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Abstract—Power grid infrastructure is cyber-physical in nature
where a geographically distributed electrical network is moni-
tored and controlled using a vast network of computers or cyber
infrastructure. Understanding this cyber-physical interconnect-
edness is critical to assessing and improving the risk posture
of the power grid with respect to cyber threats. We present
an analysis of cyber-physical risk approaches to help utilities
improve grid defense: cyber-physical situational awareness and
control under adversarial presence. A 200-bus cyber-physical
power system is analyzed as a case study. Finally, we discuss
opportunities for improved automated risk analysis in decision-
making problems, for trustworthy response in emerging cyber-
physical-human system-of-systems.

I. INTRODUCTION

Power system defenders need to observe and understand
what the assets are and how they are connected before they can
start to reason about ‘normal’ behavior. This work examines
how models and data impact the ability to automatically
assess risk in large-scale power systems. Specifically, this
paper is about risk, and it explores methods and use cases
for calculating cyber-physical risk in power systems. The idea
is to enhance understanding of different ways to measure risk,
the data inputs and outputs for those methods, the key variables
and how they can be constructed under different assumptions,
and related graph-theoretic and deep learning constructs. We
thus aim to elucidate benefits and shortcomings and identify
opportunities for resilience-preserving automated risk-based
searching to stop cyber-physical threats in large-scale power
systems, by finding the needle-in-the-haystack.

II. OVERVIEW AND RELATED WORK

The contributions of this paper are as follows. We explore
the risk analysis methods that build upon cyber-physical mod-
els and data of power systems, and we consider the content
of these systems as test cases for cyber-physical modeling,
planning, and threat analysis. Then, we present an example
with a synthetic cyber model and full topology expansion
performed on top of the synthetic electric grid 200-bus model
from the test case archive [1]. The details of the cyber-physical
model construction are outside the scope of this paper. Several
related works discuss the requirements and contents of these
models for large-scale power systems, such as [2] and [3].

Here, we focus only on the risk question, and highlight an
example in such a cyber-physical system.

Risk searching is important because highly-connected power
systems can inadvertently expose vulnerabilities to intruders
that can disrupt grid resilience. Cyber threats and propaga-
tion of their impacts can be analyzed by performing cyber-
security risk assessment [4], which includes the use of attack
graphs. Attack graphs are used to analyze network and host
vulnerabilities as well as potential access paths adopted by
adversaries to exploit these vulnerabilities to compromise their
target [5]. These methods are a type of risk analysis. They
require updating the attack graph templates based on real-time
alerts from Intrusion Detection Systems (IDS).

Because an adversary’s behavior is uncertain, risk can be
studied using Bayesian Networks (BNs) which are a type of
Probabilistic Graphical Model (PGM) beneficial for modeling
attack graphs. There is evidence that BNs are useful in power
system environments to perform causal reasoning about an
adversary’s trajectory. For example, [6] uses BNs to study
the impact of cascading effects in coupled infrastructure. Risk
analysis research is ongoing to examine and validate the use
of Bayesian structural learning and inference (e.g., Cooper and
Herskovits K2 [7], Monte Carlo Markov Chain (MCMC) [8],
Chow Liu [9], Partially Directed Acyclic Graph (PDAG) [10])
for improved estimation of probabilities for how an adversary
can exploit a sequence of vulnerabilities and propagate through
the network to cause physical impact. Authors in [11] develop
a technique to construct Bayesian Attack Graphs (BAG) for
power systems and evaluate structural learning algorithms
to update the BAG structure based on real-time alerts, on
scalability, data dependency, time complexity and accuracy
criteria [11]. A multi-level anomaly detector for Supervisory
Control and Data Acquisition (SCADA) is proposed in [12]
and extended with a causal polytree-based anomaly reasoning
engine in [13] to estimate the security state.

Nodal criticality plays an important role in vulnerability
assessment. Hence, critical asset ranking and risk evaluation
in cyber-physical power systems have been addressed over the
past decade, with works including Security-Oriented Cyber-
Physical Contingency Analysis (SOCCA) [14], Cyber-Physical
Modeling and Analysis (CPMA) [3], and Cyber-Physical Sit-



uational Awareness or Cyber-Physical Security Assessment
(CyPSA) [15]. A framework for method comparisons, risk
analysis, with results, is given in [16].

