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Abstract—Electric vehicles (EVs) are expected to revolutionize
the global transportation sector by promoting sustainability and
eco-friendliness. The continuous proliferation of EVs requires
an expansion of the existing charging infrastructure to meet the
corresponding increase in electricity demand. Such an expansion
requires an accurate forecasting of charging demand in both
space and time domains for a well-planned allocation of charging
stations (CSs). This paper proposes a Graph Convolutional
Neural Networks (GCNN) based approach combined with a Long
Short-Term Memory (LSTM) to predict the future charging
demands of EVs. The proposed architecture fuses the benefits of
both GCNN and LSTM to extract the underlying spatio-temporal
features from the collected dataset. The training dataset reflects
the coupling between the power and transportation systems,
and thereby it helps the proposed deep learning architecture
to capture the spatio-temporal patterns of the inter-connected
environment. A comparative analysis is conducted with other
state-of-the-art EV charging load prediction models to assess the
prediction performance of the proposed load forecasting strategy.

Index Terms—Electric vehicles, Charging demand, forecasting,
deep learning, and graph neural networks.

I. INTRODUCTION

THE rapid increase in the world population is accompanied
by a significant increase in fossil energy consumption.

This raises major socio-economic concerns, such as increase in
greenhouse gas emissions, as well as congestion and services
shortage in critical infrastructures [1]. The use of electric
vehicles (EVs) and the integration of renewable energy sources
represent a promising solution to address the concerns related
to the extensive use of fossil fuels [2]. Despite the zero-
emission characteristic of EVs, a number of challenges still
need to be tackled to facilitate their wide penetration in the
EV market. One of these challenges is devising an effective
planning strategy for satisfying EVs charging requests.

Efficient planning, expansion, and placement of CSs require
accurate forecasting of EVs traffic demand. Such a forecasting
model should consider the volatility and the stochastic nature
of EVs charging load to establish a reliable and accurate
allocation of CSs and also to prevent under-utilization and
overloading of the CSs. In addition, accurate forecasting
of EVs charging demand allows for a better and optimum
utilization of the available planning budget and resources.

A. Literature Review

Multiple load forecasting schemes were proposed in earlier
literature. In [2], the authors used a Monte Carlo approach to
generate experimental scenarios by analyzing occupant travel
behavior. The Monte Carlo simulations were also implemented
on a large-scale system to predict the EV charging load in [3].
Other works implemented the Auto-Regressive Moving Aver-
age (ARIMA) model to predict the individual buses’ charging
demand [1] and the aggregated charging demand [4]. The
work in [5] employed a Markov-chain-based traffic strategy
to design a spatio-temporal EV charging demand prediction
model, where real-time CCTV data were analyzed to predict
the charging power demand in an urban road network. As
an improvement to the Markov-chain-based implementation
in [5], the authors in [6] proposed a more realistic hidden
Markov model to predict the future charging demands. Al-
though the aforementioned approaches predicted the future EV
charging loads, in a realistic system setting, they fail to capture
the inherent uncertainties (i.e., CSs capacity or driving habits)
associated with EV charging demand patterns.

Considering the uncertainties in predicting EV charging
load, computational intelligence-based approaches have gained
popularity in prediction due to their strong generalization
abilities [7]. In [8], the authors implemented artificial neural
networks (ANN), rough ANN (RANN), and recurrent RANN
(RRANN) to predict future EV charging loads. Results re-
vealed that the RRANN model produced the most accurate
forecast compared to the other models. As the RANNs are sus-
ceptible to vanishing and exploding gradient problems, another
work overcame this limitation by implementing a long short-
term memory (LSTM) based approach [9]. Other implemen-
tations in this direction have explored diverse adaptations of
LSTM that include LSTM with an attention mechanism [10],
Gaussian process regression [11], or with convolutional neural
network (CNN) [12]. All of these modifications to the LSTM
model contribute to the refinement and optimization of the
overall model. Unfortunately, all these aforementioned works
fail to capture the long-term dependencies of charging data.

