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Abstract—The interdependence of power and electrified trans-
portation systems introduces new challenges to the reliability
and resilience of charging infrastructure. With the increasing
prevalence of electric vehicles (EVs), power system attacks that
can lower customers charging satisfaction rates are on the
rise. The existing false data injection attacks (FDIAs) detection
strategies are not suitable for protecting the power-dependent
transportation infrastructure since (a) these detectors are pri-
marily optimized for power grids alone, and (b) they overlook the
impact of attacks on the quality-of-service of EVs and charging
stations (CSs). In response to these challenges, this paper aims
to develop an FDIA detection strategy that takes advantage
of the data correlations between power and transportation
systems, ultimately enhancing the charging satisfaction rate.
To achieve this goal, we propose a graph autoencoder-based
FDIA detection scheme capable of extracting spatio-temporal
features from both power and transportation data. The input
features of power systems are active and reactive power while
those for transportation systems are the hourly traffic volume
in CSs. The proposed model undergoes comprehensive training
and testing on various types of FDIAs, showcasing improved
generalization abilities. Simulations are conducted on the 2,000-
bus power grid of the state of Texas, featuring 360 active CSs.
Our investigations reveal an average detection rate of 98.3%,
representing a substantial improvement of 15-25% compared to
state-of-the-art detectors. This underscores the effectiveness of
our proposed approach in addressing the unique challenges posed
by power-dependent electrified transportation systems.

Index Terms—Cybersecurity, smart grids, electric vehicles,
false data injection attacks, graph autoencoder, and graph neural
networks.

NOMENCLATURE

Acronyms
ACC Overall accuracy.
AHP Analytical hierarchical process
CS Charging station
DNN Deep neural network
DR Detection rate.
ERCOT Electric reliability council of texas
FAR False alarm rate.
FDIA False data injection attack
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GAE Graph autoencoder
GCNN Graph convolutional neural network
GNN Graph neural network
LSTM Long short-term memory
ReLU Rectified linear unit.
Parameters
D Denial of service rate.
S EV power satisfaction rate.
ψθ Convolutional filter.
σ Trainable parameters.
C(z̃, σ) Cross entropy function.
EE Kullback–Leibler divergence.
Ok Output of each hidden layer.
Pj Chebyshev polynomial.
T(vi,t) Historical time series data for each node of graph vi

at time step t.
VP , EP Set of nodes and set of vertices.
X,X∗ Original and regenerated time series data.
z, z̃ True and predicted levels.
W Adjacency matrix
G Constructed graph
Variables
∆P t

i Maliciously added power on bus i at time stamp t.
γωj

jth Chebyshev coefficient.
γmax Maximum eigenvalue of matrix L.
θ∗ Optimal parameter configuration.
Ct

lE
, Ht

lE
Cell state and hidden state of an LSTM cell.

EDP Reconstruction error.
itlE , o

t
lE
, f tlE Input, output and forget gate of an LSTM cell.

L Graph laplacian matrix.
nev Number of EV in a CS.
nfev False number of EV in a CS.
P (X) Probability distribution of X .
P t

true,i, P
t
false,i True and false power on bus i at time stamp t
respectively.

Pcs Available power on a CS.
PEV Power of each EV.
U Eigenvector matrix.

I. INTRODUCTION AND MOTIVATION

IN response to the pressing demand for environmental
protection, nations globally are dedicated to crafting clean

energy solutions aimed at minimizing carbon emissions. No-
tably, electrified transportation systems have garnered signif-
icant global attention in this context. This is largely due to
their capacity to diminish carbon footprints, simultaneously
enhancing environmental sustainability and bolstering energy
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security [1], [2]. Electric vehicles (EVs) have become a pivotal
means of attaining environmentally conscious and sustainable
transportation. The dependence between the power grid and
the transportation infrastructure increases as the usage of EVs
keeps growing [3]. Meanwhile, modern power systems, being
cyber-physical in nature, rely on a huge amount of mea-
surement data for decision-making and situational awareness.
Therefore, safeguarding the authenticity of the collected data is
a critical necessity in ensuring the stability and dependability
of the coupled system. Unfortunately, the data dependency
makes power systems more vulnerable to false data injection
attacks (FDIAs), where the integrity of the data can be
tampered by malicious entities [4], [5]. Such actions falsify
operational decisions, which can in turn degrade the EVs
charging satisfaction rate.