The algorithm(s), data structures, and functions that we refer
to as a risk model include physical impact modeled through
detailed power system simulations, e.g., [17], and likelihood
which can be modeled as ease of access from vulnerability
and connectivity information and attack graph analyses: these
are the essential components of CyPSA [15].

Techniques to develop and utilize risk models also include a
stochastic Bayesian model to calculate cyber-physical security
index [18], an expected load curtailment index for protection
devices [19], a boolean logic driven MDP leveraging estimated
values of a step’s success [20], and Bayesian attack graphs
(BAGs) [11]. These risk methods produce a model that helps
understand and explore static vulnerabilities in the system,
e.g., to rank assets and contingencies. Other related risk meth-
ods are Bayesian [21], [22], [23], and utilize graph theory [21],
[22], [23], [24].

Current techniques for locating critical nodes are mostly
dependent on physical topologies [25], like betweenness cen-
trality [24], k-shell [26] and information entropy [27]. In [24],
the risk method uses betweenness centrality (BC) and vulner-
ability scores to formulate a cyber-physical between centrality
(CPBC) index to assess vulnerability and risk levels. This
approach provides a network-centric perspective for nodal risk
assessment, however, it could underestimate risk associated
with low-centrality nodes.

III. CASE STUDY OF 200-BUS MODEL

The importance of a cyber-physical systems (CPS) modeling
approach for power system operation and control has helped
to bridge gaps in power systems toward improving the system
control [28]. Previous research has focused on creating cyber-
physical models to manage power system contingencies and
improve grid operation reliability [14], [15]. A detailed cyber-
physical model was created in [2] utilizing the Texas 2000
synthetic grid. Recently, the relationships between the system
and the information flow are then examined using graph
theory [29], [30], [31]. Here, the synthetic 200-bus power
system based on the Illinois footprint is used for the risk
assessment process. As shown in Fig. 1, the synthetic network
contains 200 buses, 245 transmission lines and substations
[1]. The network topology is constructed for monitoring and
communication, as shown in Fig. 2.

Equipment such as Ethernet switches (SW), protection
relays (R), and human-machine interfaces (HMIs) are found
at the substation level. The loads, buses, and shunts are
protected by the relays. Data is sent to the Utility Control
Center (UCC) and Independent System Operator (ISO) levels
via substation firewalls. Additional firewalls are present at
the UCC level, enforcing security policies to safeguard the
network. The SCADA data is obtained at the ISO level and
used for centralized control and monitoring.

To clearly depict research results on cyber-physical risk, and
to illustrate how risk relates to the cyber-physical dependen-

Figure 1. The synthetic 200-bus system [1] one-line diagram.

Figure 2. The 200-bus system cyber topology.

cies, we establish a cyber-physical graph. This graph gives
a visual representation of the interconnected network that en-
compasses both the cyber (computational and communication)
and physical (electrical components and infrastructure) parts
of the system. The cyber-physical graph of the 200-bus system
is generated based on the physical and cyber topology, with
the 1,613 nodes and 5,995 edges.

By giving edges exploitability scores, one can efficiently
model complexity of an adversary’s path between nodes. More
sophisticated analytics can make use of exploitability-weighted
graphs to simulate possible intrusion pathways and determine
the most likely paths an adversary could take. In this work,
we cite the Common Vulnerability Scoring System (CVSS)
from National Vulnerability Database (NVD) and assign the
network edges exploitability ratings to the graph edge weights
based on access complexity (AC) value [32], the degree of
difficulty in exploiting a vulnerability, where a lower score
denotes a more difficult path. The full CPS graph is shown in
Fig. 3.



Figure 3. The 200-bus system cyber-physical graph representation.

IV. METHOD

According to NIST [28], risk is commonly described as the
possibility of a certain threat and is calculated by multiplying
the potential vulnerability by the impact of resultant incidents,
commonly represented as Risk = Likelihood × Impact.

