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Abstract—With the widespread adoption of islanded DC micro-
grids incorporating photovoltaic (PV) systems and battery energy
storage systems (BESSs), safeguarding the cyber-physical security
of PV-BESS configurations becomes crucial. While numerous
false data injection attack (FDIA) detection techniques have
been presented in existing literature, these methods are often
tailor-made for specific attack types. This paper introduces
an innovative approach for concurrently detecting FDIAs on
islanded PV power plants and BESSs. A bespoke two-layer ran-
dom forest model, meticulously crafted and trained, is deployed
for identifying FDIAs instigated by malicious adversaries. Our
method uniquely caters to three distinct cyber-attack scenarios:
tampered attacks, poisoned attacks, and replay attacks. The
efficacy of our FDIA detection approach is rigorously evaluated
utilizing real-world datasets and synthetically generated attacks.
The results underscore the method’s impressive performance in
identifying a spectrum of cyber-attacks on both PV system output
and the state of health output from the battery data.

Index Terms—Cyber-physical system, false data attacks, photo-
voltaic power, Lithium-ion battery, state of health.

I. INTRODUCTION

The evolving prevalence of PV systems and large battery
energy storage systems (BESS) within microgrid (MG) archi-
tectures has been significantly increasing [1]. Equipped with
smart inverters and meters, the PV-BESS can function in two
distinct modes: grid-connected and standalone. It operates un-
der the management of and connectivity to the MG, facilitated
by inter-communicating devices fitted with sensors. These sen-
sors consistently communicate with control centers, enabling
monitoring and control activities. However, the integration of
a myriad of sensors and devices in renewable-heavy MGs,
all engaging in continuous data transmission and reception,
inadvertently creates a larger target for malicious cyber activ-
ities [2]. This continuous data exchange over the network is
susceptible to cyber-physical attacks, making it vulnerable to
exploitation by adversaries. Malicious manipulation of sensor
data by these adversaries can disrupt system operations and
decision-making processes. This risk is especially high when
sensors are not equipped with tamper-resistant hardware. Thus,
accurately detecting such attacks is crucial for maintaining the
system’s integrity and reliability [3].

False data injection attacks (FDIAs) represent a promi-
nent threat to MG supervisory control and data acquisition
(SCADA) systems. FDIAs introduce altered sensor readings
to deceive the decision-making process within control centers
[4]. These attacks meticulously erode the data integrity within
the grid, insidiously manipulating the system’s perception
of its own operational status and, consequently, its strategic
responses [5].

The realm of BESS in smart distribution networks (SDNs)
has witnessed a surge in research, particularly focusing on
the vulnerabilities and security challenges associated with
FDIAs. Paper [6] significantly contributes to this discourse,
unveiling the intricate mechanisms of static and sequential
FDIAs and their consequential manipulations on the State-of-
Charge (SoC) estimations—a critical component for optimal
BESS operation and management within SDNs. Despite its
analytical prowess, the paper stops short of presenting a
holistic mitigation strategy, spotlighting an imperative research
gap in fortifying the cybersecurity framework of BESS.

Concurrently, the study in [7] proposed a convolutional
neural networks to adeptly detect and classify spurious battery
data. This approach not only enhances the system’s safety
and reliability but also mitigates potential threats emanating
from deceptive battery data. Delving into stealthier attack
paradigms, [8] delineates a sophisticated assault using artificial
neural networks and a man-in-the-middle (MitM) strategy,
aiming at the communication nexus between the BESS’s
local supervisory controller and its battery control units. This
revelation of undetectable attacks further amplifies the urgency
for advanced and resilient cybersecurity mechanisms.

In light of the previous research gaps, this paper presents a
novel method for FDIA detection (FDIAD) in PV-BESS. This
study embarks on a meticulous exploration of FDIAs, signal-
ing a transition from vulnerability exposure to the development
of robust defense mechanisms. To the authors’ best knowledge,
this is the first attempt to secure an islanded PV system with
BESS against cyber FDIAs. The main contributions of this
paper are three-fold:

1) A novel two-layer random forest (TLRF) model is
introduced and tailored for FDIAD.



Fig. 1: Flowchart of the microgrid system.

