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Abstract—Electric power systems are comprised of cyber
and physical components that are crucial to grid resiliency.
Data from both components should be collected when modeling
power systems: data from communication networks and intrusion
detection systems; physical telemetry from sensors and field
devices. For accurate and timely detection of malicious activity,
should we always account for cyber and physical telemetry
data, or data fusion? To further investigate the application
of data fusion, this paper presents a new threat scenario in
which an adversary affects power generation. It is a multi-stage
strategy that includes a database intrusion. Multiple industrial
communication protocols are applied in a cyber-physical testbed.
Packets and alarms are collected using our cyber-physical data
fusion engine, and evaluated using an autoencoder algorithm. It
predicted malicious packets with high precision at an early stage
of the scenario, using cyber-only telemetry.

I. INTRODUCTION

Power systems are critical infrastructures which require
reliability and resilience at all locations and events throughout
the system. To obtain high resiliency and reliability, power sys-
tems need to be modeled, monitored, and controlled as cyber-
physical systems. They include the operation of all subsystems
including the power grid and the communications network
through which field devices are monitored and controlled.
In this way, the Cyber-physical Resilient Energy Systems
(CYPRES) project has been developing a tool suite of different
cyber-physical detection, mitigation, and response algorithms
to establish a secure and resilient Energy Management System
(EMS) [1]. This will help power systems to achieve cyber-
physical intrusion response and situational awareness [2].

The goal of this work is to demonstrate CYPRES detection
and mitigation algorithms through the defense against an
intricate multi-stage cyber threat. Under advanced persistent
threats [3], an unauthorized user may be able to get access to
the energy utility’s communications network. After this initial
compromise, the intruder can escalate privileges to perform
reconnaissance on the system’s operations. In our scenario, the
intruder then moves laterally through the system. To disrupt
the physical system, the intruder’s goal is to deplete the
real power reserves of the system’s generating units via the
Balancing Authority (BA). As in Figure 1, this attack has
four stages, based on the MITRE ATT&CK Framework [4]:
reconnaissance and initial access, persistence and privilege
escalation, lateral movement, and physical impact. It involves
several steps, which are described in detail in Section III.
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Fig. 1. Multi-stage threat and defense using MITRE’s framework.

This multi-stage scenario is modeled and implemented in
a cyber-physical testbed called the Resilient Energy System
Laboratory (RESLab) [5]. It has the CYPRES EMS which
implements several tools that have been evaluated in other
detection use cases. In the cases described in [6], a data fusion
engine was developed and demonstrated to detect cyber attack,
where data fusion is a defense technique that fuses both cyber
and physical system data to detect anomalous system behavior.
This data fusion engine was evaluated to detect man-in-the-
middle (MiTM) attacks on Distributed Network Protocol 3
(DNP3) messages. It concluded that co-training of machine
learning (ML) algorithms with the cyber-physical features,
instead of just cyber or physical data, improved performance
by an additional 15-20% [6]. We propose to extend and
evaluate this data fusion detection in a new, multi-stage attack
scenario.

The main contributions of this paper are as follows:

• To present a cohesive defense against physical power
system impact by considering threat escalation and data
indicators throughout the stages of a multi-stage attack.

• To model a scenario in a realistic, multi-organizational
synthetic electric utility communications network in a
high-fidelity cyber-physical power system testbed.

• To present how to use data fusion and machine learn-
ing (ML) to analyze data from multiple communication
protocols (DNP3, Inter-Control Center Protocol (ICCP),
Structured Query Language (SQL)) to avoid the impacts
of an attack on one utility influencing another.
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This paper focuses on the vital need to model threats
in power system critical infrastructure using a risk-based
approach, throughout an event. The threat modeling and miti-
gations in this scenario follow the resilience life cycle, which
includes how a utility will prepare for, withstand, and respond
to different threats, while learning from events to better plan
the system [7].

This paper is organized as follows. Section II provides the
foundational concepts for our scenario, followed by the threat
scenario in Section III. Section IV describes the changes in the
RESLab testbed, the implemented scenario and results from
the data fusion engine. This paper is concluded in Section V.