Previous work [31] employs a DeepWalk-based strategy to
categorize nodes according to risk severity. The DeepWalk
method operates on the assumption that each node has a
homogeneous connection, and that every path, regardless of
its characteristics, carries the same probability. This approach
captures the structural similarities and relationships between
nodes, but it may be insufficient for prompt intrusion de-
tection considering different threat complexities. To address
this, a risk analysis framework is proposed in Fig. 4, with
a cyber-physical graph as the input. We can determine nodal

vulnerabilities within the network topology and the probability
of possible access pathways, using a biased random walk
step, by utilizing the Node2Vec technique. This framework
goes beyond calculating likelihood and incorporates effect
evaluation to align with the unique operational and security
needs of CPS.

A. Component Relationships and Similarity

The Node2Vec approach may decipher intricate relation-
ships between different system components. To simulate graph
exploration, random walks are first created. We use this strat-
egy to reflect the random walks as the adversaries’ access path-
ways. Next, within these walks, the skip-gram model is used
to forecast a target node’s neighbors. The skip-gram technique
is particularly significant in representative learning [33], since
it can provide latent variables that can be used to represent



Figure 4. A risk analysis framework.

abstract notions that are not directly measurable and to reveal
hidden structures in data. It helps scientists working with data
to draw conclusions about hidden or fundamental mechanisms
influencing visible occurrences.

A random walk on a weighted CPS graph is defined as
a series of steps that start at a vertex, represented as vi.
In accordance with the DeepWalk technique, which applies
unbiased random walks, the first- and second-order transition
probabilities operate sequentially to integrate the searching
algorithm [34]. The definition of the second-order transition
probability is as follows: the overall transition probability,
when initiating from node v and proceeding across the edge
(t,v), is modulated by the search bias factor.

P (u, v) =
αpq(t, u)× w(u, v)∑

v̂∈V αpq(t, u)× w(u, v)
(1)

The quality of the latent variables representing the nodes’
neighborhood information and network topology is determined
by modifications to the aforementioned parameters. The bal-
ance between local and global neighborhood exploration can
be adjusted.

Node embeddings are generated to symbolize the graph
structure and represent the biased random walks. For each
vertex u ∈ V , the likelihood of identifying neighboring
nodes of node u is determined through the optimization of
the objective function, which is achieved by employing the
stochastic gradient descent algorithm.

max
f

∑
u∈V

− logZu +
∑

ni∈NS(u)

f(ni) · f(u)

 . (2)

The “proximity” nodes in the embedding space could then
be defined as cosine similarity of their latent variables. For
any two nodes u and v in the graph, their cosine similarity is
calculated using their vector embeddings ϕ(u) and ϕ(v). The
likelihood is estimated by:

cosine similarity(ϕ(u), ϕ(v)) =
ϕ(u) · ϕ(v)

∥ϕ(u)∥∥ϕ(v)∥
(3)

The similarity score produced by the likelihood computation
ranges from -1 to 1. A node’s tasks and locations within the
CPS network are likely comparable when its score is near 1.

Significantly different or opposing embeddings are indicated
by a number around -1, whereas no discernible similarity is
indicated by a score near 0.

B. Impact Scores

An essential component of risk analysis is determining the
impact score of CPS components. It entails assessing the pos-
sible outcomes in the event that a device were compromised. In
this research, we present a comprehensive metric to calculate
the impact score. As shown by Eq. 4, these dimensions are
network influence (NI), operational importance (OI), security
and confidentiality (SC), and access complexity (AC). The
“sum of all scores” denotes the sum of OI, SC, MR, NI, and
AC for each component.

Impact Score =
OI · SC · MR · NI · AC∑5

i=1 all scorei
(4)

Table I demonstrates a structured framework in assessing
impact sore by various components. Each category is defined
at three levels: High, Medium and Low with scores of 0.9, 0.6
and 0.3 respectively. OI scores devices based on their signif-
icance in network operations and integration complexity. SC
measures the level of the device’s role in network security and
its handling of sensitive data. AC varies based on the difficulty
of accessing components. MR scores the maintenance needs
and reliability of the device. BC is used to indicate the nodal
network influence; it measures the frequency at which a node
appears on the shortest paths. We define the top 25 nodes of
BC scores as the High level of network influence, the bottom
25 as Low and the rest as Medium.

