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Abstract—The design of resilient infrastructure is a critical
engineering challenge for the smooth functioning of society.
These networks are best described as Cyber-Physical Systems of
Systems (CPSoS): integration of independent constituent systems,
connected by physical and cyber interactions, to achieve novel
capabilities. Bio-inspired design, using a framework called the
Ecological Network Analysis (ENA), has been shown to be a
promising solution for improving the resilience of engineering
networks. However, the existing ENA framework can only
account for one type of flow in a network. Thus, it is not
yet applicable for the evaluation of CPSoS. The present work
addresses this limitation by proposing a novel multigraph model
of CPSoS, along with guidelines and modified metrics that enable
ENA evaluation of the overall (cyber and physical) network
organization of the CPSoS. The application of the extended
framework is demonstrated using an energy infrastructure case
study. This research lays the critical groundwork for investigating
the design of resilient CPSoS using biological ecosystems inspi-
ration.

Index Terms—Cyber-Physical Systems, System of Systems,
Resilience, Ecological Network Analysis, Bio-inspired Design.

I. INTRODUCTION

INFRASTRUCTURE networks such as power grids, water
distribution networks, and supply chains are essential to

the functioning of modern society. Resilience to catastrophic
events, including extreme weather and cyber-attacks, is a
critical requirement for the successful operation of such
networks. Infrastructure networks are made up of a set of
physical systems that accomplish the sourcing, processing,
and distribution of physical flows (such as energy or water).
This networked integration of heterogeneous and independent
constituent systems that together produce capabilities that
cannot be obtained by using any of the constituent systems
alone [1]–[3] make them Systems of Systems (SoS). The
constituent systems in SoS networks have operational and/or
managerial independence and are usually developed indepen-
dently. The behavior of the overall SoS depends largely on
how the constituent systems interact with each other and
cannot be determined only by knowing the behaviors of the
systems in isolation, a property called emergence [2], [4].
These characteristics make design and evaluation extremely
challenging.

Infrastructure networks also more recently include a set
of cyber systems that monitor and regulate the operations of
the physical systems through “computation, communication,

sensing, and actuation” [5], making them Cyber-Physical
System of Systems (CPSoS). Recent work by Guariniello
et al. recognized the overlap between SoS engineering and
complex cyber-physical systems, including dynamic interac-
tions between components, the possible presence of multiple
stakeholders, and emergent behavior in the operational domain
[6]. These areas of overlap are part of what makes design for
SoS resilience extremely challenging. Quantifying resilience in
the early design stages for complex, large-scale, and (often)
geographically dispersed CPSoS with a large number of possi-
ble disruption scenarios is extremely difficult. Because of this,
early-stage design decisions for resilience are based on qual-
itative guidelines (heuristics) such as physical and functional
redundancy, localized capacity, internode communications, and
human-in-the-loop [7], [8]. While such guidelines are useful,
they cannot be used to assess trade-offs with other attributes
of interest because of their qualitative nature.

The inclusion of cyber elements in CPSoS only increases
the complexity of evaluating and designing for resilience.
Disruptions in the cyber domain, such as false data injection
or denial of service attacks, can lead to cascading failures
in the physical domain. Physical disruptions, which can stop
or reduce the operation of constituent systems, are typically
easy to detect compared to cyber disruptions, which can neg-
atively modify the operation of constituent systems, instead of
stopping them, making timely detection difficult. For example,
during a false data injection attack, all constituent systems
appear to be operating normally despite potentially sending
doctored inputs that would lead to inappropriate regulation
decisions and subsequent failures in the physical operations
[9]. Evaluating the resilience of CPSoS to such attacks also
requires the ability to co-simulate the cyber and physical
systems operations under disrupted conditions, which is a
formidable task in the early/conceptual design stages [10].

Recent work has presented promising evidence that the
architecting principles of biological ecosystems (Nature’s re-
silient SoS) can be used to design resilient engineering SoSs.
Ecologists have found that biological ecosystems achieve
a simultaneously resilient and sustainable (efficient) design
through a unique balance of constraints and redundancies
in their network architectures. This architectural feature is
evaluated using an approach called Ecological Network Anal-
ysis (ENA, detailed in Section II-B). Investigation of the
resilience vs. affordability trade spaces of (> 38000) notional
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SoS architectures under various disruption scenarios indicated
that ecologically-similar SoS architectures had more desirable
resilience and affordability attributes [11], [12]. A recent
study found promising correlations between SoS resilience and
ENA-based metrics (and other graph-theoretic metrics) [13].
Bio-inspired designs of electric power grids (and microgrids),
using a similar approach, were also found to have signifi-
cantly fewer violations (better resilience) in various disruption
scenarios compared to traditional configurations [14]–[17].
The ENA framework as used in ecology and those studies,
however, is only applicable to networks with one type of
flow/interaction. In addition, ecological modeling guidelines
for ENA are focused on flows of physically conserved quanti-
ties, such as energy and nutrients. CPSoS have multiple types
of interactions, physical material flows and monitoring & reg-
ulation interactions (information flows), and information flows
are not bound by the same conservation laws. Because of this
mismatch, the traditional ecology-based ENA framework is not
suitable for CPSoS, hindering research into the application of
ecological principles for designing resilient CPSoS.

