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Abstract—For researchers studying cyber-physical system security, working with realistic datasets is essential. To produce the
datasets, the existing methodology is to emulate the cyber network. A challenge is that the industrial control systems (ICS) network
consists of not just computers and communication equipment, but also field devices that collect data and execute controls. These
devices play a significant role in the operation and the security of the system. However, in comparison to the cyber network, the
research reproducibility and realism of the cyber-physical system emulation and its data has received far less attention. This paper thus
develops an approach to answer, ”How well can emulated devices replicate the behavior of physical intelligent electronics devices
(IEDs) in a realistic cyber attack and defense environment?” To study this, we perform a comparison study based on an emulation
experiment using the minimega testbed environment that is entirely virtual and a hardware-in-the-loop experiment using the Resilient
Energy Systems Lab (RESLab) cyber-physical testbed featuring real industrial controllers and communications devices. Results show
that under different reconnaissance attack scenarios, RESLab generates realistic datasets that validate the emulation-based
cybersecurity model in minimega. The approach is generalizable toward validating the realism of other types of ICS devices in security
studies.

Index Terms—reconnaissance attacks, emulation-based testbeds, cyber experimentation reproducibility, experiment comparison
metrics
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1 INTRODUCTION

1 The first and foremost step of a successful high-impact
cyber attack is the planning phase, which can be real-
ized by reconnaissance. This type of attack aims to reveal
weaknesses and identify information to support adversaries
in their goals to target, deliver, and exploit elements of
a system. Reconnaissance involves researching industrial
control system (ICS) technical vulnerabilities and features
as well as gaining an understanding of how each process
and operating system may be susceptible to exploitation [1],
[2], [3].

Fig. 1 shows Stage 1, cyber intrusion preparation and
execution, of the ICS Cyber Kill Chain, from [3]. After
reconnaissance, the adversary can utilize the information and
weaknesses to implement its next steps. Examples can be
found with the cyber attacks in the Ukranian power grid [4],
the unidentified threats in the European Network of Trans-
mission System Operators for Electricity (ENTSO-E) [5], and
the recent Colonial Pipeline attack [6]. In supervisory control
and data acquisition (SCADA) systems, intelligent electronic
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works.

devices (IEDs) play an important role to connect cyber and
physical networks. IEDs have both communication and con-
trol capability. However, they have less computing capabil-
ity, making them more vulnerable against cyber attacks. For
power grids particularly, IEDs in SCADA systems connect
cyber and physical networks, and their functionalities are
crucial for system stability and security, such as protecting
the system against physical faults, automatically regulat-
ing voltage, and automatically adjusting generator output.
If those IEDs are compromised, there could be negative
outcomes in the power grid. As information technology
(IT) networks and operational technology (OT) networks
are increasingly interconnected, the reconnaissance attack
is an important step to obtain critical cyber information that
can compromise the security, functionality, and reliability of
both IT and OT networks. Thus, for cyber-physical systems,
especially the smart grid, the resiliency of the cyber network
with IEDs is paramount regarding the monitoring and con-
trol for operational technology.

There are four classes of reconnaissance techniques: So-
cial Engineering, Side-Channels, Network Information Gathering,
and Internet Intelligence [7]. For smart grids, most data is
not publicly available. Thus, when adversaries try to obtain
the information to plan their activities, Network Information
Gathering, also known as Network Scanning, is a popular
choice to map a remote network or identify operating sys-
tems and applications. More sophisticated techniques have
been proposed to improve the efficiency and effectiveness
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Fig. 1: Stage 1 of Industrial Control System (ICS) Cyber Kill
Chain, adapted from [3].

of network scanning. For example, in [8], strategies were
proposed to deal with a large number of hosts and to
conserve network traffic as well as time of specific tasks
during scanning. In [9], Malkawi et al. introduced an appli-
cation program interface (API) based port and vulnerability
scanner to collect information for penetration testing. In [10],
Li et al proposed an adaptive and parallel strategy so that
attackers can reach the targets faster with better robustness.

To prevent cyber attacks in an early stage, it is important
to effectively detect the reconnaissance attack, especially
port scanning. In [11], a rule-based network intrusion de-
tection system (IDS) for port scanning attacks is proposed
and implemented with Snort. The authors in [12] present an
intrusion detection and prevention system using a software-
defined network (SDN) to detect and prevent port scanning
attacks in real-time. With the data generated from cyber-
physical testbeds, machine learning techniques have also
been utilized to detect cyber attacks [13], [14].

To defend the reconnaissance attacks, several techniques
have been proposed. The study in [15] introduced an SDN-
based defense against reconnaissance attacks and showed
its effectiveness within an emulated network. In [16], Ja-
farian et al. present the random host address mutation
approach to proactively defend zero-day, stealthy reconnais-
sance, and scanning attacks. In [17], Wang et al. present a
defense technique against adversarial reconnaissance and
scanning by dynamically mutating domain names and in-
ternet protocol (IP) addresses. In [18], the authors present
a novel architecture that integrates network intrusion de-
tection, mitigation, and prevention systems for wide-area
protection against cyber attacks in smart grids.

To investigate the cyber security of ICS, cyber-physical
testbeds are necessary. The previously discussed detection
and prevention methods [15], [16], [17], [18] have been
evaluated in small-scale or emulated communication net-
works. The question remains open on how repeatable and
replicable such results can be especially with respect to
the real-world systems that they emulate. In fact, many
security research works can offer significant benefits to
critical infrastructure defense, if they can be successfully

replicated and validated in realistic systems at scale. For
example, in [19], a virtual assured network testbed for cyber
security, CyberVAN, provided a realistic cyber security tool
to evaluate different types of cyber security techniques, such
as the detection of botnet command and control mechanisms
and malware propagation. An emulation-based testbed [20],
minimega, has been created for large-scale communication
network cyber security studies. For ICS, several hardware-
in-the-loop testbeds [21], [22], [23] have also been built with
industrial IEDs and communication devices. Compared to
the hardware-based testbed, the emulation-based testbed is
better at scaling up the network for larger and more compli-
cated systems. However, the industrial IEDs were equated
to computer nodes in the emulation environment, which
may not capture the IEDs’ response under cyber attacks.
The science of cybersecurity is an important aspect of its
understanding, development, and practice; thus, cybersecu-
rity experiments must be objective, falsifiable, reproducible,
predictable, and verifiable [24]. With few works delved into
the verification of emulated and physical devices under
cyberattacks, the research question identified in this paper is
”How well can emulated devices replicate the behavior of physical
IEDs in a realistic cyber attack and defense environment?”