2) A multimodal classifier of three malicious attacks,
specifically, the tempered attacks, poisoning attacks, and
replay attacks is proposed.

3) The comprehensive validation of the proposed model’s
effectiveness and superiority over existing methods is
conducted using real-world datasets.

II. CYBERATTACKS TYPES

This paper tackles three types of cyber-attacks: tempered
attacks, poisoning attacks, and replay attacks. This section
briefly describes these types. The PV-BESS system considered
in this work for these attack scenarios is shown in Fig. 1.

A. Tempered Attacks

A tempered data attack refers to a malicious action where
an adversary introduces false data or alters the legitimate data
being used by the system, as shown in Fig. 2.(a). This can
mislead the control system, causing inefficiencies, damage, or
even system failures. An adversary can introduce a bias b to
the solar irradiance data, leading to an altered G′ given by
G′ = G+ b. Similarly, they can introduce a bias in the power
readings of the battery, leading to altered P ′

in and P ′
out. With

the tempered solar irradiance data, the PV output becomes

P ′
PV = G′ ×A× η. (1)

This can cause the system to either overproduce or underpro-
duce power, leading to wastage, inefficiencies, or unmet load
demands. With altered power readings, the battery’s state of
health (SoH) calculation is calculated as

SoH ′(t) = SoH(t− 1) +
∆t

C
× (P ′

in − P ′
out) (2)

This can lead to overcharging or deep discharging of the
battery, reducing its lifespan and potentially causing damage
or hazards. Tempered data attacks in an islanded PV-BESS
can have severe repercussions on the efficiency, safety, and
longevity of the system.

B. Poisoning Attacks

Poisoning data attacks refer to the intentional injection
of malicious or incorrect data into the system’s monitoring
or control datasets. These attacks can be targeted at any
component of the PV system, but when directed at the battery’s
SoH, they can have particularly detrimental effects as shown in
Fig. 2.(b). A compromised SoH reading can lead to improper

Fig. 2: Schematic of the depicted a) Tempering attacks b)
Poisoned attacks c) Replay attacks.

charging or discharging, thus reducing the battery’s lifespan
or even causing immediate damage. In a poisoning data
attack aimed at the SoH, the attacker manipulates the SoH
value, leading to a miscalculation in the battery’s charging or
discharging power. The manipulated SoH is represented as

SoH ′ = SoH + δ, (3)

where δ is the poisoned data. This can lead to an incorrect
calculation of PB , represented as P ′

B . The new relationship is
computed as

PPV + P ′
B = PL. (4)

Given that P ′
B is not the true required power for the battery,

continued operation under this condition can lead to overcharg-
ing or over-discharging of the battery, affecting its lifespan and
performance. Poisoning data attacks in islanded PV-BESS can
have serious implications. By manipulating the battery SoH,
attackers can induce improper operation, leading to reduced
battery lifespan or immediate damage.

C. Replay Attacks

A replay data attack refers to a malicious activity where
an attacker captures legitimate data from the system and then
retransmits it at a later time. The purpose of the attack is
to deceive the system controllers or monitors into believing
that the retransmitted data is currently being generated by the
sensors as illustrated in Fig. 2.(c). An attacker could potentially
manipulate the readings related to the battery’s SoH, PV
generation, load consumption, or other essential parameters.
Let’s denote PPV (t) the Power generated by the PV panels
and Pbattery(t) power charged or discharged by the battery.
During a replay attack, an attacker captures data at time t1
and replays it at a later time t2. The system then receives

PPV (t2) = PPV (t1);SoH(t2) = SoH(t1). (5)

The mismatch between the actual/replayed conditions can lead
to incorrect decisions by the system controller. For instance,
the battery might be charged or discharged unnecessarily based
on the replayed SoH, leading to faster degradation. To detect
such attacks, one can monitor the residuals as

rP (t) = PPV (t) + Pbattery(t)− Pload(t), (6)

rSoH(t) = SoHmeasured(t)− SoHexpected(t). (7)



Under normal operation, both residuals rP (t) and rSoH(t)
should be close to zero. Significant deviations can be an
indication of a potential replay attack.