The present work addresses this limitation by proposing a
novel multigraph model of CPSoS, along with guidelines and
modified metrics that enable ENA evaluation of the overall
(cyber and physical) network organization of the CPSoS. The
modeling decisions for the proposed multigraph model are
discussed in detail and compared to previously studied ENA
models of engineering networks and conventional topological
analyses of cyber-physical systems. The application of the
extended framework is shown using an eight-substation power
grid case study. This lays the critical groundwork for future
research investigating the design of resilient CPSoS using
biological ecosystem inspiration. A preliminary version of
this research was presented at IEEE SmartGridComm 2021
[18]. This work approaches the resilience of CPSoS from a
proactive standpoint: it investigates how to take actions better
at the design-phase, or ahead-of-time of the disruptive events.
Hence, the proposed approach differs from the usual reactive
approach of “sense-plan-act” after disruptions. The reactive
approaches to resilience are outside the scope of this work.
Additionally, the modified ENA models and metrics presented
in this work are not meant to assess the resilience of CPSoS
to specific cyber threats. Rather, this work aims to present a
complementary decision-support tool that can be used in the
early/conceptual stages of CPSoS architecture development,
which are non-data intensive and threat agnostic.

II. BACKGROUND AND MOTIVATION

A. Cyber Physical Systems and System of Systems Modeling
and Analysis for Resilience

Resilience describes a system’s ability to securely oper-
ate during and recover from adverse situations to resume
normal operations. As a cyber-physical system, resilience is
a multidimensional property that requires managing distur-
bances originating from physical component failures, cyber
component malfunctions, and human attacks [19]. Modeling
the cyber-physical system holistically is essential to analyzing
and investigating its resilience. Conventionally, cyber-physical

systems are modeled graphically by classifying the nodes
(constituent systems) into cyber and physical layers: interac-
tions between the cyber nodes form the cyber network and
interactions between the physical nodes form the physical
network. Interlayer links then capture the interdependence on
functions, topologies, and facilities between the cyber and
physical networks [20], [21].

Taking power systems as an example, resilience has been
quantified through the resilience trapezoid, to capture temporal
properties of the power system’s performance during an ex-
treme event [22]. The resilience trapezoid is a portrayal of the
preparation, duration, and recovery from a severe disturbance
in electric power systems. This portrayal can quantitatively
show an aggregate resilience property of the system: for power
systems, this is its ability to meet the load. As commonly used,
the resilience trapezoid hence depicts a system-wide property’s
evolution over time, subject to disturbance.

Modeling to quantify resilience in real, complex, and
nonlinear systems is more complicated than the resilience
trapezoid. The resilience of a system depends on both how
the network is designed and how the system is operated,
recognized as infrastructural resilience and operational re-
silience. As discussed in [23], infrastructural resilience lays
the foundation for operational resilience, which provides more
resources that operators and stakeholders can utilize. Recent
work has shown that more robust power networks have an
improved tolerance of disturbances while maintaining systems’
security and resilience against hazards [16]. Likewise, a more
robust communication network exhibits more paths to deliver
critical information through different routes [24]. A further
limitation of the resilience trapezoid is that it is specific to
each particular threat. Infrastructural resilience, the focus of
this work, enables further reliable and sustainable operations.
Hence, the proposed holistic design-based solution would
benefit future operators under different cyber and physical
threats.

Power network design involves economic aspects such as
[25]–[27]; investment portfolios and contingency scenarios
must be included, where tracking of power system constraints
using detailed models under these variable investments and
events must occur in practice, to inform network expansion
for better resilience against unexpected contingencies. With
the integration of cyber networks, different definitions and
quantification of cyber-physical power system resilience are
proposed. Clark and Zonouz proposed a resilience metric to
quantify the ability of the system to recover from a given attack
using discrete stochastic models and dynamical linear system
models to capture the interdependencies of the cyber network
and the underlying physical processes [28]. Venkataramanan
et al. proposed a framework to quantify cyber-physical trans-
mission resiliency where a graphical analysis was applied
along with a measure of critical network parameters in both
the cyber and physical systems [29]. Huang et al. built the
interconnections between cyber and physical networks through
the amount of critical data transferred among physical and
cyber networks for control and observability to capture the
resilience of cyber-physical power systems [24]. To ensure
cyber-physical resiliency, a resilient communication network
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is essential for the smart control of the different resources
against threats. In [30], Lin et al. proposed a self-healing
phasor measurement unit (PMU) network using the software-
defined networking (SDN) infrastructure to achieve resiliency
against cyber-attacks. A mixed-integer nonlinear optimization
model was formulated to capture to self-healing process in
a communication network while considering constraints on
the physical network. In [31], Al et al. proposed an SDN
platform using Industrial Internet of Things (IIoT) technology
to support power systems’ resiliency by reacting immediately
whenever a failure occurs to recover smart grid networks using
real-time monitoring techniques. In [32], Jin et al. presented an
SDN-based communication network architecture for microgrid
operations with the applications of self-healing communica-
tion network management, real-time and uncertainty-aware
communication network verification, and specification-based
intrusion detection for cyber-physical systems’ resilience.

Existing methodologies on cyber-physical systems’ re-
silience focus on the interactions between the cyber and
physical systems as well as the functionalities of both the
cyber and physical networks. With the specified threat vector
and objectives, they can then optimize and analyze the system
through cyber and/or physical development and actions. These
methodologies however are not feasible in the early design
stages when specific threat vectors are not yet known.