Modern electricity and transportation networks represent a
paradigm shift in the realm of urban infrastructures. These two
intricate networks, deployed on a vast scale, are interdependent
and difficult to control and secure due to multiple factors that
may influence their operation. In particular, charging stations
(CSs) draw power from a generator substation to enable effi-
cient and convenient charging of EVs. The satisfaction rate of
EV charging is directly shaped by the availability of power at
CSs. Sufficient charging power translates to enhanced services
with faster charging rates, resulting in heightened customer
satisfaction. Conversely, inadequate power can lead to CS con-
gestion, blocking charging requests, thereby extending charg-
ing times and dissatisfying users. In the context of FDIAs,
attackers can falsify the power measurements by making them
appear as high (additive attacks), low (deductive attacks), or
a combination of both (camouflage attacks), all negatively
influencing the EVs charging satisfaction rate. In cases of
falsified high power scenarios, attackers manipulate power
measurements to create a misleading perception of abundant
charging capacity. Hence, the charging demand increases at
the target connected CSs, leading to congestion, rise in the
number of blocked charging requests, and a significant drop
in charging efficiency (longer charging periods). Similarly, in a
falsified low power scenario or in the presence of a deductive
attack, attackers manipulate power measurements to portray
insufficient available power. In this case, EVs generally face
the challenge of finding available CSs. In both cases, falsified
data generate a feeling of uncertainty in customers and con-
sequently a significant drop in charging requests satisfaction
rates. Camouflage attacks normally lead to fluctuations in the
available CSs charging power, and thus, are deemed harder
to detect. To address the challenges posed by these cyber
attacks, this paper proposes a novel FDIAs detector fit for
interconnected power-transportation systems and assesses the
effects of such attacks on EVs charging satisfaction rate.

A. Related Work

In recent years, the field of cyber attack detection has
witnessed a dynamic shift from traditional model-based ap-
proaches to more agile and adaptable data-driven approaches.
This transition has been driven by the increasing complexity of
modern power systems. The majority of existing works used

artificial intelligence-based approaches to detect FDIAs [6]. At
present, the proposed detection schemes rely on two main ap-
proaches: i) machine learning (ML)-based models employing
either shallow or deep neural network (DNN) architectures,
and ii) graph neural networks (GNNs)-based models utilizing
graph signal processing filters. Despite the favorable detection
performance achieved by these approaches, they are subject to
limitations, as will be elaborated upon shortly.

1) Traditional Model-based Approaches: Model-based
anomaly detection approaches assume that the behavior of a
system can be accurately represented and predicted through
precise modeling. Within the context of power systems, the
model-based techniques relied on static equations and op-
timization frameworks to detect anomalies and intrusions.
Under such a framework, state estimation-based anomaly
detection schemes were proposed in [7], [8]. These approaches
look for differences between the estimated states and the
actual measurements by using mathematical models of the
power system. In reference [9], an extended Kalman filter
interval state estimation technique was proposed to avoid
erroneous measurements. Moreover, a decentralized model-
based approach was proposed in [10] that uses a maximum
likelihood estimation approach.

Nevertheless, employing model-driven approaches in this
domain presents numerous challenges, particularly when deal-
ing with coupled power and transportation systems. In these
interconnected systems, various components and variables
interact, forming an intricate network of relationships and de-
pendencies. The complexity arises from the diverse behaviors
that these interconnections can represent, making it difficult
to formulate a comprehensive mathematical model that accu-
rately captures all the dynamics of such systems. Furthermore,
model-driven methods usually hinge on developing precise
mathematical equations and models to describe the system’s
behavior [11].

Efforts to encapsulate the intricate interactions within a
unified optimization framework using equations are generally
highly challenging and frequently impractical. Therefore, a
more viable and efficient alternative is to leverage data-driven
deep-learning neural networks. The primary advantage of data-
driven deep learning methods lies in their ability to model
complex interactions within systems without requiring explicit
knowledge of all the underlying parameters.

