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Abstract—Special protection schemes (SPSs) safeguard
the grid by detecting predefined abnormal conditions and
deploying predefined corrective actions. Utilities leverage
SPSs to maintain stability, acceptable voltages, and load-
ing limits during disturbances. However, traditional SPSs
cannot defend against unpredictable disturbances. Events
such as cyber attacks, extreme weather, and electromag-
netic pulses have unpredictable trajectories and require
adaptive response. Therefore, we propose a harmonized
automatic relay mitigation of nefarious intentional events
(HARMONIE)-SPS that learns system conditions, mitigates
cyber-physical consequences, and preserves grid operation
during both predictable and unpredictable disturbances. In
this paper, we define the HARMONIE-SPS approach, detail
progress on its development, and provide initial results
using a WSCC 9-bus system.
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I. INTRODUCTION

Protection schemes are vital to the continuous, reliable
operation of the electric grid. There exist a variety
of protection schemes that coordinate protective relays
during power system faults and seek to isolate and clear
the faults quickly and efficiently to prevent any sustained
damage and cascading impact. Extending the focus from
isolating and clearing faults, SPSs protect the grid by
detecting predefined abnormal conditions and deploying
predefined corrective actions in a playbook manner. It is
important to note that SPSs and remedial action schemes
(RASs) terminology is often used interchangeably [1].
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SPSs prioritize reliability and seek to maintain sta-
bility, acceptable voltages, and loading limits during
disturbances, essentially operating within the respond
and recover functions of National Institute of Standards
and Technology’s Cybersecurity Framework [2]. Unlike
typical protection schemes, SPSs can take actions beyond
the isolation of a fault and include changes to demand,
generation, and system configuration.

However, it no longer suffices for SPSs to focus solely
on predefined disturbances and reliability. Resilience
and unpredictable disturbances such as electromagnetic
pulses (EMPs), extreme weather, and malicious events
threatening national security must be considered. Hurri-
cane Maria in Puerto Rico revealed the fragility of grid
physical infrastructure, which suffered severe damage
and continues to require significant restoration effort. It
showed how quickly cascading failures can destabilize
even undamaged equipment and the dependency and
interconnectedness of critical infrastructure [3].

Cyber attacks targeting grid operations are increas-
ing in frequency and intensity, as exemplified by the
calamitous 2015 and 2016 cyber attacks to the Ukrainian
grid [4]. Furthermore, with the increasing penetration of
distributed energy resources (DER) such as solar photo-
voltaic (PV) systems and wind farms, new technologies
are being integrated and connected to the bulk power
system. These grid-edge devices, with novel communi-
cation and automation functionalities, are also becoming
targets to cyber attacks and can cause detrimental impact
propagation as DER penetration increases [5].

With the advent and integration of novel smart grid
technologies that broaden the cyber attack surface, the
rise of unpredictable disturbances such as EMPs, and
the looming presence of extreme weather events, a next-
generation SPS with the following attributes is needed:

1) A SPS that can adapt to unpredictable events
(without predefined conditions) and effectively re-
spond to limit/eliminate the disruption quickly

2) A SPS that is cyber-physical in analyzing collected
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data and taking response actions; it is no longer
sufficient for a SPS to process only physical power
system data and solely take physical-side actions;
cyber-side actions are necessary to eliminate ma-
licious compromise

3) A SPS that extends the use of protective relays
from fault isolation to also adaptively learning
system conditions, preventing cyber attack prop-
agation, and taking proactive actions to prevent
compromise within the relay set itself

To meet the needs of future SPSs, we propose a defen-
sive, wide-area SPS that learns system conditions, mit-
igates cyber-physical consequences, and preserves grid
operation under diverse predictable and unpredictable
disturbances. This harmonized automatic relay mitiga-
tion of nefarious intentional events (HARMONIE)-SPS
will meet the needs stated above by processing both
cyber and physical data from both relays and out-
of-band (OOB) measurements, learning actual system
conditions to adapt to both predictable and unpredictable
disturbances, and performing proactive response actions
to prevent further cascading impact.