Table I
COMPONENT RISK LEVELS BASED ON OPERATIONAL AND SECURITY

FACTORS

Component Operational
Importance

Security and
Confidentiality

Maintenance
and Reliability

Access
Complexity

Bus (B) Medium (0.6) Low (0.3) Medium (0.6) High (0.9)
Generator (G) High (0.9) Low (0.3) High (0.9) High (0.9)
Load (L) Low (0.3) Low (0.3) Low (0.3) High (0.9)
Shunt (S) Medium (0.6) Low (0.3) Low (0.3) High (0.9)
Relay (R) Medium (0.6) Medium (0.6) Medium (0.6) Medium (0.6)
Ethernet Switch
(SW) Medium (0.6) Medium (0.6) Medium (0.6) Medium (0.6)

HMI Medium (0.6) High (0.9) Medium (0.6) Medium (0.3)
Firewall (FW) Medium (0.6) High (0.9) Medium (0.6) Low (0.3)
Router (r) High (0.9) High (0.9) Medium (0.6) Low (0.3)
Control Center
Devices (CC) High (0.9) High (0.9) High (0.9) Low (0.3)

V. ANALYSIS AND RESULTS

We assume that Denial of Service (DoS) attacks can occur
on any physical and network component in the CPS network
and can be recognized. As a result of the intrusion, we assume
that one component is in a failed state, and we are interested
in the adversary’s next target. We consider a situation where a
DoS is occurring, and the specific target has been pinpointed:
a DoS targeting the Ethernet Switch (SW 4) at Substation 2.

Tables II shows the results of the top 10 nodes from risk
assessments, where we focus the results on the substation level.
For example, for SW 4 in Substation 2 as target, router 2,
R L4 1, and R B4 3 1, could be directly affected, leading



to operational and security challenges within Substation 2.
Moreover, the high-risk scores of physical nodes like B3,
B137, and B57 suggest an impact on physical operations
within substation 2 and neighboring substations. Similarly, the
impact of compromising B 57 and R B57 3 1 can have ripple
effects throughout the network, affecting other substations and
nodes, especially those with high operational importance and
interconnected functionalities.

The violin plot displays the distribution of risk scores across
each substation. The wider parts of the violins indicate a higher
density of nodes at certain risk scores within the substation.
For instance, in Fig. 5, Substation 2 shows a wide distribution
with a peak around a risk score of 0.6. This indicates a high
frequency of nodes around this risk score, suggesting that
Substation 2 has a substantial number of nodes at a high risk
level when SW 4 is targeted, which may warrant prioritized
risk management strategies. Substations with narrower violins,
like 26 and 71, might have risk scores in the middle range and
could be classified as moderate risk. The rest of the substations
have a higher density of data points at the lower end of the
risk score range and lower median risk scores.

Figure 5. Violin Plot with ‘SW 4’ in Sub2 as Target

VI. DISCUSSION: ASSUMPTIONS AND HOW IT WORKS

The operation of a power grid is governed by the laws of
physics, and the underlying power system is represented as a
set of nonlinear AC equations that include active (MW) and
reactive (MVAr) power flows. Power balance is expressed by
the power injection mismatch vector f(x, u) = [∆p,∆q]

T that
must equal zero, where x is the power system state, a vector
of bus voltage magnitudes V and angles θ, and u is a vector of
controls such as generator outputs P g

i , Q
g
i . The power balance

requirement is enforced in the AC power flow solution. The
complex power flow into each line terminal (l,m) ∈ L is
denoted by Pij + jQij , and θij = θi − θj for (i, j) ∈ L (Eqn.
5-6). The number of buses is n, and G + jB is the system
admittance matrix which contains the network line parameters
from I = Y bus · V .

