
lE

t−1 + V lE

f s
lE

t−1 + blE

f )

• slE
t = f lE

t s
lE

t−1 + ilE
t tanh(W lE

s X
lE
t +U lE

s h
lE

t−1 + blE
s )

• hlE
t = olE

t tanh(slE
t ),

where φ(·) refers to the activation function and W (·), U (·),
V (·), and b(·) denote the learnable weight and bias.
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2) Attention Layer LA: The attention layer LA is placed
to allocate higher importance to timestamps offering more
contribution with respect to acquiring a given output [20].
Towards this objective, LA takes, as inputs, the graph encoder’s
hidden state hLE

t at timestamp t and the graph decoder’s hidden
state hLD

t−1 at timestamp t − 1. The attention mechanism is
performed through an alignment score κ, Softmax Ω, and
multiplication. The alignment score κ is calculated as follows

κ = ξ(h
LE/2
t ,hLD

t−1), (8)

where ξ denotes the alignment function, which presents an
FNN that is trained using h

LE/2
t and hLD

t−1 jointly. The attention
weight is presented as a Softmax of alignment scores such that

Ω =
exp(κ)∑
|κ| exp(κ)

, (9)

where |κ| stands for the cardinality of κ. LA then outputs a
context vector Λt at timestamp t that is calculated based on the
weighted sum of the hidden state vector of the graph encoder:

Λt =
∑
T

Ω× h
LE/2
t . (10)

3) Latent Layer LS: The latent layer LS holds the repre-
sentations of the compressed data during the graph encoding
process. LS helps in learning features as well as simpler
representations of the data [42]. Specifically, LS takes Λt

along with the reconstructed output X̃ of the graph decoder
as inputs. The concatenation X̆ =

∑
(Λt, X̃) then takes place

and gets fed to the following graph decoder D block.
4) Graph Decoder D: The graph decoder D performs the

data reconstruction process through stacked graph Chebyshev
convolutional recurrent decoding hidden layers LD. Specifi-
cally, the presented concatenation X̆ in LS is fed into the
proceeding decoding hidden layer lD. Similar to the graph
encoder, the channels of a decoder layer lD are denoted as clD

.
Each lD outputs X̆

lD ∈ Rn×clD and takes X̆
lD−1

∈ Rn×clD−1

as an input. After each lD, bias and ReLU activation function
are added where the ReLU function generates the output tensor
X̆

lD of lD as follows

X̆
lD
= ReLU(µlD ∗G X̆

lD−1
+ blD). (11)

As presented in the graph encoder side, access to the LSTM
cells in the graph decoder is controlled by three gates, namely,
input ilD

t , output olD
t , and forget f lD

t gates, where

• ilD
t = φ(W lD

i X̆
lD

t +U lD

i h
lD

t−1 + V lD

i s
lD

t−1 + blD

i )

• olD
t = φ(W lD

o X̆
lD

t +U lD
o h

lD

t−1 + V lD
o s

lD
t + blD

o )

• f lD
t = φ(W lD

f X̆
lD

t +U lD

f h
lD

t−1 + V lD

f s
lD

t−1 + blD

f )

• slD
t = f lD

t s
lD

t−1 + ilD
t tanh(W lD

s X̆
lD

t +U lD
s h

lD

t−1 + blD
s )

• hlD
t = olD

t tanh(slD
t ).

Finally, the reconstruction process of the network’s original
input is carried out via the graph decoding layers, which leads
to generating the reconstructed output X̃ at the output layer.

B. Proposed Model Training and Testing

The proposed CR-GAE model learns the normal operation
of benign samples and marks abnormal operation of malicious
samples based on the presented deviation from the learned
benign patterns. Determining when anomalies take place is
based on a reconstruction error ζ throughout the reconstruction
process. Let E = fΦ(X) and D = gΦ(X) for the graph
encoder and decoder, respectively. The cost function of the
CR-GAE proposed model is expressed as

min
Φ

C(X, gΦ(fΦ(X))), X ∈ XTR, (12)

where Φ depicts the parameters of the model. The goal of this
cost function (i.e., mean squared error (MSE)) is to penalize
gΦ(fΦ(X)) due to the presented dissimilarity from X .

In Algorithm 1, we present the training process of the
proposed CR-GAE model, which aims to find the model
parameters µl(·) , bl(·) , W (·), U (·), and V (·), denoted by Φ,
that optimize (12). Such minimization is achieved via the
iterative gradient descent algorithm, described in Algorithm
1, by utilizing a stochastic gradient descent execution. In
Algorithm 1, η, ∇, and |XTR| depict the learning rate, partial
derivative, and number of training samples, respectively. We
split the training samples X ∈ XTR into mini batches that are
equally sized and feed them into the model in 128 epochs.
Although all training samples X ∈ XTR (benign samples
Xb with true labels and poisoned samples Xs with false
labels) are labeled with y = 0, the proposed model is able
to differentiate between samples and learn relevant features
from true benign ones due to its generalization anomaly
detection abilities. Also, its structure helps distinguish between
samples via convolutional recurrent graph layers equipped
with attention mechanism.