II. BACKGROUND

This section reviews this scenario’s building blocks: ICCP,
SQL injection, and Automatic Generation Control (AGC).

A. ICCP/TASE.2 Protocol

ICCP is a communication protocol that allows utility control
centers to exchange data, usually with a BA. It is also known
as IEC 60870–6/TASE.2, where TASE means Telecontrol
Application Service Element. Figure 2 illustrates the ICCP
architecture [8]. At the application layer, ICCP uses the
Manufacturing Message Specification (MMS) protocol, which
is defined by ISO 9506 and used in IEC 61850 protocols –
Communication Networks and Systems in Substations. MMS
defines how to name and format the data [9], while ICCP
defines methods to request and report data. An implementation
of this architecture is presented in [10]. Their ICCP libraries
are the same ones used in our testcase scenario.

The vulnerabilities of the ICCP architecture are described
in [11]. As ICCP does not have any in-built encryption
algorithm, it relies on Transport Layer Security (TLS), or
Virtual Private Networks (VPN). The survey [12] explains the
security requirements of ICS, such as confidentiality, integrity,
and availability. But as TLS relies on Public Key Infrastructure
(PKI), the interoperability between utilities and BA’s becomes
difficult if there are many PKI certificates to manage [13].
Moreover, although IEC 62351 standard proposes security
measures for IEC protocols, they are not implemented often.

A Common Vulnerability and Exposure (CVE) has been
recently found for ICCP [14]. It explains how an intruder
can cause problems to the Supervisory Control and Data
Acquisition (SCADA) system and ICCP nodes. In CVE-2022-
29490, an intruder is able to login to the utility’s Web interface,
and then execute the SCADA system’s internal scripts. CVE-
2022-2227 addresses a validation flaw in ICCP messages when
an adversary sends data with timestamps in the future. If all
ICCP nodes experience the same time validation flaw, it can
lead to a denial-of-service (DoS) threat.

B. SQL Injection

SQL is a client-server application responsible for managing,
programming, and querying relational databases, which store
data for various physical systems. The SQL server commonly
offers a web interface. In cases where this interface is poorly

Fig. 2. ICCP protocol stack and its software applications.

constructed and fails to properly assess user inputs, there exists
the potential for exploiting SQL vulnerabilities.

Any input provided by users to a susceptible web appli-
cation, when processed by a database, can become a pathway
for unauthorized activities. For example, in [3], a vulnerability
is detailed in the context of home area networks. This vul-
nerability illustrates how data regarding power consumption,
stored within an SQL database from smart meters, could be
jeopardized. Another research study [15] outlines instances of
manipulation targeting power dispatching systems, facilitated
by leveraging SQL injection methods. Such incidents occur
when an individual with malicious intent infiltrates the utility’s
network. Expanding on this issue, an IBM report [16] explains
that a significant proportion (60%) of incidents targeting
energy utilities in 2016 were instances of data injection.

C. Automatic Generation Control (AGC)

An AGC system receives power flow and frequency mea-
surements from sensors at substations, and outputs control
commands to keep the frequency stable. It is a real-time con-
trol application, sensitive to the measurements it receives. For
example, the authors in [17] simulated data integrity threats
on AGC, impacting the SCADA system. In [18], the authors
studied cyber attacks that caused frequency disturbances in the
power system and proposed mitigation techniques.

A threat scenario where false data is injected to an AGC
is presented in the paper by Sridhar and Govindarasu [19],
where the AGC’s integrity is compromised by corrupted mea-
surements. Scaling, random, and pulse attacks were used to
change the measurements, which triggered the AGC to modify
the generator operating points, or set points. Their detection
used ML models that were trained to detect anomalies based
on load forecast and comparing it to the commands issued by
the AGC. The authors simulated load and generation data, but
did not use any cyber data. In our paper, we use data from
both the physical and the cyber systems to detect the incident.
Details on how we implement AGC and what data is collected
will be discussed in Section IV-C.
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Fig. 3. Network topology for multi-stage threat scenario with all steps.