2) ML- and DNN-based Detection Schemes: Various de-
grees of success have been reported by the ML-based FDIA
detection schemes. For instance, [12] proposed a support
vector machine (SVM)-based stealthy FDIA detection scheme
that reached an F1-score of 82%. In [13], the FDIA detection
task is formulated as a multi-label classification problem and
a decision tree is employed to detect the location of attacks.
A random forest-based algorithm with 93% detection rate
was proposed in [14]. The main limitation of these works is
that they fail to achieve a good generalization performance
as they lack interpretability due to i) not optimizing the
hyperparameters and ii) not extracting the underlying complex
feature data of power systems [15].

Due to the inherent complex feature extraction capability,
deep learning (DL)-based techniques have gained widespread
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prominence in detecting cyber-physical attacks in power sys-
tems. Following this popularity, feed-forward neural network
(FNN)-based implementations reported more than 90% accu-
racy [16], [17]. In [18], the Kalman filter is combined with
a recurrent neural network (RNN) to reach 96% detection
accuracy. A detection performance of 96.2% was reported by
an autoencoder model integrated with a generative adversarial
network (GAN) in [15]. Aiming for a reinforcing solution,
[19] proposed a denoising variational autoencoder to detect
faults in power systems. Reference [20] showed that the deep
belief network (DBN) framework outperforms the residual-
based detector and the extreme learning machine (ELM)-
based detector [21]. In addition, convolutional neural network
(CNN)-based solutions attained 93% [22] and 99% [23] detec-
tion accuracy. In [23], the CNN is combined with Kalman’s
filter to process temporal and spatial data correlations. Al-
though the aforementioned works achieve high detection rates,
they fail to extract the spatial relationships present in the
measurement data. This is because these approaches ignore
the topological characteristics of power grids [24], [25].

B. Advancing the Adoption of GAE

A fundamental requirement in the realm of interconnected
power systems is the requirement to efficiently address the
power flow challenges. Modeling the power flow necessitates
estimating two parameters from a set that includes active
power, reactive power, node voltage, and node angle, based on
the values of other two given parameters. For large intercon-
nected power systems, this represents a challenging task due
to the presence of a non-linear set of 2·(n− 1) equations [26].
This system may be decomposed into two sets of equations,
one set of equations for real and another for reactive powers,
respectively. Regarding the load buses, the considered power
system may contain thousands of nodes.

The inherent graph nature of the interconnected power
systems has prompted researchers to explore graph theory.
Specifically, distribution systems can be modeled as graphs,
with a bus associated to a node and a power line represented
as an edge or branch [27], [28]. The graph representation
proves useful for modeling and analyzing complex topologies
of power systems. Moreover, graph representation of power
systems can capture the spatial dependencies of different nodes
(e.g., buses) in the power grid. They are also capable of
handling temporal dependencies, which are crucial for ana-
lyzing the dynamic behavior of power systems. Motivated by
these considerations, researchers have employed graph neural
networks to address challenges in various aspects of power
systems, including power system state estimation [29], fault
analysis [30], load prediction [31], and cybersecurity [32]. The
Graph Autoencoders (GAEs) offer a powerful mechanism for
feature extraction from graph-structured data. GAEs represent
complex graph structures in lower-dimensional representations
while retaining essential structural information [33]. This
latent space representation extracts abstract features that are
often challenging to discern in the original data. These features
represent critical information about the graph’s topology and
connectivity, allowing for more effective downstream analysis.

In summary, GAEs offer a powerful framework for modeling
and analyzing large interconnected power systems, making
them essential tools in the field of electrical engineering and
power grid management. In summary, GAEs offer a powerful
framework for modeling and analyzing large interconnected
power systems, establishing themselves as essential tools in
the field of electrical engineering and power grid management.