III. PROPOSED ARCHITECTURE

The TLRF consists of two sequential layers that aim to
enhance predictive performance by reducing both bias and
variance. This method involves base Random Forest (RF)
models in the first layer and a meta-model in the second layer,
which leverages the strengths of the base models [9]. Given
a dataset D consisting of feature vectors and corresponding
labels, i.e., D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi

is a feature vector and yi is the corresponding label, we train
M base RF models at the first layer. Each model hm for
m = 1, . . . ,M , is trained on a subset of the data Dm ⊂ D
and potentially a subset of the features Fm ⊂ F , where F is
the set of all features. The prediction of the m-th base model
for a new input vector x can be defined as

hm(x) = fm(Dm,Fm, x). (8)

The predictions from the base models are used as input
for a second layer which trains a meta-model. Defining the
combined feature vector from the first layer for an input vector
x as

z(x) = [h1(x), h2(x), . . . , hM (x)]. (9)

where z(x) is used as the input feature vector for the second
layer model. The second layer model is then trained on a new
dataset as

Dz = {(z(x1), y1), (z(x2), y2), . . . , (z(xn), yn)}. (10)

The function learned by the second layer model is defined as

H(z(x)) = fz(Dz, z(x)). (11)

The final prediction for a new input vector x is given by

ŷ(x) = H(z(x)). (12)

The TLRF model integrates base learners to form a more
robust predictive model. By utilizing the strengths and mit-
igating the weaknesses of various base models, the ensemble
model ŷ(x) is expected to produce more accurate and gen-
eralized predictions than any of the individual base models.
Fig. 3 illustrates the structure of a TLRF method designed
for FDIAD in PV-BSS systems. In the first layer, multiple
bootstrap databases are used to train individual trees. The
outputs of these trees undergo majority voting, producing an
aggregate decision for each classifier. In the second layer, a
similar process is followed, leveraging the outcomes from the
first layer. The ensemble approach of the TLRF enhances its
robustness and precision in detecting FDIAs. Upon completion
of the training phase, the model is ready for implementation,
either at the control center or directly on the sensors, to
identify FDIAs. For any new measurement xj , the model
functions as follows.

g(xj) =

{
1, if an attack is detected on the system,
0, if the system is operating normally.

(13)

Fig. 3: Flowchart of the TLRF method of PV-BSS.

Fig. 4: Flowchart of the TLRF method for FDIA detection.

Fig. 4 presents a comprehensive flowchart detailing the
methodology behind the TLRF approach for FDIAD, specif-
ically tailored for an islanded PV system integrated with a
BESS. Data from PV and BESS, including temperature, irra-
diance, and voltage, is collected and preprocessed. The TLRF
model detects tempered, poisoning, and replay attacks. Its
performance is compared with KNN and DNN models, using
metrics such as accuracy and recall to measure efficiency.
For FDIA, a common problem for ML techniques is the
imbalanced datasets. Therefore, oversampling is a technique
used to handle class imbalance by increasing the number of
instances in the minority class to balance the class distribution
[10]. The goal is to enhance the performance of a model by
increasing the representation of the minority class, often by
duplicating instances or generating synthetic samples. Let n1

be the number of instances in the majority class and n2 be
the number of instances in the minority class, with n1 > n2.
To balance the classes perfectly, we would need n1 − n2 new
instances of the minority class. But, an oversampling ratio r
can be defined to determine the number of new instances as

New instances = r × (n1 − n2). (14)

For r = 1, the classes will be perfectly balanced. But r can
be greater or smaller than 1 depending on the desired balance
level. Let S2 be the set of instances in the minority class. The
oversampled set S2,oversampled is created as

S2,oversampled = S2∪{si : si ∈ S2, i = 1, 2, . . . ,New instances},
(15)



where si are instances randomly chosen from S2 with replace-
ment. Instead of just duplicating instances, synthetic samples
can be created using algorithms such as synthetic minority
over-sampling technique [10]. Given two instances a and b
from the minority class, a synthetic sample s is generated as

s = a+ λ× (b− a), (16)

where λ is a random number between 0 and 1. This approach
creates a sample that lies along the line segment joining a and
b. Oversampling helps in equalizing the number of instances
across classes, either by duplicating existing instances or by
introducing synthetic ones, to improve the classifiers’ perfor-
mance on imbalanced datasets.

