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Abstract—For researchers studying cyber-physical system security, working with realistic datasets is essential. To produce the
datasets, the existing methodology is to emulate the cyber network. A challenge is that the industrial control systems (ICS) network
consists of not just computers and communication equipment, but also field devices that collect data and execute controls. These
devices play a significant role in the operation and the security of the system. However, in comparison to the cyber network, the
research reproducibility and realism of the cyber-physical system emulation and its data has received far less attention. This paper thus
develops an approach to answer, ”How well can emulated devices replicate the behavior of physical intelligent electronics devices
(IEDs) in a realistic cyber attack and defense environment?” To study this, we perform a comparison study based on an emulation
experiment using the minimega testbed environment that is entirely virtual and a hardware-in-the-loop experiment using the Resilient
Energy Systems Lab (RESLab) cyber-physical testbed featuring real industrial controllers and communications devices. Results show
that under different reconnaissance attack scenarios, RESLab generates realistic datasets that validate the emulation-based
cybersecurity model in minimega. The approach is generalizable toward validating the realism of other types of ICS devices in security
studies.

Index Terms—reconnaissance attacks, emulation-based testbeds, cyber experimentation reproducibility, experiment comparison
metrics
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1 INTRODUCTION

1 The first and foremost step of a successful high-impact
cyber attack is the planning phase, which can be real-
ized by reconnaissance. This type of attack aims to reveal
weaknesses and identify information to support adversaries
in their goals to target, deliver, and exploit elements of
a system. Reconnaissance involves researching industrial
control system (ICS) technical vulnerabilities and features
as well as gaining an understanding of how each process
and operating system may be susceptible to exploitation [1],
[2], [3].

Fig. 1 shows Stage 1, cyber intrusion preparation and
execution, of the ICS Cyber Kill Chain, from [3]. After
reconnaissance, the adversary can utilize the information and
weaknesses to implement its next steps. Examples can be
found with the cyber attacks in the Ukranian power grid [4],
the unidentified threats in the European Network of Trans-
mission System Operators for Electricity (ENTSO-E) [5], and
the recent Colonial Pipeline attack [6]. In supervisory control
and data acquisition (SCADA) systems, intelligent electronic
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ing/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers
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devices (IEDs) play an important role to connect cyber and
physical networks. IEDs have both communication and con-
trol capability. However, they have less computing capabil-
ity, making them more vulnerable against cyber attacks. For
power grids particularly, IEDs in SCADA systems connect
cyber and physical networks, and their functionalities are
crucial for system stability and security, such as protecting
the system against physical faults, automatically regulat-
ing voltage, and automatically adjusting generator output.
If those IEDs are compromised, there could be negative
outcomes in the power grid. As information technology
(IT) networks and operational technology (OT) networks
are increasingly interconnected, the reconnaissance attack
is an important step to obtain critical cyber information that
can compromise the security, functionality, and reliability of
both IT and OT networks. Thus, for cyber-physical systems,
especially the smart grid, the resiliency of the cyber network
with IEDs is paramount regarding the monitoring and con-
trol for operational technology.

There are four classes of reconnaissance techniques: So-
cial Engineering, Side-Channels, Network Information Gathering,
and Internet Intelligence [7]. For smart grids, most data is
not publicly available. Thus, when adversaries try to obtain
the information to plan their activities, Network Information
Gathering, also known as Network Scanning, is a popular
choice to map a remote network or identify operating sys-
tems and applications. More sophisticated techniques have
been proposed to improve the efficiency and effectiveness
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Fig. 1: Stage 1 of Industrial Control System (ICS) Cyber Kill
Chain, adapted from [3].

of network scanning. For example, in [8], strategies were
proposed to deal with a large number of hosts and to
conserve network traf�c as well as time of speci�c tasks
during scanning. In [9], Malkawi et al. introduced an appli-
cation program interface (API) based port and vulnerability
scanner to collect information for penetration testing. In [10],
Li et al proposed an adaptive and parallel strategy so that
attackers can reach the targets faster with better robustness.

To prevent cyber attacks in an early stage, it is important
to effectively detect the reconnaissance attack, especially
port scanning. In [11], a rule-based network intrusion de-
tection system (IDS) for port scanning attacks is proposed
and implemented with Snort. The authors in [12] present an
intrusion detection and prevention system using a software-
de�ned network (SDN) to detect and prevent port scanning
attacks in real-time. With the data generated from cyber-
physical testbeds, machine learning techniques have also
been utilized to detect cyber attacks [13], [14].