C. Setting Detection Threshold Value (ψ)

After the training stage on training samples X ∈ XTR,
given test samples X ∈ XTST could be either benign or
malicious. This is determined based on the comparison be-
tween the reconstruction error ζ and a certain threshold ψ. ζ
is used to quantify how familiar the model is with a given
sample, where lower or higher ζ values indicate the presence
of benign or malicious patterns, respectively. The value of ψ,
which separates benign from malicious samples, is set based
on the median of the interquartile range (IQR) of the receiver
operating characteristic (ROC) curve. Using (12), we obtain
ζ between X and X̃ , if ζ < ψ or ζ > ψ, X ∈ XTST are
considered benign with y = 0 or malicious with y = 1 labels,
respectively.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the impact of data poisoning
on several benchmark generalized and topology-specific detec-
tors with different characteristics. We apply hyperparameter
optimization to all investigated detectors. Then, we report
the impact of data poisoning using different attack injection
levels. We then provide model analysis in terms of complexity
and offline training time, generalized ability requirements, and
scalability when testing in real time.
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Algorithm 1: Proposed CR-GAE model training

1 Input Data: XTR

2 Initialization: parameters Φ: µl(·) , bl(·) , W
l(·)
(·) , U

l(·)
(·) ,

and V
l(·)
(·) ∀ l(·), hLD

t−1, and X̃

3 while not converged do
4 for each topology Γ do
5 for each training sample X do
6 Feedforward:
7 Graph Encoder (E):
8 for each graph encoding layer lE ∈ LE do
9 X lE = ReLU(µlE ∗G X lE−1 + blE)

10 for each timestamp t do
11 Compute:
12 ilE

t , olE
t , f lE

t , slE
t , and hlE

t

13 end
14 end
15 Attention Layer (LA):
16 κ = ξ(h

LE/2
t ,hLD

t−1)

17 Ω = exp(κ)∑
|κ| exp(κ)

18 Λt =
∑

T Ω× h
LE/2
t

19 LA outputs Λt

20 Latent Layer (LS):
21 X̆ =

∑
(Λt, X̃)

22 Graph Decoder (D):
23 for each graph decoding layer lD ∈ LD do
24 X̆

lD
= ReLU(µlD ∗G X̆

lD−1
+ blD)

25 for each timestamp t do
26 Compute:
27 ilD

t , olD
t , f lD

t , slD
t , and hlD

t

28 end
29 X̃

lD
= ReLU(µlD ∗G X̆

lD−1
+ blD)

30 end
31 Back Propagation:
32 Compute:
33 min

Φ
C(X, gΦ(fΦ(X))), X ∈ XTR

34 Find the derivatives:
35 ∇

µ
l(·)C, ∇

b
l(·)C, ∇

W
l(·)
(·)
C, ∇

U
l(·)
(·)
C, and

∇
V

l(·)
(·)
C

36 end
37 Parameters Update:

µl(·) = µl(·) − η
|XTR|

∑
x ∇µ

l(·)C

bl(·) = bl(·) − η
|XTR|

∑
x ∇b

l(·)C

38 W
l(·)
(·) = W

l(·)
(·) − η

|XTR|
∑

x ∇W
l(·)
(·)
C

39 U
l(·)
(·) = U

l(·)
(·) − η

|XTR|
∑

x ∇U
l(·)
(·)
C

40 V
l(·)
(·) = V

l(·)
(·) − η

|XTR|
∑

x ∇V
l(·)
(·)
C

41 end
42 end
43 Output: Optimal µl(·) , bl(·) , W

l(·)
(·) , U

l(·)
(·) , and V

l(·)
(·)

A. Benchmark Detectors

The benchmarks are diverse, with shallow/deep structures,
static/dynamic mechanisms, supervised/unsupervised training,
and topology-aware/topology-unaware detection.

1) Topology-unaware Detection: The detectors listed herein
are topology-unaware, which means that they do not capture
the information about the topology Γ (i.e., do not capture the
spatial aspects and relationships within the measurement data
implied by the power system topology).

a) Shallow Detectors: Autoregressive integrated moving
average (ARIMA) presents an unsupervised dynamic model
that uses measurement data of normal operation to predict
succeeding data patterns, and during testing, if a sample
surpasses a defined threshold ψ, an abnormal operation is
flagged [43]. SVM is a supervised static classifier trained on
labeled benign and abnormal samples that classifies samples
by defining a decision boundary to separate both classes [7].

b) Deep Detectors: FNN is a supervised static model
trained on operation data from normal and abnormal patterns;
it uses stacked hidden layers with fully-connected neurons and
forward information flow [11]. LSTM is a supervised dynamic
model that operates on normal and abnormal data using
recurrent cells with recurrent information flow and thus holds
previous knowledge [44]. CNN is a supervised model where
feature extraction is carried out via the convolution operation
[16]. The SEL-based model [45] presents an unsupervised
dynamic model that employs an autoencoder with attention
[42] to learn patterns of normal data operation then performs
further processes using recurrent and fully-connected layers
where the detection is based on a comparison between the
reconstruction error ζ and the detection threshold ψ.