B. Existing Ecological Network Analysis and Challenges

Ecological Network Analysis (ENA) is a tool used by
ecologists to study the complex interactions among species in
ecosystems. ENA provides a set of metrics to study structural
and functional characteristics of ecological networks [33]. The
nodes in the digraph represent the species and the directed arcs
represent the transfer of energy or nutrients between them and
their immediate environment. The flows between the actors (or
nodes) within the system boundaries and the system inputs,
outputs, and dissipation exchanged with the environment are
stored in the (N + 3) × (N + 3) flow matrix T, where N
is the number of actors within the network (see Fig. 1). The
nodes 1 to N in the flow matrix represent the actors within the
specified network boundary. The nodes 0, N + 1, and N + 2
are the imports, exports, and dissipations, respectively. Any
matrix element Tij represents the magnitude of flow from node
i (producers/prey) to node j (consumers/predators). The hy-
pothetical food web of Fig. 1, for example, shows that midges
(node 1) are consumed by predators (node 2) and predators
are consumed by detritivores (node 3). ENA models these
food web interactions as caloric (energy) transfers between
the nodes and the flow information are saved in the elements
T12 and T23 of the flow matrix, respectively. The entries
T03 and T34 represent the input and output flows between
the detritivores (node 3) and their environment, respectively.
Readers interested in a more detailed description may refer to
ref. [34]. ENA includes multiple metrics that quantify different
architectural characteristics of flow networks such as cyclicity,
nestedness, and synergism. Such analyses have been applied
to industrial networks showing promising improvements in
resilience and sustainability [35]–[38].

Fig. 1. A schematic of the modeling procedure used in ENA, describing the
(a) hypothetical food web as a (b) flow matrix. Figure based on ref. [35]

The ENA metric of interest in this work is Degree of
System Order (DoSO), which quantifies the relative pathway
constraints/organization in a flow network [39]. The level of
network pathway organization or constraints is measured using
the metric Average Mutual Information (AMI , Eq. 1). The
upper limit of AMI is quantified by the metric Shannon Index
(H , Eq. 2). DoSO is evaluated as the ratio of AMI to H
(Eq. 3) and takes values from 0 to 1. In Eqs. 1 - 3, TSTp is
the sum of all flows in the network, Ti. is the sum of flows
leaving node i, and T.j is the sum of flows leaving node j
(see Eq. 4).

Highly pathway-constrained networks will have more static
routes for flows between nodes to improve the efficiency
of transporting material from one point to another. These
networks will have DoSO values close to 1. Highly pathway-
flexible networks will have multiple (but not the most efficient)
options to route flows between nodes. These networks will
have DoSO values close to 0. A DoSO analysis of biological
ecosystems showed that they have evolved to exist within a
narrow range of DoSO ∈ [0.213, 0.589], called the window
of vitality [40], [41]. This study provided evidence for the hy-
pothesis that a balance between constraints and redundancies
in network organization is crucial to ecosystems’ resilience
and sustainable growth [39]. The DoSO evaluation has also
been applied to engineering networks such as supply chains
[42], industrial water networks [43], and power grids [14],
[15].

AMI =
∑
i

∑
j

Tij

TSTp
log2[

Tij · TSTp

Ti. · T.j
] (1)

H = −
∑
i

∑
j

Tij

TSTp
log2[

Tij

TSTp
] (2)

DoSO =
AMI

H
(3)

Where,

TSTp =
∑
i

∑
j

Tij ; Ti. =
∑
j

Tij ; T.j =
∑
i

Tij (4)

The existing ENA framework and DoSO formulation are
only applicable to networks with one type of flow and are
unsuitable for the evaluation of CPSoS architectures. Ulanow-
icz (2004) [33] provided generalizations of the AMI and H
metrics across multiple dimensions (including time, flow types,
and spatial location). However, the authors identified two
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issues regarding the application of this modified formulation
for CPSoS analysis: (a) The formulation uses sums of the
flows of different types leading to dimensional inconsistencies
in CPSoS with physical and information flows, and (b) a trivial
change in the unit/scale of any one flow can lead to a different
DoSO evaluation of the same CPSoS. The observation is that
earlier work had an undesirable sensitivity to the scale/unit
for measuring flows. This is not an acceptable characteristic
for a CPSoS architecture assessment technique. Therefore, we
assert that a new formulation is required to evaluate DoSO
of CPSoS architectures with multiple flow types.

III. PROPOSED CYBER-PHYSICAL SYSTEM OF SYSTEMS
MODELING FRAMEWORK

The authors propose that CPSoS architectures should be
modeled as directed multigraphs. A multigraph is a graph that
is permitted to have multiple edges/links between the nodes.
The nodes represent the constituent systems and the directed
edges represent the different types of interactions. This section
proposes a set of guidelines to model CPSoS architectures
as directed multigraphs for Ecological Network Analysis and
provides a modified formulation for DoSO evaluation that
addresses the issues identified in Section II-B.

A. Identifying Constituent Systems and Interactions

Fig. 2. Hierarchical description of System of Systems, based on Han et al.
(2012) [44] .