Furthermore, the HARMONIE-SPS will leverage the
distributed sets of protective relays, within different
zones, to derive classification of the system conditions
and respond to disturbances. With this increased sit-
uational awareness and proactive control response ap-
proach, the HARMONIE-SPS can greatly improve the
resilience of the electric grid against cyber-physical
disturbances, whether it is intentionally malicious or
inadvertent.

In this paper, we detail our initial HARMONIE-
SPS approach, including the machine learning frame-
work, cyber-physical testbed development, and consen-
sus algorithm-based relay voting scheme. Preliminary
results are presented with disturbance data (both cyber
and physical) using a WSCC 9-bus system.

II. SPS BACKGROUND

According to the Western Electricity Coordination
Council (WECC), there are four common elements for
the design of SPS/RAS: arming criteria, initiating con-
ditions, actions taken, and time requirements [6]. The
arming criteria are critical system conditions for which
a step-wise SPS should be ready to take action when
required. The initial conditions are the contingencies that
have been known to cause violations of reliability and
stability standards, which will initiate the SPS corrective
action if the scheme is armed. The initial conditions can
be event-based, parameter-based, response-based, or the
combination of the above.

Event-based schemes directly detect outages and/or
fault events and initiate actions to fully or partially mit-
igate the event consequence. Parameter-based schemes

measure variables for which a significant change con-
firms the occurrence of a critical event. Response-based
schemes monitor system response during events and
disturbances and incorporate a closed-loop process to
react to actual system conditions [7]. The work of
[8] finds that most SPS in the WECC system initiate
upon changes to system topology, with very few being
triggered by system condition changes.

A. Existing Online SPS Efforts

Many research efforts, from both industry and
academia, have gone into improving the flexibility and
dynamics of SPS implementation. In [9], an event-based
method was proposed to enhance SPS that are created to
address specific frequency and voltage instability issues.
Using transient energy analysis, the conventional SPS
implementation can be adjusted with flexible triggering
thresholds [10], and also adaptive corrective actions
[11]. To mitigate the risk of voltage instability and
voltage collapse, BC Hydro developed a methodology
to determine the magnitude of load shedding based on
real-time measurement data [12].

Recent work [13] by the Pacific Northwest National
Laboratory (PNNL) proposed an approach to adaptively
set the arming parameters of existing SPS based on real-
istic and near real-time operation conditions. In collabo-
ration with PacifiCorp and Idaho Power Company, a pro-
totype named Transformative Remedial Action Scheme
Tool (TRAST) was developed with advanced computing
methods for adaptively setting SPS coefficients with the
consideration of realistic and near real-time operation
conditions. The Jim Bridger RAS, owned and operated
by PacifiCorp, was used as the case study for testing and
validating the methodology and prototype.

The TRAST tool performs statistical analysis for full-
year supervisory control and data acquisition (SCADA)
set provided by utilities that contain essential variables
for the existing SPS model. Correlation analysis and
regression is performed between these variables, as well
as with temporal data such as season and month and
power flow data from state estimator cases. A machine
learning framework was developed to update the RAS
coefficients; full details on the framework can be found
in [13]. To summarize, this online SPS tool is automated
in the sense that the parameters adapt to real-time
conditions, however the design of the underlying SPS
itself is manual. The other key factor is the vast amount
of real system data (measurements and models) needed
for the entire framework, spanning multiple entities and
even years.

Overall, although the need for an adaptive SPS has
been recognized, especially for the SPS development
and triggering phases, adaptive and cyber-physical SPSs
have not been proposed. The grid is increasingly cyber-
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physical and impact from either domain can easily prop-
agate to the other — cyber-physical disturbances must be
protected against for improved grid resilience.