IV. CASE STUDY

The proposed model is implemented in the TensorFlow
library. This work is implemented on a personal computer with
Inter Core i7-10885H CPU @2.40 GHz and 32.0 GB RAM.

A. Data description

The simulation leverages publicly available data from the
Desert Knowledge Alice Springs Center (DKASC), located
in Central Australia at latitude 23.7618◦ S and longitude
133.8749◦ E [11]. This dataset originates from comprehensive
monitoring of various types, models, and configurations of
PV technologies. An in-depth analysis of two years (2018-
2019) of DKASC’s data is conducted. The input parameters
for our system include ambient temperature in Celsius (T in
◦C), wind direction (Wd in degrees), horizontal radiation (Ir
in W/m2), diffuse horizontal radiation (DIr in W/m2), and
relative humidity (Rh in %); while the system outputs the
active power in kW.

Additionally, the study made use of a publicly avail-
able dataset. Generated by the National Aeronautics and
Space Administration’s (NASA) Prognostics Center of Ex-
cellence, the process of charging a battery adheres to the
constant-current constant-voltage (CCCV) methodology. The
feature vector in the database is formulated as Ψk =
[Vm(k), Im(k), Tm(k), At, Cl, Vl, t, C], where Vm(k), Im(k),
and Tm(k) signify the voltage measured, current measured,
and temperature measurement of the battery at each time step
k, respectively; At is the ambient temperature, Cl is the current
load, Vl is the voltage load, t is the time, and C represents
capacity, all of which contribute to a comprehensive evaluation
and monitoring of the performance and health status of a bat-
tery system. The SoH is calculated as, SoH (%) = Ck

C0
× 100,

where C0 and Ck denote the initial capacity and the measured
capacity at cycle k, respectively. Four battery types (B0005,
B0006, B0007, B0018) with different capacity degradation
behavior are provided. In Both datasets, 10% of the samples
are falsified and 70% of data is used for training the models.

B. Evaluation measures

In this study, the effectiveness of the proposed method is
evaluated using the accuracy (Acc), precision (Prec), recall

(R), and F1-score (F1). The mathematical formulas for these
measures are provided as [12]

Prec =
TP

TP + FP
, R =

TP

TP + FN
, (17)

Acc =
TP + TN

TP + TN + FP + FN
, F1 = 2× Prec×R

Prec+R
, (18)

where TP , TN , FN , and FP denote true positive, true negative,
false negative, and false positive, respectively.

C. Simulation Results

The simulation results consist of evaluating the classifier
performance from the battery side and PV side separately.
The proposed TLRF is compared to the K-nearest neighbors
(KNN), deep neural network (DNN), and RF. The competitive
models also witness the impact of the oversampling (OS)
technique on the classification results.

1) FDIAD of battery SoH: In the proposed TLRF archi-
tecture, the first layer comprises a series of base models,
the quantity of which is defined by num_base_models.
Each of these models is an RF classifier, initialized with a
balanced class weight and a random state of 42 to ensure
reproducibility. To introduce diversity, 75% of features and
instances are randomly selected for training each base model.
The second layer, serving as the meta-model, is also an RF
classifier, employing default settings and the same random
state of 42.

Fig. 5 displays a series of six confusion matrices, which
are used to evaluate the performance of the TLRF model.
Each matrix represents the model’s performance for a specific
type of attack scenario or classification problem. Matrices
(a) to (c) cover battery SoH attacks, with high accuracy and
minimal misclassifications for Healthy, Tempered, Poisoned,
and Replayed categories. For instance, matrix (a) pertains to
Tempered battery SoH attacks, where there are 6178 correct
predictions for Healthy and 20 incorrect, and for Tempered,
there are 6346 correct predictions with 8 that were misclas-
sified. Overall, the TLRF model shows exceptional resistance
against tempered attacks, and good resistance against poison-
ing attacks, but reveals some vulnerabilities against replay
attacks.

Table I presents the performance of the TLRF against cyber-
attacks in the BESS. Across three types of attack scenarios,
tempering, poisoning, and replied attacks. The model show-
cases impressive accuracy rates, with tempering attacks being
detected with an accuracy of 99.78%, Poisoning at 98.25%,
and Replied at 99.09%, respectively. Moreover, the execution
time is fairly consistent, hovering a little over 2.4 seconds
for each attack type. This suggests that the TLRF not only
provides a comprehensive detection system against FDIA but
does so efficiently.