1) Graph-Centric Detection Approaches: Graph-based
FDIA detection schemes present a great capability to overcome
the intrinsic limitations of traditional DL-based algorithms.
The most obvious benefit of utilizing graph-based techniques
is their capability of capturing spatial relationships and topo-
logical characteristics from the graph-structured data of power
systems [34]. Currently, graph-based signal processing ap-
proaches have been adopted with success in several power
system applications such as power flow analysis [35], fault
detection and localization [36], time-series prediction [31] and
FDIA detection [37]. The GNN-based detection schemes for
FDIAs employ graph signal processing operations, which en-
able adaptive aggregation and transmission of the information
throughout the graph. The superiority of GNN-based detectors
was probed by [24], which showed an improvement of the F1
score by 4%. Detection of unobservable attacks was handled
via an auto-regressive moving average (ARIMA) graph filter
in [38], which allowed the detector to adapt better against
sharp changes in the spectral domain. A modified temporal
multi-graph convolutional network was proposed in [39] by
fusing the training stages of graph convolutions and multi-
layer perceptions to represent the node attributes simultane-
ously. The proposed model achieved 96% accuracy against
multiple power system topologies. Another work [15] adopted
a hybrid approach where the graph convolution methodology
was equipped with the long short-term memory (LSTM) unit
to attain 96% accuracy. The graph autoencoder (GAE) neural
network strategy was proposed by [40] to detect attacks in the
presence of unseen topologies. An ensemble detector based
on GAE showed 12% performance improvement relative to
shallow detectors [41]. Reference [42] compared the perfor-
mances of simple autoencoder (SAE), variational autoencoder
(VAE) and autoencoder equipped with attention mechanism
(AAM) in terms of detecting FDIAs. The outcomes revealed
that AAM improved the network’s resilience to cyber attacks
and exhibited enhanced performance. Despite the advantages
offered by the aforementioned GNN-based detectors, they are
trained and tested only on power systems, and therefore, we
label them as single graph detectors. In practice, the power
system is coupled and interacts with other systems [43].
For instance, in the coupled power-transportation system,
the FDIAs on the power grid may influence the satisfaction
rate of EVs. Therefore, investigating the effect of FDIAs by
considering the tight couplings and dependencies between the
power substations and CSs is required.

2) Thwarting Attacks in Dependent Systems: The depen-
dence of the electrified transportation infrastructure on power
systems is vital for smart cities management. Yet, only a few
studies investigated the impact of malicious attacks on such
dependent systems. For instance, in [44], a case study was
performed on the coupled transportation-energy system to in-
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vestigate the effect of FDIAs with the aim of enhancing cyber
resiliency in smart city management. Another work adopted a
static Bayesian game theory-based approach to resist attacks
on coupled systems [1]. In-vehicle bus security issues were
studied in [45]. FDIA detectors in vehicular communication
networks were addressed in [46] to avoid traffic congestion
and to increase user satisfaction rates.

It is worth mentioning that existing literature does not
address the effect of FDIAs on EVs charging satisfaction
rates. Moreover, the existing approaches reported dissimilar
performance metrics for different FDIAs and system types,
which imposes extra challenges when comparing them. This
paper fills up this gap by investigating the impact of power
system FDIAs on electrified transportation systems, which at
its turn directly impacts the EVs market growth.

C. Contributions and Organization

This paper contributions are next summarized.

• First, we address the limitations of current FDIA de-
tectors by proposing a GAE-based detection strategy
for the power grid-dependent electrified transportation
network. The proposed detector captures the topological
relationships present in the data of both systems through
its Chebyshev graph convolutional layers.

• Second, we show that the proposed model detects FDIAs
in the presence of unseen topological configurations, i.e.,
the testing dataset is not part of the training dataset, unlike
existing works. Thus, the proposed approach portrays
practical real-world scenarios.

• Third, to demonstrate the effectiveness of our detector,
we conduct extensive simulations against different types
of attacks on the power system, mainly additive attacks,
deductive attacks, and camouflage attacks for the follow-
ing cases: i) when the attackers have no knowledge of
the system and they randomly hack power substations,
and ii) when the attackers have full knowledge of the
system and hack the most vulnerable power substations.
The latter case helps to develop robust defense strategies
by identifying weaknesses in the network.

• Fourth, we study the impact of the aforementioned attacks
on EVs satisfaction rate for the 2,000-bus power system
of the state of Texas with 360 allocated CSs.

The remainder of the paper is organized as follows. Sec-
tion II presents the model of the power-transportation sys-
tem. Section III describes the threat model, attack strategies,
and generation of benign and malicious samples. Section IV
presents the architecture of the proposed GAE detector. Sec-
tion V introduces the benchmark detectors, hyperparameters
selection, and evaluation metrics. Section VI describes the
simulation results, and Section VII concludes the paper.

II. POWER-TRANSPORTATION SYSTEM MODEL

This section describes how the power system is modeled
and coupled with the transportation system.