The first step in developing the multigraph model of CPSoS
is to identify the constituent systems (nodes) and distinct
interactions (edges). Han et al. (2012) [44] presented a hi-
erarchical description of SoS, as illustrated in Fig. 2: The
SoS has a main operational objective. The main objective is
met by accomplishing a set of requirement capabilities, and
each requirement capability is met by completing fundamen-
tal tasks/functions in a meaningful order by the constituent
systems. Following this hierarchical description of SoSs, con-
stituent systems in a CPSoS (unique nodes in the ENA model)
are identified using the following rules:
1) The system operation can be changed (at least to some

degree) independently
2) The system performs one or more of the fundamental tasks

for the SoS
3) The system ownership/management/development process is

different from other systems

Contrary to some previous applications of ENA to engi-
neering networks (see refs. [14], [43]), the authors propose
that systems like pipeline segments and transmission branches
should be modeled as unique nodes and not simply as graph
edges/interactions. This is because these systems fulfill a
unique and essential role in the SoS and have a certain level of
operational independence. For instance, transmission branches
in power grids can be shut down to protect from power
surges, and flow through pipeline segments can be controlled
using valves. In addition, these systems have their own cyber
interactions (for monitoring and/or regulation) with the Super-
visory Control and Data Acquisition (SCADA) systems. These
unique functional flows require that they be modeled as nodes
because edges in a directed graph/multigraph can only exist
between two nodes and not a node and an edge. This was not
considered in prior work using ENA on engineering networks
because they were only considering the physical flows.

In this model, human operators are considered to be a part
of the system that they work on. For example, human operators
working at the physical systems (such as generators in power
grids) are lumped into the physical system node. Human
operators are also included in the cyber system nodes if they
are involved in processing the data received to ascertain the
state of the monitored physical systems and make regulatory
decisions. The human operators give the physical systems their
ability for independent operation and/or decision-making.

Physical systems’ operations are measured using sen-
sors/meters attached to them. These sensors/meters are not
considered separate nodes in the proposed model because they
are components built into the physical systems and are not
independent constituent systems themselves. A physical sys-
tem could have multiple (redundant) sensor/meter components.
However, when analyzing the overall SoS, the focus is on
the higher-level network architecture, and not on the minute
component-level details.

The different types of interactions are identified based on the
requirement capabilities of the SoS. Each type of interaction
represents the interdependencies and task flows to achieve
a specific requirement capability. The authors identify three
types of common interactions (requirement capabilities) in
CPSoS:
1) Physical interactions: The sourcing, processing, and distri-

bution of physical flows, such as energy and water.
2) Monitoring interactions: Collecting, communicating, or

processing the state information of the physical operations.
3) Regulatory interactions: Generating, communicating, or

processing information for regulating physical operations.
This classification does not imply that the proposed ENA

modeling framework can only be used on SoS with 3 types of
flows. Instead, this is intended to provide a detailed procedure
that allows for a consistent analysis of many critical CPSoS
such as energy/gas/water distribution infrastructure.

B. Assigning Interaction Magnitudes

The next step is to identify the interactions between the
constituent systems, as well as the constituent systems and
the SoS operating environment. Once all interactions (of each
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type identified in step 1) are known, it is required to assign a
magnitude to each of these interactions for the Degree of Sys-
tem Order (DoSO) analysis. The amount (or fraction) of a task
accomplished by a system (referred to as the task-load in this
article) should be used to determine the strength/magnitude of
interactions from a node. The interaction magnitudes assigned
in this step are meant to create a generalized representation of
how the architecture is designed to work during its operation
period, to evaluate pathway constraints and redundancies. This
step (or the whole framework) is not being proposed as a
simulation of the CPSoS at any given time. This step is
explained in more detail for physical interactions and cyber
interactions below.

Physical flows: In the case of physical interactions, the
strength of interactions can be assigned as equal or propor-
tional to the amount of planned material or energy transfers
between the constituent systems, and the systems and the
environment. For example, in supply chains, the magnitude
of flow between a supplier and an assembler would be equal
(or proportional) to the amount of material supplied by the
supplier to the assembler under normal operating conditions
[42]. In an energy distribution network, the flows between any
two systems would be equal (or proportional) to the planned
transfer of energy between the systems under normal operating
conditions [16], [45].

It should be noted that the exact amounts of the flows are not
required for ENA modeling. When designing an architecture,
designers make decisions regarding what amount of mate-
rial/energy flows will be routed through different channels in
the network. These planned proportions can be used to create
an ENA model instead of needing to know the exact amount
of flow. This is especially important where the flows may vary
over the period of operation.

Cyber Interactions: The guidelines for assigning the
cyber interaction magnitudes (monitoring and regulation) are
described below for a typical Supervisory Control and Data
Acquisition (SCADA) based architecture that has local cyber
systems and a central terminal. In this work, local cyber
systems are referred to as Remote Terminal Units (RTUs).
The RTUs receive information from physical devices, process
them, and communicate them with other RTUs or the Central
SCADA Terminal (CST). A notional CPSoS of this type is
shown in Fig. 3 (left).