When developing any type of model (a mathematical,
simulation, or emulation model), one must be concerned
about the accuracy of the model in representing the behavior
or phenomena of interest. Validation addresses the question
of adequacy of a model [25], [26]: is the model accurate
enough and appropriate to be used for a prediction? Typ-
ically, validation involves the comparison of the model with
observational or experimental data using statistical metrics
called validation metrics [25], [27]. Validation for computa-
tional physics models has been a discipline for many years;
however, validation for cyber emulation models is starting
to be considered [28]. Very few studies have validated the
cyber emulation models with their corresponding physical
systems for ICS. Hence, this work addresses that gap.

Crussell et al. [29] have investigated the question of
emulation adequacy, identifying behavior at three levels of
abstraction: application, operating system, and network. A
unique aspect of their work was the use of Markov models
to compare patterns of system call orderings to determine
whether the application behavior on the virtual testbed
(built in minimega) was similar to the physical testbed (the
physical computer nodes). They also performed some large
scale emulation studies [30], with key lessons learned about
the infrastructure required to perform controlled validation
experiments, the amount of data generated, and the need for
careful statistical analysis when analyzing the data. In terms
of cyber-physical validation, Zheng and Julien [31] outlined
research challenges associated with validation of cyber-
physical systems (CPS), including the lack of knowledge
in the CPS development community about verification and
validation tools, the insufficiency of formal methods to scale
for this domain, the lack of online monitoring capabilities,
and the need to address uncertainties.

This paper demonstrates the validation of an emulation
experiment with a physical system, addressing the issues of
carefully designed experiments, use of metrics and statisti-
cal analysis, and incorporation of uncertainties. To the best
of our knowledge, there is no other cybersecurity study that
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tried to validate the emulation model with the physical IEDs
for the communication network in SCADA system. This pa-
per aims to validate results from the minimega emulation-
based testbed [20] on a Network Scanning reconnaissance
experiment, more specifically adversary port discovery, versus
its detection by an IDS, reported in [32]. The physical
validation experiments were conducted by the Texas A&M
University (TAMU) authors in the Resilient Energy Systems
Lab (RESLab) cyber-physical testbed environment [23] with
collaboration from Sandia National Labs (SNL) to ensure
proper experimental setup and network architecture.

Prior to this study, two other studies were conducted: a
validation study was conducted in [32] in a virtual-machine
(VM)-based testbed cluster, and another study [33] in a
container-based testbed using common open research emu-
lator (CORE) [34] . Unlike the previous experiment [33], the
experiment environment in this paper combines the indus-
trial IEDs and communication devices combined with CORE
emulator to build a power grid supervisory control and
data acquisition (SCADA) system. Thus, this paper extends
those experiments with a hardware-in-the-loop testbed to
compare the results between the emulated environment and
the physical environment in order to validate cybersecurity
emulation experimental results.

These are the main contributions of this paper:

• We present a comparison study of cybersecurity anal-
ysis from an emulation experiment and a hardware-
in-the-loop experiment to validate the cybersecurity
emulation results with physical systems under port
scanning attacks. This is an important study for cy-
bersecurity to protect an ICS in an early stage, which
has gained less attention from existing literature.

• We introduce the design of the hardware-in-the-loop
testbed to optimally utilize the limited number of
physical IEDs to represent a scalable and realistic
ICS communication network. Specifically, we present
the process of automatically collecting data within
the physical testbed, and discuss the challenges and
lessons from the physical validation experiment,
which can be beneficial for other research teams to
replicate the scenarios and study the realism and
defense of other attacks in different physical testbeds.

• Under two port scanning scenarios and two settings
for randomness, we generate realistic datasets from
two testbeds to analyze the behavior of cyber attacks
in both emulation and physical environments. We
have utilized those data to validate a mathematical
model that represents the port scanning attacks and
detection. These datasets can also be used for future
studies on developing data-driven based intrusion
detection in ICS networks.

• We perform analyses of the datasets with the
Kolmogorov-Smirnov (KS) test and the Bootstrap
Method. We interpret the results and what it means
for a replication to be considered acceptable. The
results show that the minimega emulation-based
model is close enough to the RESLab physical model.
The presented experiment, case studies and statis-
tical analysis tools can be generalized with differ-
ent attack scenarios, such as Distributed Denial of

Service, Man-in-the-Middle, and SQL injection, with
corresponding parameters.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the configuration of the emulation testbed,
minimega, and the reconnaissance scenarios. Section 3
presents the configuration of the physical testbed, RESLab,
and the implementation of reconnaissance attacks in physi-
cal devices. In Section 4, we first we analyze the results from
both testbeds with statistical analysis, the Kolmogorov-
Smirnov (KS) test and the Bootstrap Method. Then, we vali-
date the mathematical model of port scanning and detection
in [32] with the data from both testbeds. Section 5 concludes
the paper.

2 BACKGROUND

This section reviews the port scanning scenarios and emu-
lated topology in minimega constructed by SNL team.

2.1 Test Scenarios
The experimental setup, described in detail in [32], includes
four types of VMs: a scanning node, a detection node,
a router, and Remote Terminal Units (RTUs). The RTUs
consist of different IEDs to collect data and execute control
actions. The scanning node runs Nmap, a popular open
source application for discovering hosts on a network and
the services those hosts are offering [35]. This port scanning
attack is a network-based attack to exploit IEDs’ vulnera-
bility in a communication network. It is assumed that the
Nmap software runs on a compromised computer in an
energy utility’s control center. To model a reconnaissance
scenario, Nmap scans Transmission Control Protocol (TCP)
applications running on port 20000, which represents the
Distributed Network Protocol 3 (DNP3) ICS protocol. Nmap
scans all IP addresses of hosts in the utility’s substation
networks to determine which ones had their DNP3 ports
open, closed, or filtered.