III. HARMONIE-SPS APPROACH

For increased grid resilience, we hypothesize that an
adaptive and reactive cyber-physical SPS is necessary for
defending against diverse predictable and unpredictable
disturbances, inadvertent or malicious. Therefore, we
propose a defensive, wide-area SPS that learns system
conditions, mitigates cyber-physical consequences, and
preserves grid operation during both predictable and
unpredictable disturbances.

HARMONIE-SPS will:

o Detect and defend against cyber attacks that do
not fit predefined abnormal conditions by using
machine learning (ML) classification and anomaly
detection algorithms,

e incorporate intrusion detection system (IDS) and
out-of-band (OOB) data for increased situational
awareness, and

e proactively respond to cyber-physical compro-
mises by deploying distributed control algorithms
and taking cyber-side actions (e.g., rejecting set-
ting/firmware changes) to reduce and/or eliminate
system impact.

An overview of the approach is shown in Fig. 1.
HARMONIE-SPS will prioritize selectivity, speed, and
security using ML algorithms to classify system condi-
tions, as detailed in the next section.

A. Prioritizing Speed, Security, and/or Selectivity

Utilizing the classification of system conditions,
HARMONIE-SPS will decide to prioritize selectivity,
speed, or security; additionally, a combination could
be selected. If a relay within a zone is compromised,
selectivity will be enabled by deploying the CA-based
voting scheme approach that considers diverse zone
relays and OOB data, as detailed in Section VI.

Unlike traditional relay voting schemes that simply
compare tripping decisions, the proposed CA-based vot-
ing scheme would account for inter-relay relationships in
different zones and provide the ability to assign weights
depending on the disturbance location and indication of
specific relay compromise or failure (e.g., assign zero
weight to that relay’s vote). Thus, selectivity can be
achieved by ensuring relay status and relationships are
incorporated into the voting for high confidence in relay
actions for the most up-to-date system conditions.

If detrimental system conditions are observed, speed
will be prioritized by taking proactive actions such
as switching to backup protection schemes to reduce
impact propagation and/or deploying reduced-order vot-
ing scheme to achieve both speed and selectivity.

Backup protection schemes could compensate for com-
promised/failed relay zones and provide increased pro-
tection to critical grid components such as generators
and transformers.

When HARMONIE-SPS prioritizes speed, methods
to quickly reduce/eliminate system impact and provide
the most protection possible are needed. For both se-
lectivity and speed, physical mitigations could also be
deployed to maintain system operation. This could in-
clude distributed control approaches that employ power
system devices such as distributed flexible AC transmis-
sion system (D-FACTS) and design their response to
limit disturbance impact [14], [15]. Distributed decision-
making algorithms, such as alternating direction method
of multipliers (ADMM), could be explored as a powerful
distributed convex optimization approach for making
control decisions between distributed devices in response
to system disturbances [16].

Lastly, security is enhanced with HARMONIE-SPS
by: 1) taking proactive actions to minimize impact prop-
agation, 2) supplying relay data to augment analysis and
aid IDSs in identifying the disturbance, and 3) providing
confidence in tripping decisions with the novel CA-
based voting scheme. The proactive actions taken by
HARMONIE-SPS include both cyber-side and physical-
side mitigations. The physical-side mitigations encom-
pass the distributed control approaches and switching
to backup protection schemes whereas the cyber-side
actions could include rejecting further firmware/setting
changes, communicating relay compromise/malfunction
to other peer relays, and restoring backup device config-
uration files. Additionally, if an IDS exists in the system,
HARMONIE-SPS’s findings on abnormal relay behavior
(e.g., co-located, different zone relay measurements do
not match) and classification results can be used to
supplement the IDS data collection and analysis.