To defend the reconnaissance attacks, several techniques
have been proposed. The study in [15] introduced an SDN-
based defense against reconnaissance attacks and showed
its effectiveness within an emulated network. In [16], Ja-
farian et al. present the random host address mutation
approach to proactively defend zero-day, stealthy reconnais-
sance, and scanning attacks. In [17], Wanget al. present a
defense technique against adversarial reconnaissance and
scanning by dynamically mutating domain names and in-
ternet protocol (IP) addresses. In [18], the authors present
a novel architecture that integrates network intrusion de-
tection, mitigation, and prevention systems for wide-area
protection against cyber attacks in smart grids.

To investigate the cyber security of ICS, cyber-physical
testbeds are necessary. The previously discussed detection
and prevention methods [15], [16], [17], [18] have been
evaluated in small-scale or emulated communication net-
works. The question remains open on how repeatable and
replicable such results can be especially with respect to
the real-world systems that they emulate. In fact, many
security research works can offer signi�cant bene�ts to
critical infrastructure defense, if they can be successfully

replicated and validated in realistic systems at scale. For
example, in [19], a virtual assured network testbed for cyber
security, CyberVAN, provided a realistic cyber security tool
to evaluate different types of cyber security techniques, such
as the detection of botnet command and control mechanisms
and malware propagation. An emulation-based testbed [20],
minimega , has been created for large-scale communication
network cyber security studies. For ICS, several hardware-
in-the-loop testbeds [21], [22], [23] have also been built with
industrial IEDs and communication devices. Compared to
the hardware-based testbed, the emulation-based testbed is
better at scaling up the network for larger and more compli-
cated systems. However, the industrial IEDs were equated
to computer nodes in the emulation environment, which
may not capture the IEDs' response under cyber attacks.
The science of cybersecurity is an important aspect of its
understanding, development, and practice; thus, cybersecu-
rity experiments must be objective, falsi�able, reproducible,
predictable, and veri�able [24]. With few works delved into
the veri�cation of emulated and physical devices under
cyberattacks, the research question identi�ed in this paper is
”How well can emulated devices replicate the behavior of physical
IEDs in a realistic cyber attack and defense environment?”

When developing any type of model (a mathematical,
simulation, or emulation model), one must be concerned
about the accuracy of the model in representing the behavior
or phenomena of interest. Validation addresses the question
of adequacy of a model [25], [26]: is the model accurate
enough and appropriate to be used for a prediction? Typ-
ically, validation involves the comparison of the model with
observational or experimental data using statistical metrics
called validation metrics [25], [27]. Validation for computa-
tional physics models has been a discipline for many years;
however, validation for cyber emulation models is starting
to be considered [28]. Very few studies have validated the
cyber emulation models with their corresponding physical
systems for ICS. Hence, this work addresses that gap.

Crussell et al. [29] have investigated the question of
emulation adequacy, identifying behavior at three levels of
abstraction: application, operating system, and network. A
unique aspect of their work was the use of Markov models
to compare patterns of system call orderings to determine
whether the application behavior on the virtual testbed
(built in minimega ) was similar to the physical testbed (the
physical computer nodes). They also performed some large
scale emulation studies [30], with key lessons learned about
the infrastructure required to perform controlled validation
experiments, the amount of data generated, and the need for
careful statistical analysis when analyzing the data. In terms
of cyber-physical validation, Zheng and Julien [31] outlined
research challenges associated with validation of cyber-
physical systems (CPS), including the lack of knowledge
in the CPS development community about veri�cation and
validation tools, the insuf�ciency of formal methods to scale
for this domain, the lack of online monitoring capabilities,
and the need to address uncertainties.

This paper demonstrates the validation of an emulation
experiment with a physical system, addressing the issues of
carefully designed experiments, use of metrics and statisti-
cal analysis, and incorporation of uncertainties. To the best
of our knowledge, there is no other cybersecurity study that
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tried to validate the emulation model with the physical IEDs
for the communication network in SCADA system. This pa-
per aims to validate results from the minimega emulation-
based testbed [20] on a Network Scanningreconnaissance
experiment, more speci�cally adversary port discovery, versus
its detection by an IDS, reported in [32]. The physical
validation experiments were conducted by the Texas A&M
University (TAMU) authors in the Resilient Energy Systems
Lab (RESLab) cyber-physical testbed environment [23] with
collaboration from Sandia National Labs (SNL) to ensure
proper experimental setup and network architecture.