2) Topology-aware Detection: We adopt a C-GNN model
[5] to present a benchmark topology-aware detector. The C-
GNN model is supervised, and it is trained and tested on
benign and malicious data. C-GNN models utilize multiple
stacked graph convolution layers that capture the graphs’
spatial features through the graph convolution operation [46].
The Chebyshev graph convolution layers are followed by
a dense layer to estimate the attack probability of a given
sample. The decision is then presented in the output layer
accordingly.

B. Hyperparameters Selection

We perform a hyperparameter selection process to employ
the optimal sets of hyperparameters that provide the best
detection performance (i.e., highest DR and ACC with lowest
FAR) against XVAL. Specifically, we perform a multi-stage
sequential grid-search where a hyperparameter is selected from
a selection space P throughout each stage [47].

1) Selection Space: Let ϱ define the value of the optimal
hyperparameter that is selected from P for each of the follow-
ing hyperparameters. Number of layers L = {2, 3, 4, 5, 6, 8},
number of units U = {4, 8, 16, 32, 64}, dropout rate D =
{0, 0.2, 0.4, 0.5}, order of neighborhood K = {2, 3, 4, 5}, opti-
mizer O = {Adam, Adamax, SGD, Rmsprop}, and activation
function A = {Sigmoid, Tanh, Relu, Elu}.
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TABLE I
OPTIMAL HYPERPARAMETERS OF DEEP DETECTORS

Detector ϱ 14-bus 39-bus 118-bus

FNN

L 5 4 4
U 16 32 32
D 0 0.2 0
O Adam SGD Adam
A Relu Relu Relu

LSTM

L 3 2 3
U 16 16 32
D 0.2 0 0.2
O SGD Adam Adam
A Relu Relu Relu

CNN

L 4 4 4
U 32 32 32
K 5 5 5
O Adam Adam Rmsprop
A Relu Relu Relu

SEL

L 6 4 8
U 32 32 32
D 0 0 0.2
O Adam Adam SGD
A Sigmoid Sigmoid Sigmoid

C-GNN

L 5 4 5
U 16 16 32
K 3 5 4
O Adam Rmsprop Rmsprop
A Relu Relu Relu

Proposed
CR-GAE

L 6 6 6
U 32 64 64
K 4 4 5
O Rmsprop Adam Adam
A Relu Relu Relu

2) Optimal Hyperparameters: After performing sequential
grid-search, the hyperparameters listed in Table I turn out to
be the optimal hyperparameters for the deep detectors. For the
autoencoder-based models (SEL and CR-GAE), the reported
U denotes the number of units in the first encoding layer. Thus,
with L and U of 4 and 32, respectively, the model presents
(32, 16) and (16, 32) units in the encoder and decoder layers,
respectively. For shallow models, ARIMA presents the optimal
values of 0 and 1 for the moving average and differencing
degree, respectively, using {0, 1, 2, 3} as P . For the SVM
model, P is taken from kernel = {Linear, Sigmoid, rbf},
gamma = {scale, auto}, and regularization = {1, 10, 100},
which turn out to be Sigmoid, auto, and 1, respectively.

C. Optimal Detection Threshold Values (ψ)

As discussed in Section III-C, unsupervised detectors use
a detection threshold ψ that separates benign from malicious
samples. When scores (MSE for ARIMA, and ζ for SEL and
CR-GAE) are greater than ψ, a malicious sample is assigned
the label y = 1; the sample is deemed benign otherwise. Using
XVAL, the ψ values are found to be ψ = 0.42, ψ = 0.53, and
ψ = 0.55 for the ARIMA, SEL, and CR-GAE, respectively.

D. Experimental Results

In this section, we introduce the used evaluation metrics to
measure and report the impact of data poisoning on the detec-
tion performance of the investigated detectors in generalized
and topology-specific settings.

1) Evaluation Metrics: To quantify the attack impact, we re-
port the performance of the detectors using three performance
metrics. First, to determine how well the model identifies
malicious samples, we use detection rate (DR = TP/(TP +
FN)), where TP and FN depict true positive and false negative
samples, respectively. Second, to indicate the percentage of
benign samples that were incorrectly detected as malicious, we
use false alarm rate (FAR = FP/(FP + TN)), where FP and TN
depict false positive and true negative samples, respectively.
Third, to determine how well the model marks benign and
malicious samples correctly, we use accuracy (ACC = (TP +
TN)/(TP + TN + FP + FN)).

2) Impact of Data Poisoning: In Tables II and III, we report
the impact of data poisoning against the investigated detectors
in generalized and topology-specific settings, respectively. The
reported detection performance follows the injection levels
presented in Section II-D5.

a) Impact on Generalized Detectors: In Table II, we
report the impact of data poisoning on the benchmark and pro-
posed detectors in generalized settings (as per Section II-E1).
The impact on the benchmark topology-unaware detectors
(ARIMA, SVM, FNN, LSTM, CNN, and SEL), benchmark
topology-aware detector (C-GNN), and proposed topology-
aware (GR-GAE) detector in the presence of multiple injection
levels for each system size is summarized next.