The process to assign task-load magnitudes to the monitor-
ing interactions is outlined below:
1) Physical operation systems to RTUs: Sensor or meter

components on the physical systems measure the operating
parameters of interest and communicate that information
with RTUs connected with those systems. To assign mag-
nitudes to the monitoring interactions, first, it needs to be
identified whether the monitoring of each system is equally
important or if there are some systems whose monitoring
is more important to the SoS operation. If the monitoring
of each system is equally important then a fixed quantum
of monitoring task-load (say 5 units) is assigned to each
interaction from a physical system to its RTU. However, if
some of the systems’ monitoring is more important/critical,

the link between those systems and their RTUs can be
assigned a proportionally higher task-load magnitude.

2) Inter-RTU interactions: If the architecture allows commu-
nication between RTUs (for example a mesh communica-
tion topology), there are bi-directional links between each
RTU. The magnitude of these interactions is equal to the
amount of monitoring information that was received by the
sender RTU from its associated physical systems and that
is useful to the receiver RTU.

3) Export and dissipation at RTUs: If an RTU has received
redundant monitoring information for one or more physical
systems, the monitoring task-flow dissipation from that
RTU is equal to the amount of the redundant input. In case
the RTU has been given certain local regulatory authority
in the architecture design, a fraction of the non-redundant
input is assigned as the magnitude of the monitoring task-
flow export at the RTU. This fraction depends on the level
of regulatory authority granted to local systems in the
architecture.

4) RTU to CST interactions: A fraction of the non-redundant
input to RTUs is assigned as the magnitude for the moni-
toring interactions from the RTUs to the CST. This fraction
depends on the level of regulatory authority granted to the
CST in the architecture.

5) Export and dissipation at CST: If the CST has received
redundant monitoring information streams for one or more
physical systems, the monitoring task-load dissipation from
the CST is equal to the amount of redundant input. The
non-redundant input to the CST is assigned as the magni-
tude of the monitoring task-load export.

A similar process is followed to assign task-load magnitudes
to the regulation interactions, as outlined below:

1) Import at CST: The import at the central SCADA terminal
(CST) represents the transformation of monitoring informa-
tion to regulation information since the SCADA terminal
uses the monitoring information to make regulatory deci-
sions. The magnitude of the import flow depends on the
number of systems being regulated by the CST and the
level of regulatory authority granted to the CST in the
architecture. First, a task load is assigned to the regulation
task of each system, similar to the monitoring task load
assignment. If the regulation of each system is equally
important, then a fixed quantum of task-load (say 5 units)
is assigned to all systems. However, if some of the systems’
regulation is more important/critical then the task-loads
for these systems are assigned a proportionately greater
amount. The magnitude of the import flow of regulation
interaction into the CST is set equal to the sum of the
assigned regulation task loads for all systems regulated by
the CST.

2) CST to RTU interactions: The CST provides input of
regulation information to each RTU equal to the sum of
regulation task-loads of systems that they can communicate
with directly or (indirectly) through inter-RTU communi-
cation links.

3) Inter-RTU interactions: The magnitude of regulation in-
teraction from RTU A to RTU B (if connected) is equal
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Fig. 3. A notional CPSoS modeled using the proposed multigraph approach and its corresponding 3-dimensional flow matrix.

to the sum of the regulation task-loads of systems directly
connected to RTU B and whose regulation information was
received by RTU A from the CST.

4) Import at RTUs: The magnitude of the regulation task load
import at any RTU is set equal to the sum of the assigned
regulation task-loads for all systems regulated by that RTU
if the RTU has local regulatory authority.

5) Dissipation at RTUs: The magnitude of the dissipation
flow of regulation interaction into any RTU is set equal
to the sum of the redundant input streams of regulation
information.

6) RTUs to physical systems interactions: The magnitude of
regulation interaction from an RTU to a physical system is
equal to the assigned task-load of that system’s regulation.

7) Export and dissipation at physical systems: The magnitude
of the export flow of regulation task-load at a physical
system is equal to the assigned task-load of that system’s
regulation. The magnitude of the dissipation flow of regu-
lation at any physical system is set equal to the sum of the
redundant streams of regulation task-load into that physical
system.

C. Preparing Flow Matrix and conducting DoSO Analysis
Once the multigraph is modeled, as described in the steps

above, a 3-dimensional flow matrix is prepared to represent
the model and evaluate the DoSO. In this 3-dimensional flow
matrix T, any element Tijl represents the interaction/transfer
of type l from node i to node j. An example of the multigraph
model and flow matrix, for a notional CPSoS, is shown in
Fig. 3.

To facilitate the DoSO evaluation of the overall network,
the modified AMI and H metrics, shown in Eqs. 5 and 6, are
proposed. The symbols in the metrics have the same meanings
as described in section II-B and the new subscript l represents
the different flow types. These flow values required to use
Eqs. 5 and 6 can be obtained from the 3-dimensional flow

matrix T. In Eqs. 5 and 6, Tl is the sum of all flows of types
l in the network, Ti.l is the sum of flows of type l leaving
node i, and T.jl is the sum of flows of type l leaving node
j (see Eq. 7). Once AMI and H are calculated using the
modified metrics, DoSO can be calculated using Eq. 3. The
formulation of these modified metrics is described in detail in
[46]. The modified metrics do not use the sum of flows of
different types and have been used to analyze supply chains
with multiple physical flows [47] and surveillance networks
with multiple information flows [48].