The accuracy of the charging load prediction strategy



depends on the non-linearity and generalization ability of
the deep learning model. In this direction, a CNN-based
approach with an attention mechanism was proposed in [13].
The CNN-based approach can extract more complex cou-
pling relationships and minimize the computation time. An
autoencoder-based model was proposed in [14] to generate the
EVs load profiles. With the evaluation of deep learning-based
load prediction models, some studies advance the proposal
of hybrid strategy where two or more models are combined
together to predict the future charging demand. For instance,
the authors in [15] combine a stacked autoencoder with an
LSTM-based model. Autoencoder was also combined with
Restricted Boltzmann Machines (RBM) with the aim of better
feature extraction [16]. However, these works failed to capture
the inherent temporal dependencies present in dataset.

The later developments in this domain have harnessed vari-
ous innovations and progressions such as employing Bayesian
deep learning [17] to capture uncertainties in forecasting
and probabilistic queuing models with CNN to capture the
driver behaviors and charging service limitations [18]. With
the significant increase in computing power, deep learning
algorithms such as gated recurrent units [19] and recurrent
neural networks [20] further enhanced the precision of load
forecasting accuracy. However, the aforementioned algorithms
often struggle to effectively capture the complex relationships
and dependencies present in power systems data.

B. Problem Formulation

In practice, the power system and the transportation network
are tightly coupled. Failing to integrate such a coupling in
the model results in poor prediction performance. Next we
summarize the main limitations of literature.

• First, existing deep neural networks (DNNs) strategies
are topology-unaware, and thus, they fail to capture the
spatial features.

• Second, existing works show a high degree of redundancy
for geographically scattered data, and ignore the power-
transportation systems dependencies.

• Third, the literature fails in handling heterogeneous data
that comes from multiple sources including the power
flow and traffic density.

Thus, graph-based detection techniques represent a more
suitable solution that is more powerful and computationally
more efficient than standard DNNs. Some works that proposed
graph neural networks (GNNs)-based approaches are i) [21],
which implemented a spatiotemporal GNN to predict the
operating status of a CS, and ii) [22], which used a graph
reinforcement learning method for a CSs recommendation
system. Therefore, this paper uses a graph convolutional
neural network (GCNN)-based approach for predicting fu-
ture EV charging demand. The GCNN captures the spatial
characteristics of the power and the transportation systems
simultaneously. Moreover, the LSTM cell is combined with
GCNN to capture the long-term temporal dependencies in the
load data. By fusing LSTM with GCNN, the model can capture
both the spatial and temporal patterns in the charging load data.

C. Major Findings

The major contributions of this research are summarized
as follows. First, a GCNN-LSTM fusion model is proposed
in this paper, where GCNN captures the graph-structured
feature information, and LSTM models the temporal corre-
lations of the charging load data. The trained dataset captures
the coupling between the power and transportation systems,
leading to an accurate charging demand prediction. Then, we
compare our proposed approach with the existing benchmark
strategies in terms of different accuracy metrics. Our results
have revealed that the fusion of GCNN and LSTM models
produces an average error of 4.55 % only over the considered
time period. This confirms the model’s ability to capture
complex patterns in both the transportation and power data.

II. POWER-TRANSPORTATION SYSTEM MODELING

This section presents the system model of the coupled power
and transportation systems. The power-transportation system
is modeled as a heterogeneous graph, G = (NP, EP), where
NP = {1, 2, .., B} with B denoting the total number of buses
and EP indicates the set of all nodes and edges in the network.
The load or generator substations are considered as power
nodes, and each of the power nodes has its own active/reactive
power and voltage profile. The power flows in the transmission
lines are determined by the associated line impedances.

We use the geographical coordinates of power substations
and CSs in a given geographical region to integrate existing
CSs within the power system. We define a circular boundary
of a particular radius for all load substations and assign all CSs
that remain inside the radius to the respective load substations.
If a single CS is located inside the boundaries of multiple load
substations, we determine the Haversine distances between
power substations and CSs and allocate those CSs to load
substations based on the shortest Haversine distance.