Nmap includes configuration parameters designed to
avoid detection by IDSs. For example, by default, Nmap
scans hosts in sequential order, but the user can specify
random ordering (randomize-hosts) to make the scan less
obvious to IDSs. The TAMU team found the randomiza-
tion of port order in the scanning to be a critical issue in
reproducibility [32], which is the ability to repeat experi-
ments across different hardware platforms and/or software
implementations. In this paper, reproducibility refers to
reproducing the experiments in an emulated vs. physical
environment. Other important IDS avoidance parameters
control the rate at which the port scanning takes place, gov-
erned by host group size (max-hostgroup and min-hostgroup).
Another parameter is the specified amount of time (scan-
delay) before Nmap will wait to re-scan hosts within the
current group or move to the next host group. TABLE 1
shows two port scanning strategies, considering different
host-group and scan-delay. The slow stealthy strategy of Nmap
has smaller host-group and longer scan-delay, which can
decrease an IDS’s ability to detect the scan but sacrifice the
efficiency of port scanning attack. The fast and loud strategy
of Nmap has bigger host-group and shorter scan-delay, which
improves the efficiency of port scanning attack but increase
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their chances being detected by IDS. In general, decreasing
host-group size and increasing scan-delay decrease an IDS’s
ability to detect the scan. However, the delay required to
scan all hosts increases.

Strategy Parameters
Slow, Stealthy host-group = 4, scan-delay = 10 s

Fast, Loud host-group = 6, scan-delay = 5 s

TABLE 1: Port scanning attack scenarios using Nmap com-
mand.

Snort, an open source intrusion detection system
(IDS) [36], is used to monitor the traffic going into the
substation communication network. For the experiment,
Snort uses the sfPortscan module that is designed to detect
port scanning using TCP connection requests 2. The module
comes “pre-installed” in Snort and was originally developed
by a team at SourceFire. The parameters for Snort portscan
includes sense level, proto, and scan type. In this paper, Snort
is configured with the same settings sense level {L}, proto
{all}, and scan type {portsweep} for all experiments. Snort
keeps track of the number of unsuccessful session attempts
that are observed within a 60-second time window (by
default). If the number of unsuccessful session attempts
exceeds a specified threshold, Snort generates an alert con-
taining the source and destination IP addresses of the probe
that exceeded the sfPortscan threshold.

The experimental topology, Nmap and Snort software,
and emulation environments are being used in this vali-
dation study to run four different scenarios, as shown in
Table 2. In addition to the Nmap and Snort configurations,
the randomized scenarios also include the option to ran-
domly drop packets at a rate of 10%, to evaluate the effect of
packet loss on scanning results and detection probabilities.
This study includes a deterministic scenario with no random
port ordering in Nmap and no packet drops in Snort. The
variables in all experiments are the port ordering in the
address search (random or not), packet loss (no loss or 10%
loss), and Nmap port scanning strategies (slow or fast), and
thus there are eight scenarios of port scanning attack.

2.2 Emulation Experiments

The minimega emulation testbed environment [20] is an
open-source tool for constructing and orchestrating cyber
experiments in a safe, offline fashion on a computing cluster.
minimega uses the Kernel Virtual Machine (KVM) [37]
hypervisor to instantiate network hosts and routers, Open
vSwitch [38] to instantiate network switches, and Virtual

2. https://www.snort.org/faq/readme-sfportscan

Sources of Deterministic Stochastic
Randomness Formulation Formulation

Nmap Address fixed sequence random sequence
search order same for each trial varies between trials
Packet Loss no loss (none) random packet drops;

10% per packet sent

TABLE 2: Four experimental designs controlling for the
sources of randomness.

Local Area Network (VLAN) technology to provide sepa-
ration between network segments. minimega also provides
mechanisms for launching applications within virtual ma-
chines, transferring files (e.g., for experiment results), and
Applications Programming Interfaces (APIs) to automate
experimental actions.

The experimental procedure, configurations, and results
from this study are described in more detail in [33] and [32].
The topology for the emulation-based experiment is shown
in Fig. 2(a). The purpose of the study described here is to
validate the original experiments in the fully-virtualized
minimega environment. Validation is performed through
comparison of the minimega experimental results with
results from a hardware-based RESLab testbed.

3 PHYSICAL EXPERIMENTS

The RESLab testbed [23] consists of physical substation
equipment as well as emulated network devices. To scale
up the communication network in RESLab testbed with
more IEDs, four protective relays (two SEL-351 and SEL 421,
respectively) have been added with a Layer 3 (L3) network
switch [39]. The physical substation equipment now in-
cludes real-time automation controllers (RTACs), protective
relays, and a L3 network switch.

The RTAC and protective relays use the default settings
for their communication parameters. The frequency of data
collection is based on RTAC’s Integrity Polling Period and
Class 1,2,3 Polling Period for normal data and event data
from the relay. The Integrity Polling Period is configured as
60000 ms and the Class 1,2,3 Polling Period is configured as
5000 ms, respectively [39].

Even though the control logic of the RTAC and protective
relays is not used in this paper, the IEDs’ network stacks are
affected by the (presumably) limited processing capability of
the IEDs. Conducting this test on real industrial IEDs, such
as the RTAC, allows us to assess whether the processing
limitations on real-world IEDs affect the fidelity of the
results, which are based on timing and could be skewed if
processing is too limited. Thus, it deserves more attention to
investigate IED’s vulnerability in ICS through the network-
based attack.

The emulated RTU devices are implemented using
CORE emulator, which is integrated with a real-time power
system simulation environment using PowerWorld Dy-
namic Studio (PWDS) for comprehensive cyber-physical
power system studies. CORE and PWDS run on separate
virtual machines (VMs) hosted in vSphere.

Next we describe how the physical and emulated devices
are setup and configured in the RESLab testbed to replicate
the experiment topology as in minimega.

3.1 Network Topology
To reproduce the experiment in [32] with hardware devices,
the RESLab testbed is configured as in Fig. 2(b), which
shows the physical and emulated devices and their network
topology within the testbed as used for the experiments.
Each physical device (RTACs and relays) represents one
RTU in this paper for simplification.

The physical network has two virtual local area networks
(VLANs) or subnetworks:



5

(a) The minimega virtual experiment topology.
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(b) The RESLab hardware-in-the-loop experiment topology.

Fig. 2: Side-by-side comparison of emulation-based testbed minimega and hardware-based testbed RESLab.

• A substation VLAN with IP address 10.0.1.0/24 has
one Schweitzer Engineering Laboratories 3530 (SEL-
3530) RTAC, two SEL 421 relays and one SEL 351
relay. These are connected to the emulated network
in CORE (shown at the right side at the bottom of
Fig. 2(b)).