A. Modeling of Power System

Since the inherent structure of a power grid can naturally be
represented as a graph, GNN-based strategies can be employed
to develop efficient FDIA detection strategies. However, the
asymmetric adjacency matrix of a directed graph restricts the
free flow of information especially at the peripheral regions
of the power grid, thereby constraining the GNN’s learning
efficacy [47]. Thus, we model power systems as weighted
undirected connected graphs [24], [38], [48]. Fig. 1 illustrates
the graph representation of the power grid of Texas along with
the directions of power flow at each bus. The undirected graph
is represented as G = (VP, EP,W), where VP = {1, 2, .., B},
EP, and W ∈ RB×B model the set of vertices or buses (B
denotes the total number of buses), power lines (connecting
edges), and adjacency (line admittance) matrix, respectively.
The weight of the edge between the interconnected buses i
and j is Wij . Each grid node presents unique power and
voltage characteristics. The power lines present unique ac-
tive/reactive power flows determined by the corresponding line
impedance. Learning the specific patterns in the power system

Fig. 1: Graph model of the 2,000-bus power grid of Texas
with red nodes indicating the buses connected to CSs.

helps to distinguish between normal operating conditions and
attack conditions [24]. GNNs present spatial-temporal learning
abilities that facilitate processing of spatial topological (node
connectivity and their layout) information and temporal (power
flows) features and identification whether the system is in
normal or abnormal (attack) state. The detection performance
of GNN-based models depends on how well they are trained to
the different attacks. Thus, the GNN-based models should be
trained on a comprehensive set of different attacks, ensuring
the detection remains versatile and robust.

B. Coupling of Power and Transportation Systems

The transportation system under consideration consists of
360 charging stations, each with a unique geographical lo-
cation that is precisely identified using specific geographic
coordinates. To establish a meaningful and efficient coupling
between the power grid and transportation network, we con-
sidered the geographical coordinates of CSs. The coupling
between the two networks is established by employing the
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haversine distance formula that calculates the shortest distance
between two points of the Earth while considering the Earth
curvature into account. By applying the haversine formula, the
shortest route from each CS to the nearest power substation is
inferred. The approach of minimizing haversine distances aids
in the selection of the optimal path, ensuring a systematic
and meaningful integration of the two systems. In addition,
the proposed geolocation aware methodology represents a
valuable strategy for modeling complex infrastructures, as
it considers the geographical aspects of both power and
transportation networks. As a result, it not only facilitates
modeling the coupling of these systems but also it contributes
to a more informed and efficient methodology to account for
the infrastructure expansion and development. An illustration
of the coupled power and transportation system is presented
in Fig. 2.

Coupling

Charging 

station

Fig. 2: Illustration of an interconnected power-transportation
system.

III. DATA GENERATION

A. Threat Modeling

In an FDIA threat model, attackers stealthily manipulate
power measurement data to falsify system states, while en-
suring that they bypass the traditional bad data detectors
employed by power systems. In this paper, we consider three
different types of attacks: 1) additive attacks, 2) deductive
attacks, and c) a combination of both additive and deductive,
a.k.a. camouflage attacks.

If P t
i represents the power measurement at bus i at time-

stamp t, then under normal conditions, the true power reading
P t

true,i should match the measured power at the controller (i.e.,
P t

true,i = P t
measured,i. However, tampered measurements might

convey falsified data values as will be described next.
1) Additive attacks: In this attack scenario, the attacker

reports the current data such that

P t
false,i = P t

true,i +∆P t
i , (1)

where ∆P t
i indicates the maliciously added data by the

attacker. An adversary may gain access to the communica-
tion network and report incorrect values at some buses. The
manipulation is performed to make the readings appear within
the permitted range, while in reality, the true measurements

might be beneath this threshold. Additive attacks can lead to
situations where the system believes there’s more power at
some buses than there actually is. This can lead to unnecessary
and potentially harmful corrective actions.

2) Deductive attacks: The mechanism of a deductive power
attack involves subtracting a certain value from the original
measurement:

P t
false,i = P t

true,i −∆P t
i . (2)

In this scenario, an attacker may gain access to the data
communication channel and under-represent power values at
certain buses. Deductive attacks can mislead systems into
believing there is less power than there actually is. This
can result in under-utilization or missed opportunities for
distributing power efficiently.