B. Evaluating HARMONIE-SPS

The high-fidelity cyber-physical emulation environ-
ment will be constructed using SCEPTRE™ and a
real-time digital simulator such as RTDS. SCEPTRE™
is Sandia’s industrial control system (ICS) modeling
platform that enables modeling of different ICS devices
(virtual and hardware) such as protective relays and pro-
grammable logic controllers, network components (e.g.,
gateways, switches, servers), actual ICS communication
protocols (e.g., Modbus, DNP3, IEC 61850), and physi-
cal end processes (e.g., power system simulations). The
RTDS will be used to model the physical end process and
enable connecting protective relays both virtually and as
hardware-in-the-loop (HIL). This emulation environment
is discussed in Section V.

In this manner, metrics can be collected to verify if
HARMONIE-SPS reduced or eliminated system impact
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Fig. 1: Overview of HARMONIE-SPS Approach with cyber-physical data collection, classification of system
conditions, and priority-informed response.

from a disturbance, malicious or inadvertent, and that
network burden was not worsened with the application
of HARMONIE-SPS (e.g., increased latency, dropped
packets). Malicious cyber-physical disturbance scenarios
are being developed to reflect a wide range of attacks and
based on real-world events (e.g., using MITRE ATT&CK
framework [17]).

IV. MACHINE LEARNING FRAMEWORK

At a high level, the machine learning approach for
HARMONIE-SPS converts incoming data (cyber data
or physical data) into a graph of interconnected nodes,
where each edge is a flow of information with an
associated timestamp. After the whole capture is split
into subgraphs using 24-second sliding windows', the
algorithm relies upon two deep learning architectures to
obtain an overall representation of the system state in
each window:

e A Graph Convolutional Neural Network (GNN),
which applies deep learning to the structure of
interconnected nodes in the subgraph, and

o A Recurrent Neural Network (RNN), which applies
deep learning to the temporal ordering of the edges
in the subgraph.

124 seconds was chosen somewhat arbitrarily. If the window is too
small, we might miss relevant context to understand the system state,
and if the window is too large, the network will run more slowly and
we will have more trouble localizing the disturbance.

Using the GNN and RNN in tandem would the-
oretically allow for representing the changing system
state over time with the RNN while understanding the
connectivity of the cyber or physical network with the
GNN, especially in complex networks. First, the GNN
operates by passing four rounds of messages between
edges, and the resulting edge vectors are passed to the
RNN to encode temporal information.

To assess the classification of different system con-
ditions within a cyber-physical grid system, we add a
classification layer onto the network that predicts two
binary labels: whether a cyber disturbance is occurring
and whether a physical disturbance is occurring. This
combination of two binary labels allows our model to
categorize the system state into four categories:

1) Normal operations

2) Cyber-only disturbances

3) Physical-only disturbances
4) Cyber-physical disturbances

A. Initial Classification Results

To test our approach, we utilized the WSCC 9-bus
system within Texas A&M University’s co-simulation-
based cyber-physical grid testbed, shown in Fig. 2, and
modeled it under different disturbance scenarios [18].
The disturbances tested were:

1) Denial of service (cyber-only)

2) Single line-to-ground fault (physical-only)
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TABLE I: Preliminary Results for HARMONIE-SPS
ML Model (Cyber anomaly AUC / Physical anomaly

AUC)
With Pretraining | No Pretraining
900 windows 0.7470.92 0.9570.92
100 windows 0.49 / 0.64 0.52 /7 0.60

3) Tripping command injection (cyber-physical)

4) Time-delay attack (cyber-physical)

A total of 50 network and physical data captures of vari-
ous 2-minute scenarios of each of the listed disturbances
were used to test the machine learning approach. For
the experiments, we partitioned all scenarios into 30 for
training, 10 for validation and model selection, and 10
for testing. These were then split into their respective
sliding windows.

We ran experiments varying the size of the training
data and comparing the results when using a model that
has already been pretrained using some basic predefined
perturbations versus a model that had not been pre-
trained. Table I contains the results of these experiments
for training with 900 windows (30 scenarios) and with
100 windows (~3.3 scenarios). We used the area under
the receiver operator curve (AUC) as our metric because
it identifies how well a model’s predictions split the two
classes apart and does not require a predefined threshold
to convert real-valued confidence scores into a discrete
class prediction.