• A control center VLAN with IP address 10.0.2.0/24
has another physical SEL-3530 RTAC, configured
with IP address 10.0.2.20. The control center VLAN
contains the adversary’s Nmap scanning node.

Although the specific IP addresses used in the physical
experiment differ from those used in the minimega experi-
ments, the network layouts are identical (i.e., a control center
network and a substation network).

To construct the reconnaissance attack scenario, there are
two standalone computers to run the Nmap port scanning
and Snort intrusion detection tools. The computer that per-
forms the Nmap scanning attacks is located in the control
center VLAN, with IP address 10.0.2.11. The computer that
performs the Snort intrusion detection is in the Substation
VLAN, with IP address 10.0.1.1.

The L3 switch that is shown in the middle of Fig. 2(b)
routes packets between the substation and control center
VLANs. These physical ports of this switch are configured
as follows: ports 1-12 is the Control Center VLAN, and Port
13-24 is Substation VLAN.

To capture all traffic flowing in and out of the substation
VLAN, Port 22 on the L3 switch is configured as a monitor
port. The laptop running Snort is connected to this port in
order to detect any Nmap reconnaissance packets. Also in
the substation VLAN, Ports 13, 15, 17, and 19 are connected
to the physical substation devices, such as relays and RTAC.
Port 21 connects with the VM running CORE. In the control
center VLAN, Port 1 connects the control center RTAC, and
Port 2 connects the laptop running Nmap.

3.2 Port Configuration

Now we address the port configuration, where a port here
means a virtual identifier of the applications or services that
are running on the field devices and emulated nodes.

The same TCP port parameters for the RTUs from [32]
are configured in our experiments, where we set ports as
open, closed, and filtered. An open port means an RTU that
supports the application layer protocol, which in this case
is the Distributed Network Protocol 3 (DNP3) at TCP port
20000. A closed port is a node that does not support DNP3
over TCP. And a filtered port means that the router, in our
case the L3 switch, has an access control list (ACL) that
blocks that application protocol and IP address.

Following [32], we need 24 RTUs in the substation
network. For the experiments in RESLab testbed, a hybrid
of real and virtual RTUs was used. Four of these RTUs
are IEDs, including one RTAC and three protective relays.
The other RTUs are emulated nodes created in the CORE
emulator, which are also in the substation network. Not all
24 RTUs were actual hardware devices in the physical exper-
iments because we had a limited number of physical devices
available. In general, this reason contributes to the scaling
of the physical side of experiments being more prohibitive
than scaling in an emulation environment. Understanding
the tradeoffs in using real vs. virtual devices in studies also
better guides how to scale experiments while retaining a
desired degree of accuracy. For these reasons, we chose four
physical hosts as the ones to be tested as open ports, as
explained next. This choice allows us to represent a realistic
ICS communication network with the combination of IEDs
and computer nodes. The rationale is that the open ports
would exhibit the most significant behavior that we want to
study while under attack, so we prioritize making those the
real devices.

In the substation network, the RTAC and the three pro-
tective relays are RTUs with IP addresses on subnetwork
10.0.1.0/24. They are configured as open DNP3 ports. 8
RTUs are modeled as closed and 12 RTU’s as filtered ports.
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Port
Type VLAN IP address Device

Open 10.0.1.0 .20, .26, .32, .38 RTAC and Relays

Closed 10.0.1.0 .22, .25, .28, .31,
.34, .37, .40, .43

Emulated in
CORE

Filtered 10.0.1.0
.21, .23, .24, .27,
.29, .30, .33, .35,
.36, .39, .41, .42

Emulated in
CORE

TABLE 3: RESLab substation VLAN and IP address configu-
ration.

All closed and filtered ports are CORE emulated nodes. The
IP addresses for all open, closed and filtered ports in the
substation network are listed in Table 3.

Using the IP addresses for the open and closed ports, we
configured an access control list (ACL) in the L3 switch,
which is shown in Fig. 3. In this ACL, the rules can be
explained as follows:

• The first rules, up to Rule 80, allow the control center
network to send packets to the IP addresses of the
emulated nodes, which do not run DNP3. Therefore,
Nmap will return these reconnaissance packets as
closed ports.

• Rules 100 to 130 allow packets to be sent from control
center to the RTAC and three relays in the substation
network. Since these devices communicate via DNP3
protocol, Nmap will return the probe packets as open
ports.

• Rule 140 allows the RTAC in the substation to com-
municate with the RTAC in control center on TCP
port 20003.

• Rule 150 allows the Nmap machine to check if the
control center’s RTAC is up and running before the
experiment begins.

• Rule 160 denies all other traffic. When a packet
matches this last rule, the reconnaissance packet is
returned as filtered.

This ACL is applied as an inbound filter on the physical
Port 2 of the L3 switch, where the Nmap laptop is connected.
Thus, the switch will inspect all reconnaissance packets that
are sent into the substation network.

Also, different packet loss probabilities were configured
in the Nmap machine’s iptable to emulate different network
conditions. As in Table 2, a 10% packet drop was configured
for the scenario that considered packet loss.

3.3 Containers vs VMs
In CORE, each node is simply a Linux container known as a
FreeBSD jail, whereas in minimega each node is a separate
KVM. Hence, differences in performance can be attributed
to the diversity in resources available in these two types of
environment.

There are a few differences between Linux containers
and VMs. One key difference is that a Linux container is
running on a host operating system (OS) and is able to
access tools that are installed on the host OS. For instance,
if Nmap is installed on the host OS, all of the containers
running on that OS now can access and run an Nmap
through the Linux containers’ virtualized network cards.

Fig. 3: Access control list on L3 Switch.

However, the drawback is that all the containers now share
the same software and hardware resources, and have to
request resources from the systems kernel’s singular mem-
ory and processing unit. The alternative to using a Linux
container is to use a VM, where all software and hardware
can be dedicated to that VM. A VM might not be as efficient
as a Linux container with its hardware resources, but at least
it can be relied upon to have those resources available to it
at any time. Our previous study has shown the differences
between containers-based and VMs-based emulations [33].

3.4 Reconnaissance Scenarios in Physical Environ-
ment
The reconnaissance scenario in [32] assumes the adversary
sends TCP reconnaissance packets into the substation net-
work to report the “lay of the land,” so to speak. Thus, the
adversary node is configured with a standalone computer
under the same network as the control center RTAC.