• For the 14-bus system, for topology-unaware bench-
marks, the DRs deteriorate by 3.1− 6.8%, 7.7− 15.6%,
and 13.8−26.4% with 10%, 20%, and 30% data poison-
ing injection levels. For the topology-aware benchmark,
the DRs deteriorate by 2.3%, 5.7%, and 10.2% with 10%,
20%, and 30% injection levels. For the proposed detector,
the DRs deteriorate only by 0.6%, 1.6%, and 3.2% with
10%, 20%, and 30% data poisoning injection levels.

• For the 39-bus system, for topology-unaware bench-
marks, the DRs deteriorate by 2.5− 5.8%, 6.4− 13.3%,
and 11.8−22.5% with 10%, 20%, and 30% data poison-
ing injection levels. For the topology-aware benchmark,
the DRs deteriorate by 2.2%, 5.4%, and 9.6% with 10%,
20%, and 30% injection levels. For the proposed detector,
the DRs deteriorate only by 0.5%, 1.4%, and 2.6% with
10%, 20%, and 30% data poisoning injection levels.

• For the 118-bus system, for topology-unaware bench-
marks, the DRs deteriorate by 2 − 4.6%, 5.3 − 10.8%,
and 9.9 − 18.2% with 10%, 20%, and 30% adversarial
injection levels. For the topology-aware benchmark, the
DRs deteriorate by 1.8%, 4.8%, and 8.9% with 10%,
20%, and 30% injection levels. For the proposed detector,
the DRs deteriorate marginally by 0.3%, 0.8%, and 1.6%
with 10%, 20%, and 30% adversarial injection levels.
b) Impact on Topology-Specific Detectors: In Table III,

we report the impact of data poisoning on the investigated
detectors in topology-specific settings (as per Section II-E2).
For the 14-bus system, the DRs of the shallow, deep, and
topology-aware benchmarks deteriorate by 26.6 − 28.7%,
15.6 − 20.7%, and 11.4% with the highest injection levels,
respectively, whereas the degradation is only 3.7% for the
proposed detector. For the 39-bus system, the DRs of the
shallow, deep, and topology-aware benchmarks deteriorate by
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TABLE II
DATA POISONING IMPACT ON GENERALIZED DETECTORS (%)