Table II provides a comprehensive evaluation of FDIAD in a
PV-BSS. The table indicates that the TLRF model consistently
outperforms the other models across different attack types
and scenarios, showcasing its robustness and reliability in
detecting FDIA. For the tempered BESS attacks, the TLRF



Fig. 5: Confusion matrix of the different classifications for
(a) Tempered battery SoH attacks (b) Poisoning battery SoH
attacks (c) Replay battery SoH attacks (d) Tempered PV
attacks (e) Poisoning PV attacks (f) Replay PV attacks.

TABLE I: Simulation results for FDIA detection in the BESS.

Attack types Acc Prec Recall F-1 Time
Tempering attacks 99.78 99.70 99.87 99.78 2.37
Poisoning attacks 98.25 97.27 99.33 98.29 2.44
Replied attacks 99.09 98.65 99.55 99.10 2.53

exhibits exceptional performance with an accuracy of 99.78%,
precision of 99.70%, recall of 99.87%, and an F1 score of
99.78%. The model takes only 2.37 seconds to execute.

TABLE II: Simulation results for FDIA detection in PV-BESS.

FDIA detection assessment on the battery side
Model Acc (%) Prec (%) R (%) F1 (%) Time (s)

Tempered attacks
TLRF 99.78 99.70 99.87 99.78 2.37
KNN 61.01 29.73 20.82 24.49 1.77
DNN 37.43 30.88 85.82 45.42 0.02

Poisoning attacks
TLRF 98.25 97.27 99.33 98.29 2.44
KNN 88.92 82.35 99.41 90.08 1.64
DNN 51.07 50.86 98.33 67.04 0.03

Replay attacks
TLRF 99.09 98.65 99.55 99.10 2.53
KNN 88.59 81.87 99.49 89.82 2.36
DNN 51.15 50.91 97.79 66.96 0.03

FDIA detection assessment on the PV side
Tempered attacks

TLRF 99.71 99.51 99.91 99.71 18.73
KNN 92.87 87.75 99.65 93.32 12.60
DNN 72.57 65.65 94.63 77.52 1.357

Poisoning attacks
TLRF 99.32 98.82 99.83 99.32 17.14
KNN 92.86 87.70 99.70 93.32 10.35
DNN 72.86 89.08 52.10 65.75 12.48

Replay attacks
TLRF 99.64 99.46 99.82 99.64 22.75
KNN 72.72 22.91 20.76 21.78 7.41

2) FDIAD in the PV system side: For the PV data, matrices
(d) to (f) in Fig. 5 evaluate PV attacks, showing substan-
tial accuracy for healthy, tempered, and replayed labels, but

Fig. 6: Global surrogate model using DT for TLRF for FDIAD
in PV data.

with a few errors. For instance, matrix (f) for replay PV
attacks depicts 44431 correct healthy classifications with 310
errors and 44611 correct classifications for replayed attacks
against 108 errors. Focusing on the explainability impact on
cybersecurity, decision Trees, as visualized, inherently offer
transparency and explainability, making them valuable tools
in the cybersecurity domain. Fig. 6 illustrates a Decision
Tree (DT) as a global surrogate model tailored for the TLRF
approach, specifically addressing the detection of FDIA in PV
systems. The tree’s nodes are partitioned based on specific
thresholds of various features, including capacity, voltage, and
time, with Gini impurity scores (GIS) provided to measure the
node’s purity. The GIS is calculated as [13]