III. EV CHARGING DEMAND PREDICTION MODEL

In this section, we outline the procedure of dataset genera-
tion, and describe the proposed deep-learning architecture. The
efficacy of the proposed model relies heavily on the effective
extraction of the multi-dimensional features from the coupled
power and transportation systems data. In this regard, a GCNN
architecture combined with LSTM is proposed to improve the
prediction accuracy of EV charging demand by leveraging the
spatio-temporal dependencies present in the coupled dataset.

A. Dataset Generation

Future planning and operation of the EV charging in-
frastructure require accurate prediction of the EV charging
demand. Therefore, generating a dataset over a wide temporal
horizon is crucial. Consequently, we generate the temporal
features of the constructed graph in the form of time-series
data that simulate the power flow within the system. To execute
the power flow analysis, we employ Newton’s method to
determine the active and reactive power flows on MATLAB’s
MATPOWER platform [23]. The first step involves normaliz-
ing the load data obtained from the Electric Reliability Council



of Texas (ERCOT) [24] into a scalar vector, F . The active
and reactive power values from the previous timestamp are
then multiplied by a scaling factor obtained from a normal
distribution with a mean of 1 + 0.025 ∗ F and a standard
deviation of 0.01. This process introduces dynamic variations
in the time-series data, contributing to the dynamic range of
charging load values.

Specifically, the transportation data contains information on
hourly traffic density at each CS, based on which, the hourly
demand is estimated. The active and reactive power required
by the CSs at a power substation is calculated by aggregating
the total power demand of the CSs connected to that specific
substation. Such a comprehensive dataset, containing the traf-
fic flow information and the EV charging demand data, enables
accurate training of the proposed GCNN-LSTM model.

B. Graph Data Representation and Spectral Graph Filtering

As the coupled power and transportation systems can be
represented as a graph, they can be effectively analyzed using
GCNN. The GCNN can predict the future charging demand by
fusing the temporal features from the power and transportation
systems (e.g., power injections, traffic flow rate, etc.) and the
topological features (i.e., the spatial distribution of the power
substations and CSs and their connectivity).

In the context of EV charging demand forecasting, the
power system can be represented as an undirected graph,
G = (N , E ,W), where each node corresponds to a power
substation; N denotes the set of B nodes; the edge set E
identifies the power lines; and W ∈ RN×N is the adjacency
matrix. The adjacency matrix entry Wi,j between nodes i
and j can be determined using the k-nearest neighbor (k-
NN) algorithm. Thus, each node is connected to its k nearest
neighbors using the Gaussian kernel as a distance function:

Ai,j =

 e

(
−

||xi−xj ||
2

2σ2

)
, ||xi − xj ||2 ⩽ ω

0, otherwise,
(1)

where xi and xj denote the feature vectors of nodes i and j,
respectively; σ stands for the width of the Gaussian kernel;
and ω represents the distance threshold.

The graph data needs to be represented in the spectral
domain to apply the spectral graph filtering technique and
GCNN-based feature extraction approach. In this regard, the
process begins with obtaining the graph Laplacian matrix
which contains the feature information of the graph structure.
The unnormalized Laplacian matrix ∆u of graph G is defined
as ∆u = L − W, where L ∈ RB×B denotes the diagonal
matrix with entries Li,i =

∑
j Wij . The normalized graph

Laplacian matrix is defined as follows:

∆ = L−1/2∆uL
−1/2 = I− L−1/2WL−1/2, (2)

where I indicates the identity matrix. Next, the time-series data
is represented in the frequency domain by performing a graph
Fourier transform (GFT). This representation decomposes the
data into a set of orthogonal basis functions that constitute the
eigenvectors of the Laplacian matrix. The GFT takes the signal

f ∈ Rn as an input, where n indicates the number of features.
If ψ collects the orthonormal eigenvectors and Λ identifies the
associated set of ordered non-negative eigenvalues µn ≥ ... ≥
µ2 ≥ µ1 = 0, then the singular value decomposition (SVD)
of ∆ is given by ∆ = ψΛψ⊤. The inverse GFT of signal f
is expressed as f = ψf̂ . Let g be the filter response signal,
then the spectral convolution is performed over f as [25]:

g ∗ f = ψ
((
ψ⊤g

)
⊙
(
ψ⊤f

))
= ψ diag (ĝ1, . . . , ĝn)ψ

⊤f,
(3)

where ⊙ denotes the Hadamard product. Thereafter, the sig-
nal f is filtered by the spectral filter and is expressed as
ψHψf . However, this type of filter only extracts features
from a certain spatial region which makes the process less
effective. Therefore, to tackle this problem, the Kth-order
Chebyshev polynomials Ck(Λ̃) was adopted in this study [26].
The Chebyshev polynomials can be recursively generated as
follows: C0 = 1, C1 = x, and Ck(x) = 2xCk−1(x)−Ck−2(x)
and the filtering process is formulated as:

ψH(Λ)ψ⊤f =H(Λ)f =

K∑
k=0

αkCk(∆̃)f, (4)

where ∆̃ = 2∆/µn −E. Concretely, pk = 2∆̃pk−1 − pk−2

is calculated recursively starting with p0 = f and p1 = ∆̃f .
Considering the sparsity of ∆, the computational complexity
of the filtering operation H(Λ)f is O(K|E|). The aforemen-
tioned formulation of the spectral convolution on the graph is
thereafter used to implement GCNN, which is discussed next.

C. GCNN Architecture

The proposed GCNN architecture for EVs charging load
prediction is depicted in Fig. 1. The input X is passed through
the graph convolution layers L, then to the fully connected
layer, Lf , where a softmax activation function is applied to
the input X . Particularly, the jth feature map is obtained as:

yj =

Hin∑
i=1

H(∆)di, (5)

where di ∈ Rn signifies the ith feature map; Hin and Hout

denote the number of input and output filters, respectively; and
HinHoutK denotes the trainable parameters in the current fil-
ter. After being transformed into a one-dimensional array, the
output of the final layer is passed to the fully-connected layers.
Then the lowest Kn value is measured from each row of D
so as to get D̃ ∈ Rn×Kn , and thereafter σD =

∑
i D̃iKn

/n.
Then, W̃ ∈ Rn×Kn is formed as W̃ = e−D̃2

ij/σ
2
D .

D. LSTM Cells Fusion

The prediction model takes the historical sequence of
the GCNN features as input. In particular, the time-series
prediction model performs a nonlinear mapping to ana-
lyze the history-driven time-series sequence features X =
(X1, X2, ..., XT ) and their target values y = (y1, y2, ..., yT−1)
to obtain the predicted value ỹT , where ỹT = f (X, y). The
objective is to learn the nonlinear mapping function f (·).
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Fig. 1. Architecture of the GCNN-LSTM prediction model.

In this context, we use LSTM cells to capture the long-
term dependencies in data. The main component of LSTM is
the memory cell that is capable of memorizing information
over an extended period of time. Specifically, LSTM assumes
a gated architecture consisting of an input gate, a forget gate,
and an output gate. The input gate takes the current input
and the prior hidden state as inputs and passes them through
a sigmoid activation function to produce a vector of values
ranging between 0 and 1. As for the output gate, it determines
which components of the cell state should be given as output to
the next layer based on the current input and hidden states. On
the other hand, the forget gate plays a key role in determining
which data from the previous time period should be discarded
using a sigmoid activation function. Once the output from the
GCNN layer is fed into the LSTM, the nonlinear mapping
function can be learned by the gated structure of LSTM as:

it = σ (Wi · [ht−1, yt] + bi) (6)
f t = σ (Wf · [ht−1, yt] + bf ) (7)
ot = σ (Wo · [ht−1, yt] + bo) , (8)

where σ (·) denotes the activation function; mt−1 and ht−1

indicate the state and output of the LSTM cell at t − 1,
respectively; and bi, bf , bo stand for the biases for the input
gate, the forget gate, and the output gate, respectively. The
cell’s current memory states, m̃t can be calculated as m̃t =
σ (Wc · [ht−1, yt] + bc). Moreover, the cell state mt and cell
output ht are: f t⊙mt−1+ it⊙ m̃t, and ht = ot⊙ tanh (mt).