AMI =
∑
i

∑
j

[
∏
l

(
Tijl

Tl
)] · log2 [

∏
l

(
Tijl · Tl

Ti.l · T.jl
)] (5)

H = −
∑
i

∑
j

[
∏
l

(
Tijl

Tl
)] · log2 [

∏
l

(
Tijl

Tl
)] (6)

Where:

Tl =
∑
ij

Tijl; Ti.l =
∑
j

Tijl; T.jl =
∑
i

Tijl (7)

IV. CASE STUDY

A. Case Study Description

The proposed ENA modeling guidelines are tested on a syn-
thetic 8-substation Cyber-Physical Power Networks (CPPN)
case study from Weaver et al. (2016) [49]. There are 5
generators, 6 loads, and 12 branches/transmission systems in
this case study. The monitoring and regulation of the physical
systems are accomplished using a SCADA network. Each
substation has its own RTU and every generator or load
is assigned to a specific substation (see Fig. 4). The RTUs
communicate with a central SCADA terminal.

In this case study, the physical systems (buses, generators,
loads, and branches/transmission systems) generate and dis-
tribute energy to the end users. The cyber systems include
communication devices, such as routers, firewalls, etc. For
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Fig. 4. The 8-substation power grid case study from Weaver et al. (2016)
[49].

simplification, an RTU system is used to model all local
communication devices at a substation for ENA. The cyber
systems (RTUs and the CST) communicate and process the
data received from the physical systems to ensure that the
system operates securely, reliably, and economically. The
following interaction types are identified for the CPPN case
study: energy flows, monitoring interactions, and regulatory
interactions.

Various architectures of the 8 substation CPPN were eval-
uated using the proposed ENA framework for CPSoS. The
physical infrastructure was unchanged in the tested architec-
tures. The design variations explored in the cyber infrastructure
are explained below:

1) How is the regulatory/control authority distributed?
• Central: Only the CST has regulatory authority. The

RTUs communicate data to and from the CST.
• Local: The substation RTUs make regulation decisions

for the systems in their substation.
2) What is the communication network topology?

• Star topology: RTUs only communicate to the CST.
• Mesh topology: RTUs communicate to the CST and

amongst themselves.

B. Degree of System Order Analysis

The DoSO evaluations for the three interactions (energy,
monitoring, and regulation) and the overall CPPN are shown
for the four architectures in Table. I. The communication
topology selection was a discrete design variable: either a
star or a mesh topology. However, the authority distribution
is a continuous design variable. The central vs local designs
described in the list above are the two extreme cases. In
regular operation, the regulation authority is usually distributed
between the local and central systems. For example, the
primary regulatory authority may be assigned to the CST but
the local RTUs would have a certain level of decision-making
authority for emergency response. The trend of DoSO across
the spectrum from central to local regulation is also studied
and the results are shown in Fig. 5 for architectures with a star
communication topology and in Fig. 6 for architectures with a
mesh communication topology. In these figures, an authority
distribution parameter value of 1 indicates completely cen-

tralized monitoring and regulation, and a value of 0 indicates
completely local monitoring and regulation.

Fig. 5. DoSO trends with changing authority distribution for the star
communication topology based 8 substation CPPN.

Fig. 6. DoSO trends with changing authority distribution for the mesh
communication topology based 8 substation CPPN.

C. Conventional Topological Analysis

A conventional topological analysis of the cyber network
architectures, consisting of the RTUs and CST in the 8-
substation CPPN, was also conducted. The results of this
topological analysis are shown in Table II. Four topological
metrics [50] were used in this analysis:

1) Average Node Degree (d̄): Measures the average number
of links connected to each node in the network.

2) Average Clustering Coefficient (c̄): Measures the average
degree to which nodes in a graph tend to cluster together.

3) Average Shortest Path (l̄): Measures the average mini-
mum distance between any two pairs of nodes in the
network.

4) Average Betweenness Centrality (b̄): Measure of the aver-
age centrality of nodes in a graph based on shortest paths
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TABLE I
DoSO VALUES FOR THE SYNTHETIC EIGHT SUBSTATION POWER GRID ARCHITECTURES.

# Regulation
Authority

Communication
Topology

Overall
DoSO

Power
flows
DoSO

Monitoring
DoSO

Regulation
DoSO

1 Centralized Star 0.601 0.764 0.561 0.476
2 Centralized Mesh 0.477 0.764 0.233 0.132
3 Decentralized Star 0.532 0.764 0.444 0.407
4 Decentralized Mesh 0.532 0.764 0.444 0.407

TABLE II
TOPOLOGICAL ANALYSIS OF THE CYBER NETWORKS IN THE SYNTHETIC EIGHT SUBSTATION POWER GRID ARCHITECTURES.

# Regulation
Authority

Communication
Topology

Average
Node Degree
(d̄)

Average
Clustering
Coefficient
(c̄)

Average
Shortest
Path (l̄)

Average
Betweenness
Centrality
(b̄)

1 Centralized Star 1.778 0 1.778 0.111
2 Centralized Mesh 8 1 1 0
3 Decentralized Star 1.778 0 1.778 0.111
4 Decentralized Mesh 8 1 1 0

that represent the degree to which nodes form connections
between each other.