III. USE CASE SCENARIO

Our scenario assumes a SCADA system for power
generation. A fleet of generators are simulated using
PowerWorld Dynamic Studio (PWDS), an interactive
transient stability environment. PWDS runs a physical model
with nine buses and an AGC system. The generators’ data are
stored in an SQL database. False data injected to the database
compromises the generation reports sent to BA. This false
data can impact the AGC in one area and cause the BA to
issue a control command to alter the generation set points.
The communication network for this use case is shown in
Figure 3. The arrows show the attack stages:

Stage 1 - Reconnaissance and Initial Access
• Step 1: Intruder scans and finds an open network port to

the corporate network.
• Step 2: Intruder reaches corporate network. Employee

machines can access SQL database via Web interface.

Stage 2 - Persistence and Privilege Escalation
• Step 3: Intruder performs an SQL injection in database’s

Web interface and gets login credentials to database.
• Step 4: Intruder manipulates generator values in database.

Stage 3 - Lateral Movement
• Step 5: Utility’s ICCP server reads data from database.
• Step 6: ICCP server sends false data to BA.

Stage 4 - Physical Impact
• Step 7: BA performs AGC calculations using received

false data. BA’s ICCP client sends a set point command
to the ICCP server in the utility.

• Step 8: Utility’s ICCP server informs the SCADA master
to change generation settings.

• Step 9: The command is sent to the generation plant.
These steps illustrate how intruders can compromise the

utility’s data once they enter its network. Therefore, it is
important to test defense mechanisms against them.

IV. EXPERIMENTAL RESULTS

A. Testbed Updates

The RESLab testbed [20] is a cyber-physical testbed with
virtual machines (VMs) and physical devices (Figure 4). The
VMs are created using VMWare’s vSphere virtualization plat-
form. One VM runs PWDS, the interactive power simulator
that also represents the outstation. A network emulator –
Common Open Research Emulator (CORE) – on another
VM emulates the communication network. It interconnects the
utility control center and the outstation. The SCADA master
runs the open source PyDNP3 software libraries. Overseeing
all the VMs, the CYPRES EMS [1] collects cyber and physical
telemetry and performs data fusion-based defense. The dataset
for this multi-stage threat use case can be found in [21].

The power system configured in RESLab’s emulated out-
stations is the 9-bus test case from the Western System
Coordinating Council (WSCC) [22] (Figure 5). This system
is divided in two areas: Area 1 with generators 1 and 3, and
Area 2 with generator 2. Our BA receives data from generators
2 and 3. In addition to this 9-bus system and AGC algorithm,
the following updates have been made to RESLab:

• Created an SQL database to save generators’ data,
• Added BA network with an ICCP client,
• Added public demilitarized zone (DMZ),
• Implemented real-time ICCP client/server application,
• Implemented and tested new data fusion using telemetry

from different parts of the system,
• Updated intrusion detection system (IDS) – SNORT –

with local rules to detect new threats.
The ICCP server sends the BA data set transfer sets,

which report analog values. Based on the 9-bus power system
in Figure 5, we configured the ICCP server to report the
Generator 2 and 3 values stored in the database.

Fig. 4. RESLab configuration, updated from [20].
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Fig. 5. Power system scenario - WSCC 9-bus system

Fig. 6. Scenario timeline with cyber telemetry shown in the oval shapes.

B. Scenario Timeline

The use case’s events are illustrated in Figure 6. First, the
9-bus simulation in PWDS starts as a continuous, real-time
simulation. A Python script at PyDNP3 master sends DNP3
read commands to the outstation to read analog outputs for
the generators, their frequencies, and power flows between the
buses. Then, the master calculates Area Control Error (ACE)
and set point values and stores them in the database. Next, an
unauthorized user performs the SQL injection step, assuming
Steps 1 and 2 of the Reconnaissance and Initial Access stage
have happened. The ICCP node accesses the false data and
sends it to the BA.

The BA runs the AGC for an area, and sends the utility new
setpoints. We assume that this ICCP command is sent directly
to the utility. Then, the DNP3 master sends the DNP3 Direct
Operate command to the generation plant. For this paper, we
focus on the steps above the dotted line in Figure 6, i.e., Stages
2 and 3 in the scenario from Section III.