To replicate this reconnaissance probing using indus-
trial hardware (network switches, RTACs, and relays), it is
assumed that a man-in-the-middle (MiTM) eavesdropping
attack is used by the adversary. The MiTM attack can be
achieved through Address Resolution Protocol (ARP) cache
poisoning, which allows the adversary to receive packets
that were sent to another network device [40]. This is im-
portant to consider for the attack vector because initially the
Nmap machine was not able to scan the RTAC or relays in
the substation network. Only administrator-approved nodes
can establish a DNP3 connection with the RTAC and relays
in the substation network. For instance, the control center’s
RTAC is an administrator approved node.

In an actual attack environment, the attacker node would
have to impersonate the control center’s RTAC because it is
the only device that should be able to connect to the RTAC
and relays. For simplicity and to ensure anyone who uses
our results can differentiate between the adversaries’ packet
data and the control center RTAC’s traffic, we added the
Nmap machine to the list of hosts that can access the relays
and RTAC in the substation network.

Under different Nmap scanning strategies, Snort gener-
ates alerts and logs for cyber threats in the substation’s
network. For post-processing purposes and to ensure the
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network setup does not change over the course of the
experiment, a packet sniffer tool called Wireshark is used to
log packet data in a packet capture (PCAP) format from the
L3 switch’s monitoring port.

3.5 Automated Data Collection Process
The TAMU team developed Python scripts to automate the
dataset generation process. The overall process is shown
in Fig. 4 for Snort and Nmap, respectively. Unlike [33], in
this paper, the Nmap and Snort procedures are performed in
different computers, and there are constraints to ensure the
time synchronization of data in these different machines.

The automation scripts run on both the Nmap and Snort
machines. They do not communicate directly with one an-
other because the ACL rules programmed on the L3 switch
only allow DNP3 traffic to enter the substation VLAN.
Instead, they rely upon a schedule. For the fast use cases,
the trial duration is three minutes, while for the slow trial
the duration time is five minutes.

The Nmap script has about a 30-second delay (Wait Time)
after the start of each trial to ensure that the Snort script
can properly restart Snort and Wireshark before the Nmap
scan begins. Then, the Nmap process will start on the Nmap
machine, taking on average one minute and 55 seconds to
run. Next, there will be approximately a one-minute and
30-second gap before the next trial starts. This ensures that
there is no packet information contamination between trials.

Fig. 4: Automated Process of RESLab Testbed Data Collec-
tion of Nmap and Snort.

Because the scripts run using a scheduler, it is critical that
both scripts are synchronized. In our testbed, the devices
are run on two laptops. If the devices are left to run with-
out synchronizing their internal clocks, Snort and Wireshark
could collect Nmap traffic from a past or future trial and in-
correctly store it in the wrong trial folder. This could lead to
misreporting results. To prevent data contamination, before
the trial starts both stand-alone computers are connected
to the internet, and their internal clocks synchronize by
connecting to a public Network Time Protocol (NTP) server.

Global Positioning System (GPS) satellites can also be used
to synchronize the time if an NTP server is not available.
Then, both computers are disconnected from the internet,
and the data collection process for each use case is started.

With the automated process, all port scanning scenarios
run 1000 replicates (experimental runs) to generate datasets
for the following analyses.

3.6 Lessons Learned from Physical Validation Experi-
ment
The purpose of the physical validation experiment is to
validate that the emulated environment that researchers
commonly use to generate datasets is accurate. While the
TAMU team conducted the physical validation experiments,
a few key differences were observed. The following is a list
of lessons learned from the physical validation experiment.

• There was an issue when the L3 switch’s monitoring
port was used to monitor all the substation ports
(Port 1-24) on the L3 switch. When Wireshark ran
on the Snort machine, the TAMU team noticed that
packets were being monitored as they entered into
the L3 switch and as they left the L3 switch. This
caused Snort to double the amount of alerts that it
was generating from the port fs scan alerting system.
To counteract the double counting of packets, only
packets entering and leaving the Substation VLAN
were assigned to the switch’s monitoring port.

• The Nmap machine was not able to scan the RTAC or
relays in the substation network initially because the
RTAC and relays allowed only certain IP addresses,
i.e., they had only one DNP3 master. The only IP
address allowed was the RTAC in the Control Center.
This issue was resolved by “whitelisting” the IP
address of the Nmap machines to all the devices in
the Substation Network. In other words, the RTAC
and relays in the substation have two DNP3 masters.
However, in an actual attack environment, the adver-
sary would have to impersonate the Control Center
RTAC as in Fig. 2(b).

• A timestamp issue occurs between computers used
in the data collection process. We observed that the
internal clock of the Nmap and Snort machines had
to be synchronized using the network before the
experiment starts.

• Nmap was not able to be run on a Windows OS
machine for these experiments. The TAMU team
observed that even when the Windows firewall is
turned off, a windows machine is still unable to scan
network devices of a VLAN that it is not connected
to. For example, if a Windows Nmap machine is
attached to a 192.168.1.0/24 it can scan network
devices within the 192.168.1.0/24, but it cannot scan
network devices in a 192.168.2.0/24 network. The
error Nmap produced was a ”128.128.128.128 autho-
rization not allowed” error. Initially, this was thought
to be the ACL rules configured on the L3 switch,
but after using a Kali Linux machine to scan the
substation network, it was noted that the Windows
kernel did not allow the scan of an IP address outside
of its LAN broadcast domain. To solve this issue, a
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Live version of Kali Linux 2020.1 was used to run
Nmap on the Nmap machine.

• The original emulation experiments in [32] had
packet losses configured in all the machines. How-
ever, we were not able to configure packet losses in
the RTACs and relays. In our experiments, packet
losses were configured only on the inbound interface
of the Nmap scanning laptop.