3) Camouflage attack: The camouflage or combined attack
is a sophisticated blend of both additive and deductive attacks.
The camouflage attack is modeled through this equation:

P t
i = P t

true,i + b ·∆P t
i − (1− b) ·∆P t

i , (3)

where b is a binary variable which is 1 for the additive
attack and 0 for the deductive attack. For example, half of the
attacked measurements can be additive, while the other half
can be deductive. By adopting a combination of both attacks,
attackers aim to create a more complex attack pattern that is
harder to detect and in turn maximize the potential damage.
Such simultaneous upsurge and downswing in measured val-
ues can lead to conflicting operational decisions, potentially
causing system malfunctions and inefficiencies.

Fig. 3 and Fig. 4 illustrates the active and reactive power
during normal and malicious conditions respectively. In Fig. 3
and Fig. 4, the attack occurs at t = 2, 3, 4, 5, 6, 8 time stamps.

23

22

21

20

19

18

17

16

Benign data

Additive

Deductive

1 2 3 4 5 6 7 8 9 10

Time stamp

P
o

w
er

 (
M

W
)

Fig. 3: Active power of benign and malicious samples.
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Fig. 4: Reactive power of benign and malicious samples.
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B. Attack Strategies

1) Random Bus Attacks: Random bus attacks are defined as
non-discriminative random selection of buses as targets. They
reduce to random selection of r buses from B (r ≤ B), i.e.,
selection of a subset out of B!/ (r!(B − r)!) alternatives. Such
attacks can degrade the network’s reliability and introduce
service interruptions, especially if the attacked buses are not
restored quickly.

2) Most Vulnerable Target Buses: Vulnerability refers to
the capacity of a bus to serve as a potential point of failure;
an attack on such a vulnerable point could result in substantial
damage to the overall system. In this section, we assess the
vulnerability of each bus in the coupled system. The aim of
this assessment is to allocate vulnerability scores to buses,
which will later be utilized to design the most vulnerable bus
attack strategy.

The vulnerability of buses not only depends on the topolog-
ical characteristics but also on the power flow dynamics. Thus,
we consider a detailed set of metrics, combining topological
and electrical metrics. The topological metrics include i) the
CSs neighborhood density, which measures the importance of
a bus based on the density of CSs in the neighborhood area,
ii) connectivity impact, which refers to the number of buses
that remain connected after a failure [49], iii) connectivity
loss, which captures the average decrease in the number of
generators after a failure event [50], iv) betweenness centrality,
which indicates the extent to which a bus lies on the shortest
paths connecting other pairs of buses [51], v) clustering coef-
ficient, which models the extent to which buses tend to cluster
together [52], and vi) degree centrality, which represents the
number of buses and lines that directly influence a bus [53]. As
for the electrical metrics, they include i) load shedding, which
measures the total apparent power after a bus failure [49],
ii) effective graph resistance, which captures the total cost
to transfer power between a pair of buses [54], iii) electrical
degree centrality, which indicates the number of power flows
that directly influence the status of a bus, and iv) electrical
betweenness centrality, which indicates the extent to which a
bus lies on the path connecting other pairs of buses under the
assumption that power flows over the shortest paths between
them [55].

The weight factor of each of these metrics is obtained by
employing the analytical hierarchical process (AHP) method-
ology [56], where pairwise comparisons are performed in
order to determine the relative importance of each metric
with respect to the other. Once we obtain the corresponding
weights of the topological and electrical metrics, we compute
the topological vulnerability score as the weighted summation
of topological metrics. Similarly, we compute the electrical
vulnerability score as the weighted summation of electrical
metrics. Finally, we run AHP analysis again to obtain the
corresponding weights of the calculated topological and elec-
trical vulnerability scores in order to compute the final overall
vulnerability score.

C. Generating Benign and Malicious Samples

To generate the normal time-series active and reactive
power values, we conduct power flow analysis using Newton’s
method in MATLAB MATPOWER toolbox [57]. This toolbox
facilitates the calculation of system voltages, currents, and of
real and reactive power flows. In this regard, a scalar vector, F ,
is first created by normalizing the load data from the Electric
Reliability Council of Texas (ERCOT) [58]. The scaling factor
is then applied to the active and reactive power values from the
preceding timestamp using a normal distribution with mean
and standard deviation 1 + 0.025F and 0.01, respectively.
The dynamic range of charging load values is increased by
this operation, which generates dynamic changes in the time-
series data. This facilitates generation of the time-series power
datasets. Regarding the transportation system, the dataset
records the hourly traffic volume at each charging station to
monitor the influx of EVs. The charging power of each EV
is used to determine the hourly demand for EV charging at
a particular CS. Moreover, in addition to the regular load,
the power request at the bus level represents the total power
demands of all CSs linked to that specific bus.