Gini =

∑ω
a=1(2a− ω − 1) · ha

κ+ ω ·
∑ω

a=1 ha
. (19)

ha represents the value at position a within the TLRF output
that contains ω elements, i denotes the ordinal position when
arranged from smallest to largest, and κ, which equals 1e−8,
is a minor constant introduced to preserve numerical stability.
Terminal nodes, or leaves, categorize the samples into healthy
or falsified. Table III illustrates the performance of the TLRF
against cyber-attacks in PV systems. For Tempering attacks,
the system boasts an accuracy of 99.71%, with precision at
99.51%, recall at 99.91%, an F-1 score mirroring the accuracy
at 99.71%, and a processing time of 18.73 units. Poisoning at-
tacks show slightly reduced accuracy at 99.32%, with precision
dipping to 98.82%, though recall remains impressively high at
99.83%. The F-1 score for Poisoning attacks stands at 99.32%
and takes 17.14 units of time. Lastly, replied attacks have an
accuracy of 99.64%, a precision at 99.46%, a recall of 99.82%,
an F-1 score of 99.64%, and the longest processing time of
22.75 units. In analyzing these results, the TLRF demonstrates
exemplary robustness to correctly identify genuine attacks
against FDIA in PV systems.

TABLE III: Simulation results for FDIAD in the PV system.

Attack types Acc Prec Recall F-1 Time
Tempering attacks 99.71 99.51 99.91 99.71 18.73
Poisoning attacks 99.32 98.82 99.83 99.32 17.14
Replied attacks 99.64 99.46 99.82 99.64 22.75



Table IV showcases the performance of various models
in detecting FDIAs on PV systems under tempered attacks.
The models compared include TLRF, KNN, KNN-OS, RF-
OS, DNN, and DNN-OS. The TLRF and RF-OS models
exhibit outstanding performance in FDIAD for PV systems,
with TLRF achieving 44,680 true positives and 44,525 true
negatives, and RF-OS achieving even higher true positives
at 44,708 and true negatives at 44,255, both with minimal
false positives and negatives. In contrast, models such as
standard KNN, DNN, and their oversampled versions (KNN-
OS and DNN-OS) show a trade-off between high true positive
rates and increased false positives, with KNN-OS and DNN-
OS significantly reducing false negatives to 156 and 2,398
respectively, at the cost of increasing false positives to 6,220
and 22,138 respectively. From Table IV, the OS technique
significantly enhances the performance of ML models for
FDIAD in PV systems. It is worth noting that the OS technique
while improving the true positive rate, does tend to increase
the false positive rate, which is an important consideration in
practical applications.

TABLE IV: Confusion matrix of the proposed model and
benchmarks with tempered PV attacks.

Model Label Healthy Tempered

TLRF Healthy 44525 216
Tempered 39 44680

KNN Healthy 43836 940
Tempered 4408 516

KNN-OS Healthy 38521 6220
Tempered 156 44563

RF-OS Healthy 44255 486
Tempered 11 44708

DNN Healthy 41919 2899
Tempered 4025 857

DNN-OS Healthy 22603 22138
Tempered 2398 42321

From Table II, the TLRF model consistently excels with
over 99% in accuracy, precision, and F1 score across all
attack types, albeit with longer execution times (22.75 seconds
for replay attacks). The KNN model shines in tempered and
poisoning attacks with accuracy levels of 92.87% and 92.86%
respectively, but its performance drops to 72.72% accuracy in
replay attacks. The DNN model, while faster with execution
times as low as 1.357 seconds in tempered attacks, shows
varied performance with a notable 94.63% recall in tempered
attacks but lower accuracy and precision across the board.
The execution time for models is generally higher on the PV
side, indicating a possible increase in computational demand or
complexity in these scenarios. Overall, the TLRF model stands
out as the most reliable choice for cyber-attack detection in
MGs.

V. CONCLUSIONS

This paper proposed a TLRF model to proactively identify
and counteract FDIAs that jeopardize the integrity of critical
operational data. This paper has provided a comprehensive
review of some cyber-attacks affecting MGs. Consequently,
synthetic cyber-attack datasets based on the actual PV-BESS

dataset were generated and implemented. On average, the
TLRF model provides a high detection accuracy of 99% and
a low false negative rate. In both scenarios, the oversampling
technique is mandatory to tackle the FDIAD problem due
to the severely imbalanced data and the scarcity of falsified
samples. Our findings highlight the effectiveness and potential
of the proposed model in establishing a resilient framework
for detecting threats. The proposed method outperformed
competitive models (DNN, RF, and KNN) with the adoption
of the oversampling technique. In the future, we will extend
our work by streamlining the proposed TLRF with an adaptive
mode to keep pace with the increasing cyber threats.
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