Prior to this study, two other studies were conducted: a
validation study was conducted in [32] in a virtual-machine
(VM)-based testbed cluster, and another study [33] in a
container-based testbed using common open research emu-
lator (CORE) [34] . Unlike the previous experiment [33], the
experiment environment in this paper combines the indus-
trial IEDs and communication devices combined with CORE
emulator to build a power grid supervisory control and
data acquisition (SCADA) system. Thus, this paper extends
those experiments with a hardware-in-the-loop testbed to
compare the results between the emulated environment and
the physical environment in order to validate cybersecurity
emulation experimental results.

These are the main contributions of this paper:

� We present a comparison study of cybersecurity anal-
ysis from an emulation experiment and a hardware-
in-the-loop experiment to validate the cybersecurity
emulation results with physical systems under port
scanning attacks. This is an important study for cy-
bersecurity to protect an ICS in an early stage, which
has gained less attention from existing literature.

� We introduce the design of the hardware-in-the-loop
testbed to optimally utilize the limited number of
physical IEDs to represent a scalable and realistic
ICS communication network. Speci�cally, we present
the process of automatically collecting data within
the physical testbed, and discuss the challenges and
lessons from the physical validation experiment,
which can be bene�cial for other research teams to
replicate the scenarios and study the realism and
defense of other attacks in different physical testbeds.

� Under two port scanning scenarios and two settings
for randomness, we generate realistic datasets from
two testbeds to analyze the behavior of cyber attacks
in both emulation and physical environments. We
have utilized those data to validate a mathematical
model that represents the port scanning attacks and
detection. These datasets can also be used for future
studies on developing data-driven based intrusion
detection in ICS networks.

� We perform analyses of the datasets with the
Kolmogorov-Smirnov (KS) test and the Bootstrap
Method. We interpret the results and what it means
for a replication to be considered acceptable. The
results show that the minimega emulation-based
model is close enough to the RESLabphysical model.
The presented experiment, case studies and statis-
tical analysis tools can be generalized with differ-
ent attack scenarios, such as Distributed Denial of

Service, Man-in-the-Middle, and SQL injection, with
corresponding parameters.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the con�guration of the emulation testbed,
minimega , and the reconnaissance scenarios. Section 3
presents the con�guration of the physical testbed, RESLab,
and the implementation of reconnaissance attacks in physi-
cal devices. In Section 4, we �rst we analyze the results from
both testbeds with statistical analysis, the Kolmogorov-
Smirnov (KS) test and the Bootstrap Method. Then, we vali-
date the mathematical model of port scanning and detection
in [32] with the data from both testbeds. Section 5 concludes
the paper.

2 BACKGROUND

This section reviews the port scanning scenarios and emu-
lated topology in minimega constructed by SNL team.

2.1 Test Scenarios

The experimental setup, described in detail in [32], includes
four types of VMs: a scanning node, a detection node,
a router, and Remote Terminal Units (RTUs). The RTUs
consist of different IEDs to collect data and execute control
actions. The scanning node runs Nmap, a popular open
source application for discovering hosts on a network and
the services those hosts are offering [35]. This port scanning
attack is a network-based attack to exploit IEDs' vulnera-
bility in a communication network. It is assumed that the
Nmap software runs on a compromised computer in an
energy utility's control center. To model a reconnaissance
scenario, Nmap scans Transmission Control Protocol (TCP)
applications running on port 20000, which represents the
Distributed Network Protocol 3 (DNP3) ICS protocol. Nmap
scans all IP addresses of hosts in the utility's substation
networks to determine which ones had their DNP3 ports
open, closed, or �ltered.

Nmap includes con�guration parameters designed to
avoid detection by IDSs. For example, by default, Nmap
scans hosts in sequential order, but the user can specify
random ordering ( randomize-hosts) to make the scan less
obvious to IDSs. The TAMU team found the randomiza-
tion of port order in the scanning to be a critical issue in
reproducibility [32], which is the ability to repeat experi-
ments across different hardware platforms and/or software
implementations. In this paper, reproducibility refers to
reproducing the experiments in an emulated vs. physical
environment. Other important IDS avoidance parameters
control the rate at which the port scanning takes place, gov-
erned by host group size (max-hostgroupand min-hostgroup).
Another parameter is the speci�ed amount of time ( scan-
delay) before Nmap will wait to re-scan hosts within the
current group or move to the next host group. TABLE 1
shows two port scanning strategies, considering different
host-groupand scan-delay. The slow stealthy strategy of Nmap
has smaller host-group and longer scan-delay, which can
decrease an IDS's ability to detect the scan but sacri�ce the
ef�ciency of port scanning attack. The fast and loud strategy
of Nmaphas bigger host-groupand shorter scan-delay, which
improves the ef�ciency of port scanning attack but increase
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their chances being detected by IDS. In general, decreasing
host-groupsize and increasing scan-delaydecrease an IDS's
ability to detect the scan. However, the delay required to
scan all hosts increases.