System
Size Detector Metric Poisoning percentage

0 10 20 30

14-bus

ARIMA
DR 61.3 54.5 45.7 34.9

FAR 46.4 53.0 61.5 71.9
ACC 60.1 53.4 44.9 34.6

SVM
DR 64.2 58.0 49.9 39.7

FAR 38.6 44.7 52.7 62.6
ACC 63.0 56.7 48.5 38.5

FNN
DR 68.9 64.3 58.0 49.8

FAR 31.2 35.8 42.1 50.2
ACC 67.5 62.9 56.5 48.4

LSTM
DR 74.4 70.0 63.9 56.1

FAR 24.9 29.1 35.0 42.6
ACC 72.7 68.5 62.5 54.8

CNN
DR 77.8 74.5 69.6 63.0

FAR 19.3 22.8 27.9 34.6
ACC 77.5 74.2 69.2 62.6

SEL
DR 82.8 79.7 75.1 69.0

FAR 14.5 17.5 22.1 28.1
ACC 82.0 78.9 74.2 68.0

C-GNN
DR 89.7 87.4 84.0 79.5

FAR 7.9 10.3 13.8 18.5
ACC 88.7 86.4 82.9 78.3

Proposed
CR-GAE

DR 93.2 92.6 91.6 90.0
FAR 5.0 5.6 6.8 8.4
ACC 92.9 92.2 91.1 89.4

39-bus

ARIMA
DR 62.9 57.1 49.6 40.4

FAR 44.8 50.5 58.1 67.4
ACC 62.1 56.4 49.0 39.8

SVM
DR 66.0 60.8 53.9 45.2

FAR 36.7 41.8 48.7 57.4
ACC 65.0 59.8 52.8 44.1

FNN
DR 70.7 66.6 60.9 53.6

FAR 29.7 33.8 39.5 46.8
ACC 69.4 65.3 59.6 52.3

LSTM
DR 76.0 72.1 66.5 59.3

FAR 23.3 27.1 32.5 39.5
ACC 74.6 70.8 65.5 58.5

CNN
DR 79.8 77.1 73.0 67.4

FAR 17.7 20.5 24.8 30.5
ACC 78.6 75.8 71.6 65.9

SEL
DR 84.6 82.1 78.2 72.8

FAR 12.6 15.0 18.9 24.2
ACC 83.5 81.0 77.0 71.6

C-GNN
DR 91.8 89.6 86.4 82.2

FAR 6.1 8.2 11.3 15.3
ACC 91.2 89.2 86.3 82.5

Proposed
CR-GAE

DR 95.4 94.9 94.0 92.8
FAR 2.9 3.4 4.3 5.7
ACC 94.8 94.2 93.2 91.8

118-bus

ARIMA
DR 66.1 61.5 55.4 47.9

FAR 42.1 46.6 52.6 60.2
ACC 65.3 60.7 54.6 46.9

SVM
DR 69.3 65.1 59.4 52.2

FAR 33.7 37.8 43.4 50.6
ACC 68.5 64.5 58.9 51.8

FNN
DR 74.6 71.0 66.0 59.7

FAR 26.3 29.8 34.8 41.2
ACC 72.9 69.3 64.3 57.8

LSTM
DR 80.1 77.1 72.7 66.8

FAR 20.1 23.2 27.7 33.6
ACC 78.3 75.2 70.6 64.6

CNN
DR 84.0 81.9 78.5 73.8

FAR 14.3 16.5 20.0 24.9
ACC 83.1 80.9 77.4 72.6

SEL
DR 87.9 85.9 82.6 78.0

FAR 10.1 12.0 15.1 19.5
ACC 87.2 85.1 81.7 77.0

C-GNN
DR 96.1 94.3 91.3 87.2

FAR 2.6 4.4 7.2 11.1
ACC 95.9 94.1 91.2 87.3

Proposed
CR-GAE

DR 99.1 98.8 98.3 97.5
FAR 0.3 0.7 1.3 2.2
ACC 98.8 98.3 97.5 96.5

TABLE III
DATA POISONING IMPACT ON TOPOLOGY-SPECIFIC DETECTORS (%)

System
Size Detector Metric Poisoning percentage

0 10 20 30

14-bus

ARIMA
DR 48.9 41.5 31.9 20.2

FAR 58.5 65.7 75.0 86.4
ACC 48.3 41.0 31.7 20.4

SVM
DR 52.1 45.3 36.5 25.5

FAR 50.7 57.4 66.2 77.1
ACC 51.0 44.1 35.1 24.1

FNN
DR 56.9 51.9 45.0 36.2

FAR 43.0 48.0 54.9 63.8
ACC 55.7 50.7 43.7 34.8

LSTM
DR 62.7 57.9 51.2 42.7

FAR 36.8 41.4 47.9 56.3
ACC 61.2 56.6 50.0 41.5

CNN
DR 67.4 63.7 58.2 50.8

FAR 29.9 33.8 39.5 47.0
ACC 67.0 63.3 57.7 50.3

SEL
DR 75.0 71.5 66.3 59.4

FAR 21.3 24.7 29.9 36.7
ACC 74.0 70.5 65.2 58.2

C-GNN
DR 82.1 79.5 75.7 70.7

FAR 16.1 18.8 22.7 27.9
ACC 81.4 78.8 75.0 70.1

Proposed
CR-GAE

DR 86.3 85.6 84.4 82.6
FAR 12.4 13.1 14.4 16.2
ACC 85.9 85.1 83.8 81.9

39-bus

ARIMA
DR 49.9 43.5 35.2 25.1

FAR 57.7 64.0 72.4 82.7
ACC 49.1 42.8 34.6 24.4

SVM
DR 53.2 47.4 39.7 30.0

FAR 49.6 55.3 63.0 72.7
ACC 52.3 46.5 38.7 29.0

FNN
DR 57.6 53.1 46.8 38.6

FAR 42.7 47.2 53.5 61.6
ACC 56.7 52.2 45.9 37.8

LSTM
DR 63.3 59.0 52.8 44.8

FAR 36.0 40.2 46.2 54.0
ACC 62.1 57.9 52.0 44.2

CNN
DR 68.4 65.3 60.6 54.3

FAR 29.2 32.4 37.3 43.8
ACC 68.0 64.8 60.0 53.5

SEL
DR 75.9 73.0 68.5 62.3

FAR 20.5 23.3 27.8 33.8
ACC 74.7 71.8 67.2 61.0

C-GNN
DR 83.9 81.5 78.0 73.4

FAR 14.0 16.2 19.5 23.8
ACC 83.1 80.9 77.8 73.8

Proposed
CR-GAE

DR 88.2 87.6 86.5 85.1
FAR 10.2 10.8 11.9 13.5
ACC 87.5 86.8 85.7 84.1

118-bus

ARIMA
DR 52.3 47.1 40.2 31.6

FAR 56.5 61.6 68.4 77.0
ACC 50.7 45.5 38.6 29.9

SVM
DR 55.4 50.6 44.1 35.9

FAR 47.8 52.5 59.0 67.3
ACC 53.9 49.3 42.9 34.8

FNN
DR 60.6 56.6 51.0 43.8

FAR 40.4 44.3 49.9 57.1
ACC 58.3 54.3 48.7 41.4

LSTM
DR 66.4 63.0 58.0 51.3

FAR 33.6 37.1 42.2 48.9
ACC 64.7 61.2 56.1 49.5

CNN
DR 71.6 69.1 65.1 59.7

FAR 26.7 29.3 33.3 38.9
ACC 70.9 68.3 64.2 58.7

SEL
DR 78.1 75.7 71.9 66.7

FAR 18.9 21.1 24.7 29.7
ACC 77.5 75.0 71.0 65.5

C-GNN
DR 87.3 85.4 82.3 78.1

FAR 11.7 13.6 16.6 20.8
ACC 87.1 85.2 82.2 78.2

Proposed
CR-GAE

DR 91.7 91.3 90.7 89.7
FAR 7.5 8.0 8.8 9.9
ACC 91.4 90.8 89.9 88.7
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23.2−24.8%, 13.6−19%, and 10.5% with the highest injection
levels, respectively, whereas the degradation is only 3.1% for
the proposed detector. For the 118-bus system, the DRs of
the shallow, deep, and topology-aware benchmarks deteriorate
by 19.4 − 20.7%, 11.4 − 16.8%, and 9.2% with the highest
injection levels, respectively, whereas the degradation is only
2% for the proposed detector.