E. Loss Function

The loss function of the GCNN-LSTM model is defined as:

LGCNN-LSTM = CE (p, l) + α∥Ω∥2, (9)

where p is the predicted value of the model; l denotes the
label; Ω represents all of the model’s parameters; α is the
regularization coefficient; and CE (p, l) is the cross-entropy
function that determines the difference between the actual and
predicted label. The last term, α∥Ω∥2, reduces the overfitting
of the model’s learning parameters. Next, we define the update
rule of the graph convolution parameters in each iteration as:

β∗ = β∗ + γ
∂LGCNN-LSTM

∂β∗ , (10)

where γ denotes the learning rate and β∗ ∈ RK×T is the
Chebyshev polynomial coefficient of GCNN.

IV. EXPERIMENTAL RESULTS

In this section, the results of the EV charging demand
prediction are evaluated. First, the efficacy of the prediction
model is assessed in terms of different performance metrics.
Second, the performance of the proposed model is compared
with the state-of-the-art deep learning models.

A. Model Evaluation

In this paper, we present and evaluate three different pre-
diction schemes based on the type of data used: 1) prediction
using power system data only, 2) transportation data only, and
3) combined power and transportation data.

• Power system data: The original load data obtained from
ERCOT [24], contains a year-long load data. Monte Carlo
simulations are employed to extend the existing power
data to a five-year period.

• Transportation system data: The transportation data is
obtained from [27], which contains the traffic flow infor-
mation of 720 CSs located at Texas from the year 2016
to 2020. In the transportation data, a significant growth in
the traffic volume is observed. Analyzing this growth is
important for making accurate charging load predictions.

• Combined power-transportation system data: To achieve
a comprehensive view on the power and transportation
network, the growth in the traffic volume over the years is
scaled to the power data. Such scaling provides a mean-
ingful integration of both systems, providing a holistic
view of the coupled system.

Given a dataset over five years, the proposed GCNN-LSTM
model is trained on the first three-year data and tested on the
last two-year data using the three approaches mentioned above.
The model performance is evaluated in terms of normalized
root mean square error (NRMSE), and normalized mean abso-
lute error (NMAE). The performance metrics are formulated
as:

NRMSE =

√
1
n

∑n
i=1 (xa(i)− xb(i))

2

max (xb)−min (xb)
× 100 (11)

NMAE =
1
n

∑n
i=1 |xa(i)− xb(i)|

max (xb)−min (xb)
× 100%, (12)

where n stands for the number of samples; xb(i) indicates
the ith predicted data; and xa(i) denotes the ith ground truth
data. The maximum and minimum values of ground truth data



are represented by max (xb) and min (xb), respectively. The
prediction model is implemented using 150 iterations. Our
investigations reveal that the model achieved on average a
4.29% NMAE and a 5.82% NRMSE, which fall in the range
of expectation and indicate a good prediction performance.

The prediction results for the three different schemes over
the two-year period are depicted in Fig. 3. The figure shows
that the model performs better for the combined power and
transportation data. This is explained by the fact that by inte-
grating the information from both the power and transportation
systems, the model can capture the dependencies between
power utilization and traffic patterns. Thus, the coupled system
has the potential to provide more accurate and reliable deci-
sions than the other two schemes. In case of using the power
data only, the model relies on the historical power consumption
only and overlooks the influence of the transportation-related
features such as the traffic flow density. On the other hand,
using the transportation data only, the model fails to capture
the direct relationships between the power system and the EV
charging system, which leads to a less accurate prediction.
Overall, fusing the data from both the power and transportation
systems enables capturing more complex relationships, which
in turn helps to achieve robust prediction performance.