Strategy Parameters
Slow, Stealthy host-group = 4, scan-delay = 10 s

Fast, Loud host-group = 6, scan-delay = 5 s

TABLE 1: Port scanning attack scenarios using Nmap com-
mand.

Snort, an open source intrusion detection system
(IDS) [36], is used to monitor the traf�c going into the
substation communication network. For the experiment,
Snort uses the sfPortscanmodule that is designed to detect
port scanning using TCP connection requests 2. The module
comes “pre-installed” in Snortand was originally developed
by a team at SourceFire. The parameters forSnort portscan
includes senselevel, proto, and scan type. In this paper, Snort
is con�gured with the same settings senselevel f Lg, proto
f allg, and scan type f portsweepg for all experiments. Snort
keeps track of the number of unsuccessful session attempts
that are observed within a 60-second time window (by
default). If the number of unsuccessful session attempts
exceeds a speci�ed threshold, Snort generates an alert con-
taining the source and destination IP addresses of the probe
that exceeded thesfPortscanthreshold.

The experimental topology, Nmap and Snort software,
and emulation environments are being used in this vali-
dation study to run four different scenarios, as shown in
Table 2. In addition to the Nmap and Snort con�gurations,
the randomized scenarios also include the option to ran-
domly drop packets at a rate of 10%, to evaluate the effect of
packet loss on scanning results and detection probabilities.
This study includes a deterministic scenario with no random
port ordering in Nmap and no packet drops in Snort. The
variables in all experiments are the port ordering in the
address search (random or not), packet loss (no loss or 10%
loss), and Nmap port scanning strategies (slow or fast), and
thus there are eight scenarios of port scanning attack.

2.2 Emulation Experiments

The minimega emulation testbed environment [20] is an
open-source tool for constructing and orchestrating cyber
experiments in a safe, of�ine fashion on a computing cluster.
minimega uses the Kernel Virtual Machine (KVM) [37]
hypervisor to instantiate network hosts and routers, Open
vSwitch [38] to instantiate network switches, and Virtual

2. https://www.snort.org/faq/readme-sfportscan

Sources of Deterministic Stochastic
Randomness Formulation Formulation

Nmap Address �xed sequence random sequence
search order same for each trial varies between trials
Packet Loss no loss (none) random packet drops;

10% per packet sent

TABLE 2: Four experimental designs controlling for the
sources of randomness.

Local Area Network (VLAN) technology to provide sepa-
ration between network segments. minimega also provides
mechanisms for launching applications within virtual ma-
chines, transferring �les (e.g., for experiment results), and
Applications Programming Interfaces (APIs) to automate
experimental actions.

The experimental procedure, con�gurations, and results
from this study are described in more detail in [33] and [32].
The topology for the emulation-based experiment is shown
in Fig. 2(a). The purpose of the study described here is to
validate the original experiments in the fully-virtualized
minimega environment. Validation is performed through
comparison of the minimega experimental results with
results from a hardware-based RESLabtestbed.

3 PHYSICAL EXPERIMENTS

The RESLabtestbed [23] consists of physical substation
equipment as well as emulated network devices. To scale
up the communication network in RESLab testbed with
more IEDs, four protective relays (two SEL-351 and SEL 421,
respectively) have been added with a Layer 3 (L3) network
switch [39]. The physical substation equipment now in-
cludes real-time automation controllers (RTACs), protective
relays, and a L3 network switch.

The RTAC and protective relays use the default settings
for their communication parameters. The frequency of data
collection is based on RTAC's Integrity Polling Period and
Class 1,2,3 Polling Periodfor normal data and event data
from the relay. The Integrity Polling Periodis con�gured as
60000 msand the Class 1,2,3 Polling Periodis con�gured as
5000 ms, respectively [39].

Even though the control logic of the RTAC and protective
relays is not used in this paper, the IEDs' network stacks are
affected by the (presumably) limited processing capability of
the IEDs. Conducting this test on real industrial IEDs, such
as the RTAC, allows us to assess whether the processing
limitations on real-world IEDs affect the �delity of the
results, which are based on timing and could be skewed if
processing is too limited. Thus, it deserves more attention to
investigate IED's vulnerability in ICS through the network-
based attack.