Using the above-mentioned approach, extensive spatio-
temporal datasets can be generated for power systems oper-
ating in normal (standard) and under-attack conditions. These
datasets play an important role in developing effective detec-
tion mechanisms for coping with different attacks. For the
considered power system, 96 snapshots of power dynamics
per day are recorded, equating to data points collected at every
hour. Over a span of 6 months, this sums up to 17280 recorded
timestamps. By simulating the power flows across the power
system, benign or normal data are generated. Subsequently,
bad data are injected following the attack strategy described
earlier in this section. The generated data are then used for
training and testing the model.

The datasets encompass crucial input features and output
labels, ensuring the model’s ability to effectively differentiate
between normal and anomalous behavior. The input features
encompass node features, capturing information related to
active and reactive power values of buses as well as edge
features that model the power flow dynamics between these
nodes. These features provide a comprehensive representation
of the power system’s operational characteristics. The output
labels serve as binary indicators, enabling the model to classify
each data sample as either ”normal” or ”anomalous”. The
number of data samples within the datasets is influenced by the
time series data, typically consisting of 17280 timestamps over
a 6 month period for each scenario (normal and under attack,
respectively). The generated structured dataset facilitates the
model’s training and assessment, leveraging node and edge
attributes to enhance the security of the interconnected power
system against potential cyber threats.

IV. GAE-BASED FDIA DETECTION MODEL

This section introduces the FDIA detector, which will be
shown to be robust against the random attacks as well as
attacks targeting the most vulnerable buses. The proposed
FDIA detection scheme leverages an autoencoder architecture
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that utilizes an unsupervised training dataset, relying solely
on benign data samples, Xb, for training [59]. In addition,
it employs a generalized training strategy that enables the
model to detect unseen FDIAs. The proposed GAE model
incorporates Chebyshev graph convolutional recurrent layers,
which facilitate the extraction of complex spatio-temporal
patterns from the power measurements [60]. This in turn
allows the model to strengthen its resilience against FDIAs.
We show in the experimental results section (Section VI) the
potential of the proposed model in identifying FDIAs with
high detection accuracy and adaptability, making it valuable
for ensuring power system security and reliability.
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Input layer Output layer

Hidden layers Hidden layers

Graph encoder Graph decoder

Fig. 5: Architecture of GAE model.
A. Generative Learning Problem Formulation

FDIAs can manifest in different forms, making it challeng-
ing to characterize them with precise criteria and patterns
for accurate detection. GAE detects FDIAs based on devia-
tions from normal behavior. GAE learns a low-dimensional
representation of the power network graph while preserving
critical information about the system’s topology. In addition,
the generative nature of GAEs facilitates data augmentation,
which in turn allows to construct synthetic attack samples
to address the uncertainty of FDIAs. The architecture of the
proposed GAE-based FDIA detector is illustrated in Fig. 5.
The proposed model consists of three layers: i) a graph feature
extraction layer, ii) an encoder layer, and ii) a decoder layer.
The first layer extracts the features from graph-structured
data, while the second and third layers enable acquisition of
information at graph level about the benign samples observed
during normal operation.

For each time step t, each node of graph vi holds a historical
time series record T (vi, t), which is used as an input to the
model. The goal of this model is to obtain a conditional prob-
ability distribution P ∗ (V ∗ (t′) | π) for the predicted tensor
V ∗ (t′) =< v∗1 (t