V. DISCUSSION

A. Notable features of the Model

1) Unbalanced Flows: Ecological Network Analysis
(ENA) applied to biological ecosystems typically requires that
all physical flows are balanced at all nodes: flow entering a
node equals flow exiting a node. This is because the flows
of interest for ecologists, such as energy and nutrients, obey
the laws of conservation. Unlike physically conserved flows,
information flows are not bound by conservation laws as
new information can be generated at any time and existing
information can be copied to multiple receivers.

For instance, a metering device outputs information about
the operation of its physical system. An information import
flow that would ‘balance’ this information output is not
meaningful because the information is not received from the
external environment, rather it is generated in the system.
This can be seen in the examples in Fig. 3 and Fig. 7.
Examples of unbalanced information flows due to the copying
of information at the physical system and at the RTU can be
seen in Fig. 7(a) and Fig. 7(b), respectively.

The DoSO evaluation does not mathematically require
flow balance at all nodes. Therefore, unbalanced flows are
theoretically acceptable in the model as long as they do not
violate any physical laws of the network under consideration.
It should be noted that physically conserved flows are still
balanced in the proposed model.

2) Transformation of Flows: Flows can be transformed
from one type to another after processing. For example,
the CST uses the state information (received through the
monitoring interactions) to make decisions regarding altering
the operations of physical systems (communicated using reg-
ulation interactions). This functionality is represented using
export-import flow pairs in the proposed model. For example,

the CST in Fig. 3 and Fig. 7 exports the useful monitoring in-
teractions and imports and an equivalent amount of regulatory
interactions.

Transformation can also be observed at the physical system
nodes. While the monitoring interactions received by the phys-
ical systems are not converted to another type of information
flow, they are transformed into productive actuation operations.
This is modeled as the export of monitoring interactions from
the physical system nodes (as shown in Fig. 3 and Fig. 7).

Finally, redundant information streams are modeled as
dissipation leaving the nodes, in this model. Examples of
dissipation flows to model redundancy can be seen in the two
designs in Fig. 7. The first design Fig. 7(a), employs physical
redundancy by using two RTUs for one physical system. The
redundancy is modeled by the dissipation flows at the CST and
the physical system. The second design, shown in Fig. 7(b),
adds redundancy to the CPSoS architecture using multiple
communication pathways. This redundancy is modeled by the
dissipation flows at the CST and the RTUs.

3) Scale-invariance: The proposed model and the modified
metrics presented in Section III are scale-invariant. Changing
the scale/unit of any subset of flows will not affect the DoSO
evaluation of the CPSoS architecture. This is an essential
feature of the model because a meaningful overall evaluation
of the network should not be affected by trivial matters such
as the selection of measurement units/scales. In this proposed
approach, modelers are free to use any unit/scale for the flows
as long as the same convention is used for all other flows
of the same type. This feature also makes it easier to assign
magnitudes to the information flows. For example, when
assigning interaction magnitudes to the cyber interactions (see
Section III), a modeler can assume any arbitrary value for
monitoring or regulation task-loads for each system as long
as it is consistent throughout the model and proportional to
the importance of each system’s monitoring and regulation.
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Fig. 7. Examples of modeling redundancy in CPSoS architectures: (a) Physical redundancy (use of multiple RTUs), and (b) redundancy via flexible
communication pathways.

B. Key Observations from the 8 substation power grid Case
Study

Consider architecture 1 (in Table I), with the star commu-
nication topology and centralized regulation authority, as the
base architecture. By changing the communication network
from a star topology to a mesh topology (architecture 1
to 2), the DoSO evaluations shift towards a high level of
pathway redundancy. This is consistent with the fact that the
mesh-type communication topology provides a greater level of
flexibility to maintain normal communication between cyber
systems with regulatory authority and the physical systems.
This difference between the architectures is also captured by
the topological analysis (as shown in Table II).

Next, consider the effect of changing the control authority
from centralized to decentralized (architecture 1 to 3). The
architectures have the same nodes and use the same commu-
nication pathways but they function in different ways because
of the differences in regulatory authority. In architecture 1, all
monitoring information is sent to the CST for processing and
to make regulatory decisions. In architecture 3, the CST is not
performing any function in the CPSoS because the regulation
authority is completely localized. The architectures 1 and
3 are topologically equivalent, as shown by their identical
topological analysis metric values (see Table II). However, the
proposed ENA modeling and DoSO analysis framework can
capture these functional/behavioral differences, as shown by
the different DoSO values of the two architectures in Table I.

Fig. 5 and Fig. 6 provide an insight into the variation
of the architectures DoSO values with the distribution of
regulatory authority. These results indicate that authority de-
centralization does not always lead to higher pathway re-
dundancy/flexibility. For the star topology architectures (see
Fig. 5), the pathway redundancy increases (DoSO decreases)
up to a certain level of authority decentralization. Beyond
that, greater decentralization of regulatory authority makes
the system more pathway constrained. In the case of the
mesh topology architectures (see Fig. 6), the communication
between the RTUs provides a high level of pathway flexibility.

Decentralizing the authority distribution in architectures with
the mesh communication topology is observed to have little
effect on the CPSoS pathway organization, at first. However,
extreme authority decentralization makes the architecture more
pathway-constrained.