4 ANALYSES OF DATASETS

4.1 Brief Review of the Mathematical Model of Discov-
ery and Detection of Port Scanning Attack

In [32], the authors consider a hypothetical reconnaissance
attack on an ICS for an electrical power system. They
assume the adversary has established a foothold on the
SCADA network and is using network scanning tools to
identify vulnerable RTUs (e.g., due to firewall misconfig-
urations) against which payloads can be deployed. They
also assume that an IDS has been installed on the SCADA
network to detect unauthorized scanning activity. The study
in [32] introduces a probabilistic, mathematical model that
describes the rate at which the adversary identifies vul-
nerable RTUs and the probability that the adversary will
be detected by an IDS over time. The model defines the
state of the system at a discrete timestep to be the number
of RTUs that have been categorized as vulnerable, secure,
undetermined, or not yet scanned, and the state is updated
at each timestep. The order in which RTUs are scanned
and the dropping of packets are assumed to be stochastic
and modeled with probability distributions. The speed of
vulnerability discovery is further determined by parameter
settings of the network scanning tool, and detection of
network scanning is subject to logic specified in the IDS
rules. The authors validate the mathematical model via
comparison with a virtual testbed (emulation). The mean
estimates for vulnerability discovery and probability of de-
tection produced by the model fall within 95% confidence
intervals for mean estimates obtained from the emulation
experiment. For details on the mathematical model and the
virtual testbed validation, please refer to [32], [33].

Fig. 5 displays the mean port count results for the slow
discovery scenario described in Section 2.1. These results
have all sources of randomness, i.e., packet drops are in-
cluded and Nmap search address sequences are random and
varied. Results are shown for the emulated and physical ex-
periments. Additionally, results of predicted port discovery
count are included. The predicted values are calculated us-
ing the mathematical model described in [32]. As discussed
in [32], the mean quantities estimated by the math model fell
within the 95% confidence intervals on the mean estimates
from the emulated runs, and Fig. 5 shows the mathemat-
ical model results agree well with both the emulated and
hardware-based results. However, the analysis included
herein does not include further comparison or discussion
of the results from [32]. The analysis techniques used to
compare experimental results require discrete results from
multiple trials at each timestep. Because the mathematical
model presented in [32] uses an analytical and not Monte
Carlo style approach, the format of the results from the

mathematical model are not amenable to the analysis tech-
niques discussed in this paper.

Because the laptop that is connected to the switch’s
monitor port runs Snort and collects packet captures, a
common clock reference is used for Snort alerts and packets.
A post-processing script uses data from the packet capture
file to determine when Nmap scanning starts, and correlates
this with the Snort event log data to determine the elapsed
time between the start of scanning and the subsequent
alert, which is the port discovery activities from Nmap.
The same post-processing script is used for emulation and
physical testing data. Thus, this section presents an analysis
of the port discovery results using the Kolmogorov-Smirnov
(KS) test and a “bootstrap” method. This statistical analysis
concentrates on open ports, because those are represented
with physical devices in the TAMU experiment. For this
reason, much of the analysis focuses on validation com-
parison of open port discovery between SNL’s minimega
emulation and TAMU’s RESLab testbed. The data sets from
two testbeds under port scanning attacks are published at
[41].

Fig. 5: Mathematical model [32] validation with Minimega
and RESLab under slow discovery of open and closed ports,
random formulation.

4.2 Kolmogorov-Smirnov (KS) Test

The Kolmogorov-Smirnov (KS) test statistic is a well-
known non-parametric statistical test for equality of distri-
butions [42]. Due to inherent randomness in the scenarios,
multiple replicates are run in the emulation and physical
experiments to facilitate a statistical comparison between
them. The KS statistic has a number of desirable features for
performing this comparison. It considers ensemble distri-
butions of results from both testbeds, and produces results
that indicate the degree of correspondence and provide a
threshold for deciding whether the two distributions match.
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The KS distance between two random variables is the
maximum vertical distance between their cumulative distri-
bution functions (CDFs), CDF1(x) and CDF2(x). The KS
test involves testing for equality of these CDFs. That is, the
null hypothesis is HO : CDF1 = CDF2, while the alterna-
tive hypothesis is H1 : CDF1 6= CDF2. Equation (1) is used
to test for the equality of these distributions given n samples
from distribution 1 and m samples from distribution 2.
Dn,m converges to a Kolgmorov-Smirnov distribution as
n and m become large. Note that CDFi,n(x) refers to the
CDF from distribution i based on n sample points. The
test statistic (Dm,n) allows rejection of the null hypothesis
at various confidence levels α.

Dn,m = sup
x
|CDF1,n(x)− CDF2,m(x)|

Reject H0 if Dn,m >

√
−ln(α/2)

(
1 +m/n

2m

) (1)

The p-value is the probability that one would obtain KS
results at least as extreme as what were observed, assuming
the null hypothesis is correct. A p-value of 1.0 indicates
perfect agreement between the distributions. We use a sig-
nificance level threshold of 0.05 to determine when results
differ: if the p-value is less than 0.05, then the distributions
are considered to be statistically significantly different. We
chose this threshold as it is most commonly used in statis-
tical test comparisons; it roughly corresponds to rejecting
a value that is more than two standard deviations from a
mean in a Gaussian case. We do note, however, that there
is a revival of statistical interest in the topic of p-values and
proposals to lower the threshold to 0.005 [43], [44]. Until this
debate is more settled, we will keep the threshold at 0.05.
The p-value is the exceedance value for Dn,m according to
the KS distribution that follows the null hypothesis. The
CDF of the KS distribution is difficult to calculate ana-
lytically. There are a number of numerical approximations
used [45] [46], [47]. We used Matlab’s implementation [48],
shown as a one-sided version in Equation (2).

nt =
nm

n+m

λ = max((
√
nt+ 0.12 + 0.11/

√
nt) ∗Dn,m, 0)

p-value = e(−2λ2)

(2)

The main point to remember about the KS test is that
it compares agreement of distributions, not just agreement
of means as the t-test does. Also recall that the data in
these experiments is recorded at each second (e.g., number
of open ports found at 7 seconds, number of closed ports
found at 15 seconds, etc.). Thus, at each second, we perform
a full distribution comparison based on the 1000 replicates
from SNL and the 1000 replicates from TAMU datasets.
That is, n = m = 1000 in this study. The 1000 replicates
form a distribution, and the SNL distribution and TAMU
distribution of open ports discovered are the items being
compared.

We also show the area metric. Similar to the KS test, the
area metric also quantifies the difference between sample
CDFs. It accounts for the entire difference (e.g., the area)
between the two functions rather than just the maximum

vertical distance. The area metric does not have a formal
acceptance measure: it does not follow a parametric distri-
bution. However, a value of 0.0 indicates perfect agreement
(the two CDFs are identical) and a larger value indicates a
higher level of disagreement.