Packet captures (PCAP) were collected in [21]:

• CORE VM: contains the scripts that run the ICCP client,
server, and SNORT,

• PowerWorld VM: contains the outstation and the WSCC
9-bus system simulation,

• TestPyDNP3 VM: runs the DNP3 master script that reads
data from the outstation and sends it to the database,

Fig. 7. SNORT rule syntax (above) and our custom/local rules.

• Substation A VM: contains the SQL database along with
the software that performs the SQL injection.

Packets are filtered to allow TCP ports 20000 (DNP3), 443
(Web), and 3306 (MySQL protocol).

The second component in the data collection is the SNORT
log file, using SNORT version 2.9.14-1. SNORT detection
method recognizes suspicious activity from packets, based on
the rules defined in Figure 7. Their goal is to detect DNP3
packets between outstation and master, SQL injection using
the Web interface (TCP port 443), and ICCP traffic.

C. Physical Data Collection

For power system applications and operation, the purpose of
an AGC system is to minimize the Area Control Error (ACE).
The ACE is the difference between the actual and scheduled
power flow between two different areas, as in (1),

ACE = Pact − Psched (1)

where Pact is the actual power flow and Psched is the sched-
uled power flow between two areas.

The ACE value [23] considers the produced electricity’s
nominal and measured frequencies, the frequency bias factor,
and the sum and initial values of the power flow, as in (2),

ACE = (fmeas − fnom) ∗ 10 ∗B+

(tieflowss − tieflowsi)
(2)

where fmeas is the measured bus frequency, fnom is the
nominal frequency of 60 Hz, B is the frequency bias factor
in MW/0.1Hz, tieflowss is the sum of tie flows between two
areas at a specific time, and tieflowsi is the initial sum of tie
flows between two areas.

AGC’s purpose is to minimize the ACE. The ideal ACE
value is zero (the actual power flow should match the sched-
uled power flow). Another important variable to consider is the
participation factor P of the generators, which is defined as
the amount of real power that a generator contributes relative
to the amount of change of load consumption in the system.
With the use of the ACE and the participation factor P , the
AGC setpoint can then be calculated as in (3),

Gensetpoint = Gen− 2 ∗ACE ∗ Pf (3)
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Fig. 8. DNP3 data points configured in our PWDS simulation.

where Gen is the generator’s power output, Gensetpoint is
generator’s set point, ACE is the Area Control Error, and
Pf is the participation factor. Hence, if the data used in the
calculations comes from rogue sensors or is altered, the AGC’s
integrity will be compromised.

To calculate the ACE in (2), we collect eight DNP3 data
points, as shown in Figure 8 and listed below [21]:

• Point0 (Gen): generator 3 value (90 MW)
• Point1 (fmeas): frequency of generator 3 (59.998 Hz)
• Point2 (tieflow): tie flow from bus 5 to 4 (64.135 MW)
• Point3 (tieflow): tie flow from bus 7 to 8 (-63.4748 MW)
• Point4 (Gen): generator 2 value (126.335 MW)
• Point5 (fmeas): frequency of generator 2 (59.998 Hz)
• Point6 (tieflow): tie flow from bus 4 to 5 (-63.6673 MW)
• Point7 (tieflow): tie flow from bus 8 to 7 (63.8081 MW)
The measured frequency fmeas should be close to 60 Hz

with no disturbance to the system. To calculate the tie flows,
four collected values are used: power flow in both directions
for each of the two branches in the power system (Branches 4-
5 and 7-8). As such, the tie flow for Area 1 is the summation of
the tie flows going from bus 4 to 5 and bus 8 to 7 (Point6 and
Point7, respectively). For Area 2, the tie flow is the summation
of the tie flows going from bus 5 to 4 and bus 7 to 8 (Point2
and Point3, respectively). The tieflowi is set to the initial
tie flow measurement from the simulation. Then, the tie flows
are collected continually as the simulation runs. Once the ACE
value is calculated, the generation values and the participation
factors (Pf ) are used to calculate the Gensetpoint. For Areas
1 and 2, Gen3 and Gen2 values are used, respectively. The Pf

value is assumed to be 1, meaning both generators contribute
equally to changes in generation.