3) Remarks: The following remarks are drawn from the
aforementioned results.

• Generalized detection offers more robust detection perfor-
mance than topology-specific detection by 7.8 − 16.3%
in DR. Specifically, the DRs of generalized shallow,
deep, C-GNN, and proposed CR-GAE detectors offer
lower degradation rates by 12.1 − 16.3%, 7.8 − 15.5%,
7.6 − 9.1%, and 6.9 − 7.8%, respectively, compared to
topology-specific training. This is because generalized
detectors utilize more data from different topologies,
allowing them to capture the topological reconfigurations.
However, the topology-specific detectors are only trained
on a static topological configuration, and hence, do not
have the generalization ability.

• The topology-aware benchmark detector (C-GNN) offers
better DR than the shallow and deep topology-unaware
benchmark detectors by 8.2−17.3% and 2−9.3%, respec-
tively, with highest injection levels. Such an improvement
is because the C-GNN model captures the spatial aspect
within the measurement data.

• The proposed CR-GAE detector offers the most stable de-
tection performance with only 0.3−3.7% DR degradation
against data poisoning. Specifically, its DR outperforms
the shallow, deep, and C-GNN detectors by 15.5− 25%,
8.3 − 17%, and 7 − 7.7%, respectively, with highest
injection levels. Such superior performance is because the
proposed CR-GAE detector offers generalized topology-
aware detection that captures the spatial, temporal, and
complex nature of the measurement data.

• As system size increases, the detection performance im-
proves. Specifically, in 118-bus systems, shallow, deep,
C-GNN, and proposed CR-GAE detectors offer more
robust DR of 7.1 − 8.2%, 3.9 − 4.2%, 1.5 − 2.2%, and
1.7%, respectively, compared to 14-bus systems. Also, in
the 118-bus systems, shallow, deep, GNN, and proposed
CR-GAE detectors offer more robust degradation rates of
3.7−4.3%, 1.9−2.2%, 1−1.3%, and 1.1%, respectively,
compared to 39-bus systems with highest injection levels.
This is because the 118-bus system offers more measure-
ment data to train, and hence, allowing the detectors to
capture more distinctive features from the data.

4) Impact of Each Attack Function: Tables II and III re-
ported the average deterioration rates of all attacks at different
injection levels. Tables IV and V show the impact on DR
of each attack function (1) - (6) separately at the highest
injection levels (30% data poisoning). The results show that
the attacks lead to different deterioration levels depending on
their strength. Compared to the average deterioration rates,
the random (1), random replay (4), and one-step replay (3)
attacks lead to lower deterioration rates, whereas the general
(2), interval replay (5), and strategic replay (6) attacks present

TABLE IV
IMPACT OF EACH ATTACK ON DR OF GENERALIZED DETECTORS (%)

Sys.
Size Detector Attack function Avg.

(1) (2) (3) (4) (5) (6)

14-
bus

ARIMA 42.4 32.4 39.9 39.1 28.4 27.1 34.9
SVM 47.0 36.5 44.1 46.4 33.2 31.1 39.7
FNN 56.5 46.6 53.9 51.4 45.6 44.8 49.8

LSTM 62.8 53.4 60.5 62.6 49.5 48.1 56.1
CNN 69.2 60.2 67.0 65.9 58.4 57.4 63.0
SEL 74.0 66.4 72.4 73.0 65.1 63.3 69.0

C-GNN 83.7 76.8 82.5 81.6 76.5 76.1 79.5
Proposed
CR-GAE 93.0 88.0 91.9 92.5 87.2 87.1 90.0

39-
bus

ARIMA 46.9 37.7 44.8 46.1 33.9 33.2 40.4
SVM 51.6 42.5 49.1 50.1 39.4 38.5 45.2
FNN 59.3 50.7 57.3 58.6 48.2 47.2 53.6

LSTM 65.1 56.9 63.3 63.8 54.4 52.4 59.3
CNN 72.7 64.7 70.9 72.8 62.7 60.8 67.4
SEL 77.2 70.3 75.8 75.8 69.3 68.3 72.8

C-GNN 86.2 79.9 85.2 85.4 78.8 77.9 82.2
Proposed
CR-GAE 94.9 90.8 94.8 94.9 90.6 90.5 92.8

118-
bus

ARIMA 54.1 45.1 51.9 53.2 41.9 40.9 47.9
SVM 58.4 49.5 56.1 57.1 46.4 45.5 52.2
FNN 65.4 56.8 63.3 64.7 54.4 53.3 59.7

LSTM 72.2 64.2 70.4 71.7 62.0 60.0 66.8
CNN 78.7 71.2 76.9 78.7 69.5 67.5 73.8
SEL 82.2 75.6 80.9 80.9 74.6 73.6 78.0

C-GNN 91.0 84.9 89.8 90.3 84.1 83.4 87.2
Proposed
CR-GAE 99.0 95.9 98.9 98.9 96.1 95.9 97.5

TABLE V
IMPACT OF EACH ATTACK ON DR OF TOPOLOGY-SPECIFIC DETECTORS (%)

Sys.
Size Detector Attack function Avg.