4.3 Results from KS test along with Port Discovery

In this section, we show the results of the KS test results and
the area metric along with the port discovery for four scenar-
ios: the fast and slow Nmap scanning scenarios (determined
by the max-host-group, min-host-group and scan-delay settings
in Nmap, described in Section 2.1) with fixed port ordering
and no packet drops (these are “fixed” deterministic scenar-
ios with no randomness), and the fast and slow scenarios
with random port ordering and 10% packet drops (these are
the “most random” of the combinations that are tested).

The SNL team started with the fixed scenarios as shown
in Figures 6(a) and 6(b). As expected, the results in Fig-
ures 6(a) and 6(b) show complete agreement, with p-values
of 1.0 for the KS-test and area metric values of 0.0 for all time
points throughout the scenario, whose plots are overlapped.
This occurs for both open and closed ports. The time traces of
the mean number of open and closed ports found for TAMU
and SNL are shown in the graphs on the right. The closed
ports are overlapping and thus the test statistics for closed
are identical to those of open and also the TAMU results are
identical to the SNL results for these deterministic cases.

The results for the random scenarios are shown in Fig-
ures 6(c) and 6(d). In these figures, the mean values of
the open and closed ports discovered over time do differ
slightly. The distribution comparison tests, as shown in the
left figures, all have p-values larger than 0.05, indicating
that we would not reject the null hypothesis that these two
samples come from the same distribution. However, there
are some areas in the figures that have lower p-values than
others. For example, the closed ports show lower p-values
between 80 and 130 seconds in Fig. 6(d) and the mean values
of closed ports found differ in this time interval also. The area
metric remains fairly constant: this indicates that the total
area between the two CDFs remains relatively unchanged.
The KS test is more likely to be affected by a few differences
in the discrete distribution values.

The difference between p-values for KS-Test in Fig. 6(c)
is not a huge disagreement. Recall that the KS test compares
agreement of distributions, not just agreement of means as
the t-test does. The distributions would only be considered
statistically significantly different if the p-value is less than
0.05: this does not occur in Fig. 6(c). One can say, however,
that there is a tighter distribution agreement over time:
the KS-test statistic is one by the end of the simulation at
50 seconds, indicating perfect agreement between the two
distributions. Finally, recall that at each second of the ex-
periment, we perform a full distribution comparison based
on the 1000 replicates from SNL and the 1000 replicates from
TAMU datasets. It is a strong statistical result indicating that
these two distributions involving 1000 replicates have the
same distribution by the end of the experiment.

As described in [33], the KS statistic represents one of
a number of possibilities for comparing results, and more
research is needed to determine whether, and under what
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(a) Fast discovery of open and closed ports, deterministic formulation.

(b) Slow discovery of open and closed ports, deterministic formulation.

(c) Fast discovery of open and closed ports, random formulation.

(d) Slow discovery of open and closed ports, random formulation.

Fig. 6: Analyses of data from Minimega and RESLab under four port scanning scenarios.
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conditions, other metrics should be used to perform similar
comparisons.

4.4 Bootstrap and Additional Statistical Analyses
We found that the results of the KS test can be quite noisy,
especially for the open ports. The reason is that there are
only five values for the open ports: 0, 1, 2, 3, or 4 open ports
may be found at a particular timestep. Slight differences in
the replicates may result in fairly large differences in the
distributions and CDFs. For example, of 1000 replicates at
twenty seconds, the TAMU results may show 200 replicates
with zero open ports and 600 replicates with one open port
found (with the remaining replicates having more than
one port found). The SNL results may show 250 replicates
with zero open ports and 630 replicates with one open port
found with the rest having more than one port found (for
example). These discrete values for the distribution make
the histogram “choppier” than if it were a continuous dis-
tribution, especially because the support of the distribution
is limited to the five values.

To further investigate this, we use a method similar to a
“bootstrap” approach in statistics [49], where we take many
random draws from the full datasets with 1000 replicates
each. The overall bootstrap method we used is outlined in
Algorithm 1, with B=500 and n=1000.

Algorithm 1 Bootstrap Method

1: Input: a sample from population with sample size n
2: for i in (1, B) do
3: Draw a sample of size n from the original sample

with replacement: this is a bootstrap sample
4: Evaluate the statistic of interest Q (e.g., mean, me-

dian, percentile) on the bootstrap sample
5: end for
6: Use the empirical distribution of the B values of Q to

identify the mean, median, 5th and 95th percentile of Q
7: Output = Statistics on Q from the set of B boostrap

samples

We compare each of these “bootstrapped” distributions
of TAMU results and SNL results and generate the p-
value plots. The bootstrap method allows us to generate an
ensemble of possible realizations of the p-value traces. We
can then examine the entire ensemble to understand how
much uncertainty is associated with the p-values.

Since the deterministic results had complete agreement,
there was no need to do this further statistical investigation.
To keep the number of figures reasonably concise, we only
performed this analysis on the random results. Random port
ordering and random packet drops for the open ports tend
to have more variable results than closed ports, because
there are more open ports to search. Thus, Fig. 7 shows the
statistical quantities indicating the range of p-values based
on the 500 bootstrap samples, where each bootstrap sample
compares a distribution generated by 1000 randomly chosen
replicates from the TAMU and SNL datasets. Repeating this
process for 500 bootstrap samples provides a sense of the
range and variability in p-values.

One can see that the 95th percentile of p-values in the
bootstrap set (shown in blue) is 1.0, indicating that the

Fig. 7: Bootstrap statistics on the p-values for Fast discovery
of open ports.

top 5% of the bootstrap samples have perfect distribution
agreement. The mean and median (in cyan and green,
respectively) show p-values ranging from about 0.3 to 1.0
near the end time of the fast scenario. The mean and me-
dian p-values are reasonably close to the p-values from the
comparison of the original TAMU and SNL datasets which
is shown in black. Finally, the bottom 5th percentile of p-
values is very low, below 0.05 and sometimes near zero,
indicating rejection of the null hypothesis. Note, however,
that after 35 seconds, the p-values of the 5th percentile
increase. When looking at the entire ensemble statistics
for the p-values including the mean, median, and the fifth
and ninety-fifth percentiles, we find the evidence strongly
supports the acceptance of the null hypothesis. That is, most
of the statistical measures indicate that the distribution of p-
values would be acceptable and we would not tend to reject
the null hypothesis. There is high variability in the p-values
based on the discrete nature of the open port distribution. In
aggregate, Fig. 7 quantifies that variability using a bootstrap
sample.