D. Performing the SQL Injection

In the RESLab testbed, we performed Stage 2 of the sce-
nario on the SQL’s database Web interface using HTTP GET
and POST requests. A query is sent to the authentication page,
as shown in Algorithm 1. The “OR ‘a’=‘a’” expression causes
the authentication check to be ignored [24]. The intruder can
now retrieve all the data in the database including account
details. The malicious actor can also modify the generator

values from the tables or drop the tables completely. Figure 9
shows the utility’s database after the SQL injection, where all
values of gen2 column were altered to 250MW .

E. Defense - Data Fusion

Data fusion is the process of combining and integrating
information from multiple sources to produce a more complete
and accurate representation of the information that underlies it.
In the CYPRES EMS [1], the data fusion engine [6] combines
data from cyber and physical sensors, performs multiple steps
to process and integrate this data, and then applies machine
learning techniques to identify anomalies, and improve the
understanding of the monitored system’s behavior. Here are
the steps it performs:

• Collects packet captures using Wireshark (cyber table),
• Collects logs from the IDS SNORT (snort table),
• Extracts physical data from DNP3 (physical table),
• Extracts DNP3 payload data points (dnp3 table),
• Merges the snort table with the cyber table,
• Merges cyber table, physical table and dnp3 table,
• Encodes and normalizes the data in the tables,
• Analyzes the data using machine learning techniques.
After the cyber table and snort table are collected, they are

merged resulting in 17 cyber features: [‘Time’, ‘frame.len’,
‘frame.protocols’, ‘eth.src’, ‘eth.dst’, ‘ip.src’, ‘ip.dst’, ‘ip.len’,
‘ip.flags’, ‘tcp.srcport’, ‘tcp.dstport’, ‘tcp.len’, ‘tcp.flags’,
‘tcp.nxtseq’, ‘tcp.ack’, ‘snort.alert’, ‘snort.alert.type’]

The snort.alert indicates whether an alert was triggered for
the observed network traffic, and the snort.alert.type specifies
the type of alert triggered. In Figure 10, an operator can
see SNORT alerts for SQL injection followed by DNP3 read
request messages.

Those tables are merged with physical table
and dnp3 table, with 18 features: [‘LL.dnp3.src’,
‘LL.dnp3.dst’, ‘LL.dnp3.len’, ‘LL.dnp3.ctl’, ‘TL.dnp3.tr.ctl’,
‘AL.dnp3.al.func’, ‘AL.dnp3.al.ctl’, ‘AL.dnp3.obj’, ‘DNP3
Object Count’, ‘DNP3 Objects’, ‘Point0’, ‘Point1’, ‘Point2’,
‘Point3’, ‘Point4’, ‘Point5’, ‘Point6’, ‘Point7’]

Algorithm 1 SQL Injection on Generator SQL Server
1. Client sends query to log in
2. SELECT ∗ FROM users WHERE username = ‘X’
AND password = ‘example’ OR ‘a’=‘a’
3. Server returns TRUE. Bypass authentication.
4. Client accesses data and modifies one column
5. Use Postman API to change gen2 columnn

Fig. 9. SQL database with false data for Generator 2.
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Fig. 10. SNORT alerts seen during the experiment.

Fig. 11. Sample of cyber features: frame length, frame protocols, TCP port,
and snort alert flag, before and after the attack.

The LL.dnp3.len is the size of the DNP3 packet, such as
11 bytes for read requests or 55 bytes for responses. The
AL.dnp3.al.func is the DNP3 function code, with two values:
0x01 for read request and 0x81 for solicited response. The
DNP3 Object Count is the number of objects in each message.

After merging all tables by time, the merged table has 35
features. Most samples do not have values for the physical
features. Therefore, after normalizing the data, we fill the
missing data with average values.

Figures 11 and 12 show some cyber and physical features
from the merged table that a plant operator would see. When
the attack happens, changes in the cyber features, such as
frame lengths and protocols, are very clear. Hence, early stage
attack detection and mitigation can be done. Thus, there is
no impact on the physical system, and the Generator 2 and
frequency values remain constant as 126MW and 60Hz.
However, if the attack is not detected, the ICCP data to the
BA will contain the false Generator 2 value of 250MW .