(1) (2) (3) (4) (5) (6)

14-
bus

ARIMA 27.6 17.4 25.2 25.8 13.3 12.1 20.2
SVM 32.8 22.4 29.9 32.8 18.7 16.6 25.5
FNN 43.0 32.7 40.3 38.8 31.7 30.9 36.2

LSTM 49.5 39.7 47.2 49.3 35.8 34.4 42.7
CNN 57.2 47.8 55.0 53.9 45.8 45.1 50.8
SEL 64.6 56.6 63.1 63.6 55.3 53.4 59.4

C-GNN 75.1 67.8 73.9 73.0 67.5 67.1 70.7
Proposed
CR-GAE 85.8 80.1 85.0 84.7 79.9 79.8 82.6

39-
bus

ARIMA 31.7 22.3 29.6 30.9 18.3 17.6 25.1
SVM 36.6 27.1 34.1 35.1 24.0 23.1 30.0
FNN 44.6 35.5 42.6 43.9 33.1 32.1 38.6

LSTM 50.8 42.2 49.0 49.5 39.7 37.7 44.8
CNN 59.8 51.4 58.0 59.7 49.8 47.3 54.3
SEL 66.9 59.6 65.6 65.5 58.6 57.6 62.3

C-GNN 77.6 70.9 76.6 76.8 69.8 68.9 73.4
Proposed
CR-GAE 87.9 82.9 87.3 87.4 82.7 82.6 85.1

118-
bus

ARIMA 38.1 28.7 35.9 37.2 25.5 24.4 31.6
SVM 42.3 33.1 40.0 41.2 29.9 29.0 35.9
FNN 49.8 40.8 47.7 49.1 38.3 37.3 43.8

LSTM 57.0 48.6 55.2 56.5 46.4 44.3 51.3
CNN 64.9 56.8 63.1 65.1 55.3 53.2 59.7
SEL 71.1 64.1 69.8 69.8 63.1 62.1 66.7

C-GNN 82.1 75.6 80.9 81.4 74.7 74.1 78.1
Proposed
CR-GAE 91.6 87.7 91.6 91.5 87.6 87.9 89.7
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TABLE VI
IMPACT OF OTHER ADVERSARIAL ATTACKS ON THE DETECTORS (%)

Detector Metric System Size
18-bus 39-bus 118-bus

ARIMA
DR 37.3 39.2 42.6

FAR 69.6 67.8 65.0
ACC 36.0 38.2 41.5

SVM
DR 42.1 44.2 48.9

FAR 60.5 58.6 55.5
ACC 41.7 43.5 48.2

FNN
DR 50.0 51.7 55.7

FAR 48.9 48.2 44.7
ACC 50.3 51.1 53.7

LSTM
DR 57.9 59.7 64.1

FAR 41.9 40.5 36.1
ACC 53.3 59.1 60.3

CNN
DR 62.1 64.2 69.7

FAR 33.4 32.6 30.2
ACC 62.0 63.3 69.2

SEL
DR 71.5 73.4 76.8

FAR 25.5 23.3 20.7
ACC 70.9 72.5 76.4

C-GNN
DR 80.2 82.4 83.9

FAR 17.0 15.1 13.8
ACC 79.5 82.1 83.3

Proposed
CR-GAE

DR 89.7 92.1 96.3
FAR 8.6 6.2 3.4
ACC 89.5 90.9 95.9

stronger attacks that lead to higher deterioration rates. Specif-
ically, in benchmark detectors, the random, random replay,
and one-step replay attacks lead to DR deterioration rates of
5.1–21.3%, 5.3–23.1%, and 6.3–23.7%, respectively, whereas
the general, interval replay, and strategic replay attacks lead
to DR deterioration rates of 11.3–31.5%, 12.1–35.6%, and
12.8–36.8%, respectively. The proposed CR-GAE offers stable
DR that degrades only by 0.1–0.5%, 0.2–1.6%, 0.1–2%,
3.2–6.2%, 3–6.4%, and 3.2–6.5% when subject to random,
random replay, one-step replay, general, interval replay, and
strategic replay attacks, respectively.