From these results, we can see that using the full
training data, our model can differentiate between dis-
turbances and normal behavior. We also hypothesize
that the pretraining step either adds nothing to or even
mildly hinders the performance of the model, especially
when identifying cyber anomalies. We attribute this to a
domain shift between the inputs during the pretraining
step, where perturbed graphs are given to the model,
and the training step, where unmodified graphs are given
to the model. That is, our current approach is closer
to transfer learning than pretraining. We also provide
a confusion matrix for the best model (using all 900
training windows with no pretraining) in Fig. 3.

In Fig. 4, we use our best model (trained on all
30 scenarios with no pretraining) to plot the predicted
anomaly scores for each scenario in the test set. Since our
approach uses 24-second sliding windows, all windows
ending between 00:00:59 and 00:01:23 will contain the
disturbance which occurs at 00:00:59 (blue vertical line).
Note that some scenarios have cyber disturbances only
in the middle of the capture, which is why some cyber
anomaly scores drop to nearly O after 00:01:24.

In these plots, we see that our deep learning approach
can roughly identify when a disturbance occurs and
whether the disturbance is in the cyber, physical, or a

cyber-physical event.

B. Overall Machine Learning Framework Next Steps

There are several next steps for the machine learning
component of the HARMONIE-SPS. First, we plan to
incorporate our forecasting algorithm for imputing miss-
ing data and the support vector machine for identifying
violations in the underlying physical system.

Second, we intend to improve our data by obtaining
more scenarios to use for training, validation, and testing,
obtaining more diverse scenario types. This will give us
a better understanding of the strengths and shortcomings
of our approach and help us identify solutions. We
would also be able to use this as a metric for how well
our network generalizes to previously unseen scenario
types. Along the same vein, we would like to use cross-
validation to obtain more predictions, thus reducing bias
and variance in our metric values such as AUC or F1
score. We would also benefit from more rigorous labeling
of our data: currently, we assume that all disturbances
happen at exactly ¢ = 60s. This was the target when
generating our experimental data, but due to some syn-
chronization issues during the capturing of the data, the
disturbance may happen within a few seconds of that
instead. By obtaining more precise timing in this dataset
or future captures, we can increase our confidence in our
training data and validation metrics.

Third, we would like to gain better insight into the
model itself by inspecting and interpreting the GNN’s
output. Our data is complex and noisy, and understanding
what our network is learning will be a critical step in
refining it. We would also like to give more thought to
why the pretraining approach has not yielded the results
we were expecting and to either mitigate any issues or
disregard the pretraining approach entirely.

In conclusion, our machine learning framework for
identifying known disturbances in the cyber network or
physical power system shows promise. By continuing
to improve upon our existing approach, we believe this
will be a viable solution to the problem of using ma-
chine learning to understand the holistic, cyber-physical
state of a power system and recommend action through
HARMONIE-SPS.

C. Automated Corrective Action Assignment

In Section II A., the manual process of assigning
suitable corrective actions to SPS triggering conditions
was discussed and how traditionally this requires many
offline simulations and extensive planning studies. Thus,
the research team is also developing a more flexible,
computationally efficient approach for determining SPS
corrective actions by automatically generating the trig-
gering condition and correction action pairs based on the
identified need for a new SPS creation. This procedure
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0.5. Matthew’s Correlation Coefficient (MCC) is used to assess the quality of the predictions. Rows correspond to
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and its results with a 2000-bus synthetic power system
are detailed in [19], [20].

To extend the pairing of triggering conditions and
corrective action pairs, we are working on using machine
learning to identify when a triggering condition has been
encountered. Presently, we are developing an approach to
cluster (using hierarchical clustering algorithm) violation
elements resulting from contingency analysis applied
to the WSCC 9-bus system (22,000 scenarios were
generated and a subset was sampled) [21]. The violations
within the same cluster can then be addressed with one
corrective action, as identified using a support vector
machine (SVM) approach. Ultimately, the outputs of the
SVM will be inputted into the GNN and RNN framework
to confirm the corrective action.