In addition to SNORT intrusion detection, as a corrob-
orating defense, what would happen if we ran a machine
learning model to predict which packets were malicious?
Which dataset, the cyber table or the merged table, would
give us better accuracy in predicting which packets triggered
the SNORT alert?

To do this, we used an unsupervised ML method called
an autoencoder. It compresses the data to a reduced state
space, then it reconstructs it. Autoencoders have recently
been demonstrated for robust AI-enabled detection in power
systems cybersecurity, with one chosen here based on the
rationale of [25], to be tested as part of our data fusion engine.

The autoencoder model used in our experiments has as input
layer the same number of neurons as the features of our data.

Fig. 12. Sample of physical features: DNP3 function code, Gen2 value and
frequency, and SNORT alert type, before and after the attack. For the SNORT
alert type, 1 means a DNP3 request, 2 means the SQL injection.

We first tested it with 14 cyber features, after eliminating time
and snort alert type, resulting in 14 neurons. We evaluated
models with 6, 8 and 10 layers of encoding. The 8-layer model
had the best results. After each layer, sigmoid function was
used as the activation function. We then tested the model using
all 32 cyber and physical features, also using an 8-layer model.
For instance, with 32 features, the encoder had layers with 32,
32, 16, 8, 4, 2, 1, 0 units then back again.

In both cases, the model was trained using benign traffic
from the outstation. The merged table had no malicious pack-
ets. Then, the model was tested with all packets, including
packets that triggered the alerts. SNORT decodes the inter-
cepted packets to retrieve data from the headers and payloads,
and the packet itself that is being transported. Thus, we added
the decoded SNORT packets to the merged table, which now
contains benign and malicious packets.

The performance of the autoencoder model are presented
in Table I, which shows the performance of the autoencoder
algorithm had a 96% precision using the 14 cyber features
where all SNORT alert packets were detected correctly. The
confusion matrix (Figure 13) shows 8 benign packets were
detected as malicious for cyber-only data, as opposed to 36
benign packets for cyber-physical data.

The results validate two different but mutually supportive
layers of defense: a dashboard where operators can see cyber-

Strategy Accuracy Precision Recall F1-Score
Cyber-only 0.98 0.96 1 0.98

Cyber-physical 0.80 0.81 0.77 0.79

TABLE I
PERFORMANCE RESULTS OF ALARM PREDICTIONS.
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Fig. 13. Confusion matrix results.

physical features and intrusion detection alarms, and an au-
tomation of the intrusion analysis using unsupervised ML.
The dashboard shows the SQL injection’s SNORT alarms.
However, there are many features and alarms that may be
overlooked. Hence, we use an autoencoder to compress and
compare the reconstructed data between benign traffic and all
traffic including alarms. The cyber telemetry used in this way
is sufficient to predict the alarms at Stage 2 – persistence and
privilege escalation.

V. CONCLUSIONS

This paper presented a use case with generators in a two-
area power system with a balancing authority. The 9-bus test
case is the exemplar physical system [22]. Without loss of
generality, it can be expanded to larger power systems. Future
work involves expanding the use case to larger systems.

One takeaway from this scenario is that its implementation
is non-trivial, due to the complexities of real-life cyber-
physical systems. Setting it up for high-fidelity emulation took
longer than a simple simulation (that would abstract important
details and analysis into models that are not realistic).

During Stage 2 - privilege escalation - the data fusion engine
detected the attack with high accuracy using cyber-only data.
This shows the threat can be detected and corrected early,
before it impacts the physical system. Future work includes the
implementation of Stage 4. If early-stage mitigation fails, in
Stage 4 there is physical impact, and we consider the response
of generator redispatch, of automatic actions in remedial or
special protection systems, and their impact on physical oper-
ational reliability and transient stability. Stage 4 also involves
coordinated response from a power system’s operators and the
utility’s security team. A detailed analysis of the response of
the cyber-physical controllers in the models and verified in
the emulation is important as a next step alongside the design
of the data fusion engine and next-generation cyber-physical
energy management systems.
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