These results are surprising at the first glance. However,
it should be noted that decentralization of the regulatory au-
thority has two unique (and opposing) effects on the pathway
organization of the CPSoS. While regulatory authority decen-
tralization does add flexibility by adding to the functionality
of the RTUs, it also reduces the amount of information shared
between RTUs and between the RTUs and the CST. The flex-
ibility provided by the inter-RTU communications is the pri-
mary contributor to the pathway redundancy in mesh topology-
based architectures. Therefore, reducing the communication
between RTUs reduces the flexibility provided by the mesh
communication topology, explaining why these architectures
are observed to become more pathway constrained with the
increase in regulation decentralization.

Finally, the DoSO evaluations of architectures 3 and 4
are identical. This is surprising because the architectures are
different from a topological perspective (note the different
values of the topological metrics in Table II). However, upon
scrutiny, it is noted that when the regulation authority is
completely decentralized/local, the CST is not functional and
the RTUs are only interested in the information about the
physical systems that they are connected to directly. Therefore,
there is no information sharing from RTUs to the CST or
between RTUs. This leads to both architectures behaving
identically - as eight separate sub-networks for the two cyber
interactions, and only connected by the power flows between
them. The fact that the DoSO evaluation can identify such
subtle functional features is a promising indication of its value
as a CPSoS architecture evaluation tool.

C. Potential impact, challenges, and future research directions

This work showed that the Ecological Network Analysis
approach can be extended for the evaluation of CPSoS.
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The results also indicate that the proposed framework and
the DoSO analysis can capture subtle functional/behavioral
characteristics of CPSoS architectures, which makes it unique
compared to existing graphical analyses that only consider
their topological features. Section III has detailed the proce-
dures of applying this multigraph ENA modeling techniques
and DoSO evaluation for CPSoS. It is also worth pointing out
that the proposed multigraph-based ENA modeling framework
doesn’t get more complex with the increasing network size,
and is therefore applicable to large-scale CPSoS too. The
DoSO evaluation does not require the knowledge of any
detailed disruption scenarios or the ability to evaluate CPSoS
under disruptions using complex co-simulation techniques.
Therefore, the proposed framework can provide much-needed
architecture evaluation feedback to engineers in the early
stages of CPSoS design.

CPSoS can be designed for significantly different types
of operation over a range of time horizons. For example,
the task loads for data collection may increase during peak
operating periods, compared to regular operations. The regu-
latory authorities in a CPSoS could also change based on the
operating condition. CPSoS stakeholders who are interested in
evaluating the pathway organization state of the CPSoS (using
the DoSO metric) during different operational situations can
develop multiple instances of the CPSoS ENA model for each
of those operational situations, and then use the same steps
outlined in this article to compare them. The approach can be
extended to include information about ownership of CPSoS
assets and data, a capability that could be useful in quantifying
the impact of data corruption scenarios against normal day-to-
day operations.

The proposed framework is developed to assess the design
of CPSoS considering the heterogeneous flows and network
topologies. It has the capability to provide an early-stage
assessment of the resilience capabilities of the CPSoS given
the condition that all inputs are correctly collected. This
approach takes the flows into consideration, not the quality
of the cyber data or information used for operation. The data
flow integrity check would come from (and here it is assumed
that it is done externally) an organization’s external security
event monitoring and intrusion detection systems.

This work has not yet tested whether the DoSO analysis
of CPSoS architectures can ‘predict’ their ability to handle
cyber disruptions. Toward prediction, this work has developed
an extended ENA framework that makes such an investigation
possible. Additionally, recent research has shown promising
indications that the DoSO analysis can guide resilience im-
provements in complex systems and Systems of Systems. This
motivates future research comparing the DoSO analysis of
CPSoS against their resilience evaluation (to cyber threats)
using state-of-the-art cyber physical co-simulation testbeds
such as those developed in refs. [9], [51], [52].

Past research has found that ecologically similar DoSO
values can lead to desirable resilience in engineering net-
works with physically conserved flows (see refs. [15], [43],
[47]). However, the cyber interactions in CPSoS have unique
behavioral properties, including the ability to generate new
information and copy information. Cyber-physical disruption

scenarios can also involve the unique aspect of deception.
Based on these considerations, it is possible that the favorable
DoSO range for resilience from cyber-threats may be different
from the ecologically-identified Window of Vitality (discussed
in Section II-B). This is in line with prior work that suggests
certain engineering networks and SoS may have specialized
Windows of Vitality, especially in cases where the severity of
potential threats is known [11], [12]. Future research should
also investigate different CPSoS applications such as oil and
gas infrastructure, and water distribution infrastructure to test
if the favorable DoSO ranges vary based on the application.
The approach presented here paves the way to uncover the
existence and qualities of unique CPSoS’ Windows of Vitality.

VI. CONCLUSION

This article presented a novel multigraph model of CPSoS,
along with guidelines and modified metrics that enable ENA
evaluation of the overall (cyber and physical) network orga-
nization of the CPSoS. The proposed model can accommo-
date unbalanced flows (as long as they are consistent with
the operating principles of the network), accounts for the
transformation of flows, and is scale-invariant. This article
also demonstrated the practical application of the extended
ENA framework and DoSO formulation using a realistic
energy infrastructure case study. It is shown that the proposed
model evaluates both topological and functional (flow-based)
characteristics of SoS architectures, which makes it unique
compared to existing graphical analyses that only consider
the topological features of SoS architectures. The approach
presented here paves the way to discover ecology-inspired
design principles for resilient CPSoS.
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