Fig. 2. The graph structure of the synthetic 2000-bus power
system of the State of Texas.

V. PERFORMANCE COMPARISON

A. Benchmark Detectors

This section compares the EV charging load prediction per-
formance of the proposed GCNN-LSTM model with bench-
mark models. In Table I, the prediction performances of differ-
ent benchmark strategies are presented for three different time
periods in terms of NMAE and NRMSE. The prediction model
assessed in the table includes CNN, FNN, SVM, and ARIMA
models. The adopted benchmark models represent diverse
attributes, encompassing structure (shallow/deep/graph) and
training methodology (unsupervised/supervised).

B. Hyperparameter Optimization

For hyparameter optimization, we use a grid-search hy-
perparameter selection strategy, where each hyperparameter
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Fig. 3. Predictions of EV charging load over a 2-year period.

is chosen within a specific stage [24]. For instance, in the
case of ARIMA, the parameters for differencing and moving
averages are fixed at 1 and 0, respectively. On the other hand,
SVM utilizes the scale and sigmoid kernels for the kernel
and gamma parameters. CNN’s design incorporates four layers
with 32 units, a neighborhood order of 5, Rmsprop optimizer,
and a ReLU activation function. Notably, for the proposed
model there were 4 layers in each stage with 32 units, 3
neighborhood orders, Adam optimizer, and ReLU activation.

C. Comparison Results

The Table I illustrates that the GCNN-LSTM model exhibits
the best forecasting performance over all the considered time
periods. Moreover, Table I shows that for all the models,
the errors increase with an increase in the time horizon.
The ARIMA model shows the lowest accuracy as it lacks
adaptability with the change in data patterns or trends. The
support vector machine (SVM) and the feed-forward neu-
ral network (FNN) models perform better than the ARIMA
model; however, their performances are not in line with the
expectations as they still show more than 20% error. The CNN
model outperforms the ARIMA, SVM, and FNN models but
still underachieves the proposed model. That is because CNN-
based model primarily focuses on extracting local features and
may not be as effective in capturing temporal dependencies in
the data. The proposed model reduces the errors by 15-20%
over the compared models. The aforementioned comparison
highlights the superiority of the proposed model in capturing
the complex patterns and dependencies in the coupled data,
resulting in more precise and accurate prediction performance.

VI. CONCLUSIONS

In this paper, we have presented a combined GCNN-LSTM-
based model for forecasting future EV charging demand. The
performance of the proposed model was tested using three
different datasets: one using power system data only, one
using transportation system data only, and one combining data
from both systems. Our investigations have revealed that the
proposed model exhibits less than 6% error for all considered
time periods. Moreover, we have compared the proposed
model with benchmarks, and we showed that the proposed
model provides 8% performance improvement over the CNN



and 15% improvement over the ARIMA, SVM, and FNN
models. Forecasting EV charging demand accurately enables
better budget allocation, charging infrastructure development,
and power grid management. This, in turn, improves the user
satisfaction rate as well as optimizes the allocation of available
resources. Thus, our approach can be effectively used as
a powerful tool for the strategic planning of EVs charging
infrastructure. As directions for the future, we will focus on
refining the model to explore the impact of other aspects, such
as socio-economic factors, on the charging demand.

TABLE I. Performance comparison between GCNN-LSTM
and other models.

Forecasting 

model 
Time stage NMAE [%] NRMSE [%] 

ARIMA 

4 29.12 33.41 

12 31.86 34.79 

24 34.56 36.01 

SVM 

4 19.53 20.33 

12 20.19 21.43 

24 21.08 22.97 

FNN 

4 18.65 20.65 

12 19.21 20.99 

24 19.93 21.56 

CNN 

4 12.33 11.00 

12 12.94 11.61 

24 13.84 13.74 

GCNN-

LSTM 

4 4.41 6.27 

12 4.50 6.31 

24 4.69 6.97 
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