Fig. 8 shows a comparable set of 500 bootstrap samples
for the random slow case. Again, each of the 500 boot-
strap samples compares a distribution generated by 1000
replicates randomly chosen from the TAMU data and 1000
replicates randomly chosen from SNL data. While this figure
still shows high variability in p-values, it is not as large as
the variability in the fast random results.

The overall p-values for the original set of 1000 TAMU
and 1000 SNL samples are shown in the black line in
Fig. 8. The statistics from the bootstrapping are shown in
the colored lines: the red line is the 5th percentile, the blue
line is the 95th percentile, and the cyan and green lines are
the mean and median p-values, respectively. Again, these
statistics of the bootstrap ensemble provide a bound on
what we can expect when repeating this experiment.

Fig. 8 indicates a much tighter distribution of results
than Fig. 7. The black line comparing the original results
indicates that the results between TAMU and SNL are in
strong agreement and only differ between about 75 and
120 seconds. The 95th-percentile, the mean, and the median
have high p-values. The 5th percentile only goes below 0.05
in the 75 to 120 second window and otherwise is above 0.05.
The differences between the slow random and fast random
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Fig. 8: Bootstrap statistics on the p-values for Slow discovery
of open ports.

scenario are to be expected: the fast scan does not allow
much time for port discovery and so the differences are
compressed into a 55 second window, in contrast to the slow
scanning scenario. It was also noted that the statistical test
results shown in Fig 7 and 8 both show the results becoming
more similar near the end of the experiments. This is to be
expected because, eventually, all four open ports are found
and the distributions become very similar or identical.

As a final statistical study, the SNL team analyzed the
convergence of the p-values as we increase the amount of
data available. The 1000 TAMU results are the baseline phys-
ical test results against which we measure the agreement
of the SNL minimega emulation. We analyzed the slow,
random case just discussed. Fig. 9 shows the use of 100 SNL
minimega runs, followed by 200, then 300, etc. The idea
is to increase the amount of emulation data from Sandia’s
emulation testbed in the comparison to the 1000 TAMU
physical test results. Fig. 9 does not show a monotonic
convergence. That is, the darkest blue lines do not have
the lowest p-values. During the period between 60 and 120
seconds, for example, the datasets with the lowest p-values
are those in green, yellow, or orange hues, indicating a larger
number of samples being used in the Kolmogorov-Smirnov
test comparison. Again, this discrepancy is believed to be
caused by the small number of open ports and the discrete
nature of the distributions that we are comparing. Although
Fig. 9 does not indicate monotonic convergence, all of the p-
values are well above 0.05 (the y-axis has a lower bound
of 0.4 in Fig. 9) and thus the null hypothesis that these
distributions are similar cannot be rejected.

The results discussed in Figures 6-9 all involve com-
parison of emulations with the physical experiment. As
mentioned, we previously compared the performance of
the minimega emulation with the CORE emulation for
reproducibility [33]. While the emulation-to-emulation com-
parison had a different focus on reproducibility of the study
across emulation platforms, it is instructive to consider the
relative differences in that study compared to this one. As
an example, Fig. 10 shows that the slow discovery case with
random port ordering and packet drops has differences in
mean number of open or closed ports found that may be
as large as 0.2, depending on the timestep. Fig. 10 shows
these differences especially significant between 30 and 150
seconds for open ports found, as demonstrated by the differ-

Fig. 9: Convergence study of the p-values for Slow discovery
of open ports.

ences in the mean traces and the p-values.
Fig. 10 can be compared with Fig. 6(d). We do not

want to over-interpret this comparison as the emulation-
to-emulation results in Fig. 10 are based on 100 samples
from each emulation whereas the results in Fig. 6(d) are
based on 1000 samples from the emulation and the physical
experiment. The p-values can be influenced by the variance
of the number of ports found, which does depend on the
number of samples. However, the relative differences in the
mean number of closed and open ports found in the sub-
figures on the right side is the data we wish to compare.
We simply observe that the minimega comparison to the
physical experiments is not noticeably different from its
comparison to the CORE emulation. If Fig. 10 were dras-
tically different from Fig. 6(d), we would be concerned that
there was a fundamental issue with one of the studies.
The fact that they both give similar results adds credibil-
ity to this particular experiment: the emulation-emulation
and emulation-physical testbed serve as a cross-validation
exercise to a certain extent because all of the experiments
(emulation or physical testbed) were running the same port
discovery scenarios with Nmap and Snort.

5 CONCLUSIONS AND FUTURE WORK

The KS statistics and bootstrapping results indicate that
one would not reject the hypothesis that there is agreement
between the minimega emulation results and the RESLab
testbed results. Although there were some differences in
the RESLab testbed setup, due to differences in testbeds
and the fact that the RESLab setup used physical hardware,
these differences mapped well to the original minimega
experiments and did not result in substantial differences
in the port discovery results. Therefore, we consider the
original minimega emulation-based model to be validated
with respect to physical experiments, for both the determin-
istic and stochastic scenarios. Nevertheless, we found that
substantial effort by subject matter experts was required
to configure and verify/debug the physical experiment in
order to reproduce the emulation-based experiment in hard-
ware, and we presented these findings.
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Fig. 10: Analysis of data from Minmega and CORE under slow discovery of open and closed ports, random formulation [33].

In addition, this work presented a process for portabil-
ity and comparisons of scenarios between emulation-based
and physical testbeds. It opens the door to further studies
and research on reproducibility for improving the science
of security in validation. The presented experiment, case
studies and statistical analysis tools can be generalized with
different attack scenarios, such as Distributed Denial of
Service, Man-in-the-Middle, and SQL injection, with corre-
sponding parameters. It is also of great interest to expand
the RESLab testbed with different manufacturers’ devices
and consider different types of communication protocols,
such as IEC 61850, ICCP/TASE.2, and Modbus, to further
replicate the real substation automation system and SCADA
systems. However, there are challenges to run control stud-
ies on these more complex attack scenarios due to their
variability. Future work to enhance the generalization of the
capabilities, including to reduce the amount of expert input
needed during the process, would be worthwhile. As the
by-product, the data sets (1000 samples of attack in each
scenario) generated from the physical testbed can be used
for the cybersecurity studies with data-driven approaches
and validation for other testbeds.
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