The emulated RTU devices are implemented using
CORE emulator, which is integrated with a real-time power
system simulation environment using PowerWorld Dy-
namic Studio (PWDS) for comprehensive cyber-physical
power system studies. CORE and PWDS run on separate
virtual machines (VMs) hosted in vSphere.

Next we describe how the physical and emulated devices
are setup and con�gured in the RESLabtestbed to replicate
the experiment topology as in minimega .

3.1 Network Topology

To reproduce the experiment in [32] with hardware devices,
the RESLabtestbed is con�gured as in Fig. 2(b), which
shows the physical and emulated devices and their network
topology within the testbed as used for the experiments.
Each physical device (RTACs and relays) represents one
RTU in this paper for simpli�cation.

The physical network has two virtual local area networks
(VLANs) or subnetworks:
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(a) The minimega virtual experiment topology. (b) The RESLabhardware-in-the-loop experiment topology.

Fig. 2: Side-by-side comparison of emulation-based testbedminimega and hardware-based testbed RESLab.

� A substation VLAN with IP address 10.0.1.0/24 has
one Schweitzer Engineering Laboratories 3530 (SEL-
3530) RTAC, two SEL 421 relays and one SEL 351
relay. These are connected to the emulated network
in CORE (shown at the right side at the bottom of
Fig. 2(b)).

� A control center VLAN with IP address 10.0.2.0/24
has another physical SEL-3530 RTAC, con�gured
with IP address 10.0.2.20. The control center VLAN
contains the adversary's Nmapscanning node.

Although the speci�c IP addresses used in the physical
experiment differ from those used in the minimega experi-
ments, the network layouts are identical (i.e., a control center
network and a substation network).

To construct the reconnaissance attack scenario, there are
two standalone computers to run the Nmap port scanning
and Snort intrusion detection tools. The computer that per-
forms the Nmap scanning attacks is located in the control
center VLAN, with IP address 10.0.2.11. The computer that
performs the Snort intrusion detection is in the Substation
VLAN, with IP address 10.0.1.1.

The L3 switch that is shown in the middle of Fig. 2(b)
routes packets between the substation and control center
VLANs. These physical ports of this switch are con�gured
as follows: ports 1-12 is the Control Center VLAN, and Port
13-24 is Substation VLAN.

To capture all traf�c �owing in and out of the substation
VLAN, Port 22 on the L3 switch is con�gured as a monitor
port. The laptop running Snort is connected to this port in
order to detect any Nmap reconnaissance packets. Also in
the substation VLAN, Ports 13, 15, 17, and 19 are connected
to the physical substation devices, such as relays and RTAC.
Port 21 connects with the VM running CORE. In the control
center VLAN, Port 1 connects the control center RTAC, and
Port 2 connects the laptop running Nmap.

3.2 Port Con�guration

Now we address the port con�guration, where a port here
means a virtual identi�er of the applications or services that
are running on the �eld devices and emulated nodes.

The same TCP port parameters for the RTUs from [32]
are con�gured in our experiments, where we set ports as
open, closed, and �ltered. An openport means an RTU that
supports the application layer protocol, which in this case
is the Distributed Network Protocol 3 (DNP3) at TCP port
20000. A closedport is a node that does not support DNP3
over TCP. And a �ltered port means that the router, in our
case the L3 switch, has an access control list (ACL) that
blocks that application protocol and IP address.

Following [32], we need 24 RTUs in the substation
network. For the experiments in RESLabtestbed, a hybrid
of real and virtual RTUs was used. Four of these RTUs
are IEDs, including one RTAC and three protective relays.
The other RTUs are emulated nodes created in the CORE
emulator, which are also in the substation network. Not all
24 RTUs were actual hardware devices in the physical exper-
iments because we had a limited number of physical devices
available. In general, this reason contributes to the scaling
of the physical side of experiments being more prohibitive
than scaling in an emulation environment. Understanding
the tradeoffs in using real vs. virtual devices in studies also
better guides how to scale experiments while retaining a
desired degree of accuracy. For these reasons, we chose four
physical hosts as the ones to be tested asopen ports, as
explained next. This choice allows us to represent a realistic
ICS communication network with the combination of IEDs
and computer nodes. The rationale is that the openports
would exhibit the most signi�cant behavior that we want to
study while under attack, so we prioritize making those the
real devices.

In the substation network, the RTAC and the three pro-
tective relays are RTUs with IP addresses on subnetwork
10.0.1.0/24. They are con�gured as open DNP3 ports. 8
RTUs are modeled as closedand 12 RTU's as �ltered ports.
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