This work is currently focusing on the physical power
system but will be extended to the cyber domain as well
in future work (e.g., network triggering conditions and
corrective actions such as rerouting packets, restoring
default device configuration).

V. CYBER-PHYSICAL TESTBED DEVELOPMENT

A high-fidelity cyber-physical emulation environment
is being constructed using SCEPTRE™ and a real-
time digital simulator RTDS. SCEPTRE™ enables im-
plementation of different ICS communication protocols
such as DNP3 and Modbus. Presently, the WSCC 9-
bus sytem, pictured on the lefthand side of Fig. 5,
is modeled in the RTDS system; we are interested
in collecting data from the power system at different
sampling rates due to non-contingency (low-sampling)
and contingency events (high-sampling). The RTDS is
able to stream C37.118 data that is collected in virtual
phasor data concentrator (PDC) database; this database
is then tapped into by SCEPTRE™ to update changes
to the communication network and ICS devices. The
representative communication network, developed by the
team, is shown on the righthand side of Fig. 5.

The cyber-physical emulation environment connection
between the SCEPTRE™ platform and RTDS is cur-
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rently being developed using the virtual phasor data
concentrator (PDC) application. The overall integration
plan is pictured in Fig. 6. The completed environment
will enable modeling and testing of cyber-physical dis-
turbances and the ability to extract high-fidelity data
from both the cyber and physical systems. Furthermore,
this data can be used to train and test the machine learn-
ing framework’s ability to classify system conditions
and deploy suitable cyber-physical corrective actions.
We will also incorporate HIL equipment such as digital
relays into the environment and test the next-generation
relay voting scheme, as discussed in the next section.

VI. NEXT-GENERATION RELAY VOTING SCHEMES

To achieve selectivity and
HARMONIE-SPS  approach, we are developing
a next-generation relay voting scheme leveraging
consensus algorithms. The proposed algorithm, shown
in Fig. 7, extends traditional 2-out-of-3 voting schemes
to a distributed system and aims to achieve consensus
on system state and voting on response actions.

security in the

Furthermore, the distributed computation prevents
common failures from centralized failure points. Full
details on the algorithm and the initial results using a
simple simulation case study focusing on load shedding
decisions can be found in [22].

To further develop this algorithm, we are presently
testing it with the WSCC 9-bus system and will im-
plement the consensus algorithms in the cyber-physical
emulation environment using both virtual and HIL digital
relays with the RTDS system. We will extend the focus
from load shedding to a variety of corrective actions
(both cyber and physical) and examine performance
under different cyber-physical disturbances.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the HARMONIE-SPS approach to
achieve an adaptive, cyber-physical SPS implementa-
tion was presented; specifically, the machine learning
framework for classifying system conditions, the au-
tomated corrective action assignment, next-generation
relay voting scheme, and cyber-physical emulation en-
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Algorithm 1 Relay voting with BFT
1) Relay i detects under frequency conditions
2) Relay i initiates request
3) Request for voting multicast to all other relays
4) All relays compute protection scheme calculations, de-
termine load to shed
5) Each relay multicasts result to all other relays in group
6) Each relay waits for [ 4 1 replies, saves result.
7) Relay j that needs to shed load acts accordingly

Fig. 7. HARMONIE-SPS next-generation relay voting
scheme algorithm for example load shedding
application, from [22].

vironment initial results and next steps were shared.
These initial results indicated promising HARMONIE-
SPS performance for identifying cyber-physical distur-
bances and deploying suitable corrective actions with
the prioritization of speed, selectivity, and/or security.
The different components of HARMONIE-SPS will be
cohesively deployed for an automated implementation;
this deployment is will continue to be developed and
tested under a variety of disturbance scenarios within
the emulation environment.
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