5) Robustness Against Other Adversarial Attacks: Besides
the FDIA functions discussed in Section II-D1, the model
could encounter other adversarial attacks such as the fast
gradient sign method [48], DeepFool [49], and basic iterative
method [50]. Although such attacks are typically considered
as evasion attacks that are present in the test set [45], we
are considering them herein as data poisoning to reflect cases
where they have not been detected before and thus the model
is falsely being trained on them as benign samples. Table VI
reports the impact of such adversarial attacks at the highest
injection levels (30% data poisoning) on the generalized
detectors since they exhibited superior detection performance
in Table II compared to topology-specific detectors in Table
III. Due to the advantages discussed in Section IV-D3 that
the proposed CR-GAE detector offers, it still presents a stable
DR with around 3.5% degradation, offering superior DR by
18.2−53.7% and 9.5−12.4% compared to topology-unaware
and topology-aware benchmark detectors, respectively, against
such adversarial attacks.

6) Model Analysis: After discussing the experimental en-
vironment and offline training time, we perform analyses
related to generalization ability (i.e., ideal number of required
topologies to offer generalized detection) as well as the testing
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Fig. 4. DR of the topology-aware models as training topologies increases.

time and scalability of the models.
a) Experimental Environment: The training process of

the proposed and benchmark models is carried out offline
utilizing an NVIDIA GeForce RTX 2070 hardware accel-
erator adopting Keras sequential API. Offline training takes
between two to four hours and five to seven hours for the
topology-unaware and topology-aware detectors, respectively.
The expansion in the training time frame herein is directly
proportional to the amount of training features. Topology-
aware models require a comparatively prolonged training
period as they capture a more comprehensive set of features,
including the spatial characteristics of topological configu-
rations. This results in improved detection performance but
comes at the cost of an extended training duration. Fortunately,
model training time and computation capabilities of the smart
grid network do not present a significant concern as system
operators can conduct the offline training on available datasets
periodically (weekly or monthly). Testing is done online (real
time) as per the reported decision time in Section IV-D6c.

b) Generalization Ability: As shown in Section IV-D,
generalized detection offers superior detection performance
compared to topology-specific detection. Thus, we study the
number of topologies that are required in order for the de-
tectors to achieve the generalization ability. In Fig. 4, we
plot the increase of DR with the increase of the number of
training topologies Γ for the proposed CR-GAE compared to
the C-GNN topology-aware benchmark detector in generalized
settings. Based on the plots, we conclude that the ideal total
number of topologies to offer generalized detection is eight.
Specifically, since the reported DR keeps improving from two
to seven topologies before it saturates in the eighth topology,
we train on seven topologies, validate on the eighth, and
then the tests are conducted on the two remaining unseen
topologies. This allows us to avoid over-fitting and over-
saturating when training the models [41].

c) Scalability: We analyze the model scalability with
respect to the required time for decision making regarding a
given sample as the size of the system gets larger. To perform
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Fig. 5. Illustration of the linear scalability of the proposed model.

such analysis, in Fig. 5, we plot the decision time in mil-
liseconds (ms) for each of the 14, 39, and 118-bus systems in
generalized settings. We compare the plot of the proposed CR-
GAE with the C-GNN and SEL models. We select these two
benchmarks since they present the top performing topology-
aware (C-GNN) and topology-unaware (SEL) benchmarks as
per Tables II and III. Fig. 5 shows that the proposed CR-GAE
detector offers higher linear scalability compared to the rest of
the benchmarks as the system size increases. Thus, despite the
higher complexity with bigger systems, the proposed CR-GAE
model still offers linear scalability with the required decision
time. Such linear scalability is because the proposed CR-GAE
model presents topology-aware detection that captures the
spatial aspects within the measurement data, and thus, being
fed with more data to capture within bigger systems enhances
the detection performance. The online (real time) testing of the
proposed CR-GAE detector takes around 2ms, which satisfies
the latency requirements and computation capabilities of the
smart grid network.

V. CONCLUSION AND FUTURE WORK

This paper investigated the impact of adversarial data poi-
soning on data-driven FDIAs detectors in generalized and
topology-specific settings through different attack injection
levels. Based on our extensive simulation studies, we found out
that data poisoning led to up to 29% DR degradation in bench-
mark detectors and reached the following. First, generalized
detectors trained on multiple topological reconfigurations are
8− 16% more robust in DR than topology-specific detectors.
Second, the topology-aware benchmark model (C-GNN) is
2 − 17% more robust in DR than topology-unaware bench-
marks (shallow and deep classical models) since it captures
the spatial aspects within the data. However, it does not
capture unseen attacks due to its supervised training nature.
Third, our proposed CR-GAE detector offers superior DR
that degrades only by 0.3 − 3.7%, offering 7 − 25% DR
enhancement compared to benchmarks with the highest data
poisoning injection levels. The proposed CR-GAE detector
offers generalized detection that is trained and tested on
multiple topologies from 14, 39, and 118-bus systems, and
hence, it offers detection of unseen attacks within unseen
topologies due to its unsupervised training nature. Specifically,
the proposed CR-GAE detector employs an autoencoder with
Chebyshev graph convolution recurrent layers with attention
mechanism to capture the spatial and temporal correlations
within measurement data. This work focused on detecting
FDIAs and analyzed the robustness of detectors against data

poisoning on the graph level. Our future work will investigate
the localization and classification of FDIAs on the node level.
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