Pij=V 2
i [Gij ]+ViVj [Gij cos (θij)+Bij sin (θij)] (5)

Qij = −V 2
i [−Bij ] + ViVj [Gij sin (θij)−Bij cos (θij)] (6)

The idea is that a navigation agent can assess and then
utilize a risk value function, to take actions that protect the
system, dictated by a Bellman equation that captures the risk.
The agent starting from s obtains expected return, G, taking
action a, and following policy π. The agent finds and takes
the sequence of actions that will maximize the reward.

Qπ(s, a) = Eπ

 T∑
j=0

γr
j
t+1+j |St = s,At = a

 (7)

Vπ(s) = Eπ [Gt|s = st] =
∑
a

(π(a|s)) ·Qπ(s, a) (8)

An MDP is a discrete-time stochastic process used to
describe the agent and environment interactions. The behavior
of the agent in the environment is defined by the MDP’s
states (S), actions (A), state transition model P (st+1|st, at),
reward model R(st+1|st, at), and discount factor γ. The state
transition probabilities model the uncertainty of when the
agent performs action a in a state s. Q is the expected value
of the reward which captures that fact that it is a stochastic
environment (Eq. 7), and π(a|s) is the probability that policy
π selects action a given current state s; these must sum to
one:

∑
a(π(a|s)) = 1. The value function is an estimate of

how good it is for the agent to be in a given state, which is
the expected total reward, Vπ(s) (Eq. 8).

The reward function that controls the risk search captures
the worst physical violations (e.g., Eq. 5) and access paths.
How to find V is given by the Bellman equation for value
function (Eq. 9):

Vπ(s) =
∑
a

(π(a|s)) ·
∑
s′∈S

p (s′|s, a) (∆F (s, s′) + γVπ(s
′))

(9)
The first term ∆F (s′|s, a) = F (s′) − F (s) measures the

change in severity of “physical consequence” in going from
state s to state s′, the immediate expected reward. Then,
Vπ(s

′) is the value of the next state, and p (s′|s, a) reflects the
difficulty to perform vulnerability exploitations on the path.

Now, if we find a Needle-in-the-Haystack using our auto-
matic risk searching, then, next we can also automatically
mitigate the risk, if such a mitigation exists and is not too
costly. This is Wayfinder, which can tune the system according
to risk tolerance, and will be detailed in a follow up paper.

VII. CONCLUSION

This paper investigates improved ways to automatically find
and mitigate hidden threats and explores achieving this goal
for using a 200-bus test case. Finally, it suggests next steps
on CPS risk analysis and control.
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Table II
RISK ASSESSMENT RESULT FOR HIGH-RISK NODES WITH ‘SW 4‘ AS TARGET

Node Cosine BC BC Network Operational Security Maint. Access Impact Risk Substation
ID Sim. Class. Risk Importance & Confid. & Reliab. Complex. Score Score No#

router 2 0.934 0.0054 Medium 0.6 0.9 0.9 0.6 0.3 0.647 0.604 2
R L4 1 0.935 0.0014 Medium 0.6 0.6 0.6 0.6 0.6 0.569 0.532 2

R B4 3 1 0.926 0.0014 Medium 0.6 0.6 0.6 0.6 0.6 0.569 0.527 2
B3 0.779 0.0098 High 0.9 0.6 0.3 0.6 0.9 0.647 0.504 2

B137 0.652 0.0091 High 0.9 0.6 0.3 0.6 0.9 0.647 0.422 2
B57 0.624 0.0084 High 0.9 0.6 0.3 0.6 0.9 0.647 0.404 26

R B57 3 1 0.694 0.0010 Medium 0.6 0.6 0.6 0.6 0.6 0.569 0.395 26
R B137 3 1 0.693 0.0011 Medium 0.6 0.6 0.6 0.6 0.6 0.569 0.394 71

B4 0.912 0.0009 Medium 0.6 0.6 0.3 0.6 0.9 0.412 0.375 2
HMI 2 0.822 0.0065 Medium 0.6 0.6 0.9 0.6 0.3 0.412 0.339 2
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