′) , v∗2 (t
′) , . . . , v∗n (t

′) > given the historical
tensor π =< T (v1, t) , T (v2, t) , . . . , T (vn, t) >. The autoen-
coder captures the probability distribution P (X) for X data
points over the n-dimensional vector space X ⊆ Rn. Using
this procedure, we can regenerate sample X∗ that closely
resembles X . As the interdependencies between variables in
X increase, learning the true probability distribution P (X)
becomes more challenging. To address this challenge, a “latent
variable”-based architecture is adopted in this paper, wherein
a hidden random vector, z ∈ Z, incorporates the key charac-
teristics of P (X) (such as anomalous patterns in the data). In

fact, the variable z is sampled from a probability distribution
P (z) that is not known or specified. To ensure that the model
is generative and capable of constructing samples X∗, we
confirm the presence of at least one configuration ẑ ∈ Z
that forces the model to generate some data samples X̂ in
X . The model contains deterministic functions f(z; θ) with
parameters θ ∈ Θ, and the function f : Z × Θ → X maps
each “latent variable-parameter” pair to X . The objective is to
find an optimal parameter configuration θ∗ ∈ Θ such that when
z ∼ P (z) the value of X∗ = f (z; θ = θ∗) closely corresponds
to some X ∈ X . In other words, the optimization aims to
maximize the probability of f by constructing an output X∗

that is similar to the original data X . Herein, the generative
learning optimization problem is formulated as

θ∗ = argmax
θ

[
P (X) =

∫
f(z; θ)P (z)dz

]
. (4)

Upon converging to the optimal solution θ∗, the GAE-based
generative model is expected to regenerate X∗. The function
f(z; θ) is represented as a Gaussian distribution P (X | z; θ) =
N

(
X | f(z; θ), σ2I

)
, where f(z; θ) indicates the mean and

σ denotes the hyperparameter used to calculate the standard
deviation.

B. Spectral Graph Filtering and Graph Encoder

To apply convolutional filters to graph data structures,
it is essential to represent the data in a suitable manner.
Our objective is to express the data in the spectral domain,
facilitating the implementation of graph filtering operations.
In pursuit of this objective, we consider the graph Laplacian
matrix, denoted as L, which encapsulates the graph’s features,
accounting for diverse node connections and enabling the
computation of spectral graph filters. These spectral filters em-
power graph convolution to analyze complex graph-structured
data with efficacy. With U denoting the eigenvector matrix
of the normalized Laplacian L = UΩUT , the spectral graph
convolution on graph G is performed via ψθ ∗ π = UψθU

Tπ.
The convolutional filter ψθ = diag(θ) parameter vector is
represented by θ ∈ Rn. The graph Laplacian is computed in
the Fourier domain as the Fourier transform diagonalizes the
graph Laplacian and reveals its eigenvalues and eigenvectors,
which are crucial for spectral analysis and filtering. The
Fourier transformation of π is expressed as UTπ. Since ψθ

is intricately linked to the eigenvalues of L, the filter is
defined as ψθ (Ω). To approximate ψθ (Ω), we use Chebyshev
Polynomials Pj . By employing Pj , we obtain the approxi-
mation ψω ≈

∑J
j=0 ωjPj

(
2

γmax
Ω− I

)
, where γmax yields

the maximum eigenvalue of matrix L, with jth Chebyshev
coefficient represented by ωj . Consequently, the spectral graph
convolution on graph G is expressed as

ψω ∗ π ≈
J∑

j=0

ωjPj

(
2

γmax
Ω− I

)
π. (5)

The convolution operation is simplified further through δ =
ω0 = −ω1. The aim of this simplification is to reduce the size
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of the hyper-parameters while assuming γmax = 2 for J = 1.
Therefore, Eq. (5) is revised as

ψω ∗ π ≈ ω0P0(L− I)π + ω1P1(L− I)π (6)

= δ
(
I +D− 1

2AD− 1
2

)
π.

Following the convolution operation in Eq. (6), the graph
feature extraction is performed through LG hidden layers
across all nodes of G. The output of each hidden layer is
expressed as

Ok = ReLU
(
MOk−1 Wk

)
s.t. M = D̃− 1

2 (A+ I)D̃− 1
2 ,

(7)

where D̃ii =
∑

j(A+ I)ij and ReLU stands for the rectified
linear unit. The feature extraction layers take the input O0 =
π and return the output OLG = R (G), which denotes the
temporal representation of G.

C. Graph Encoder

As the graph feature extraction layer captures the spatio-
temporal features from π, the proposed GAE model can
be interpreted as approximating P ∗ (V ∗ | R(G)) instead of
P ∗ (V ∗ | π). The encoder layer takes X = R(G) as input,
obtained from the previous layer, and assumes LE hidden
layers and ReLU as activation function at each layer. The
objective of the encoder layer is to codify V ∗ into a latent
vector representation z ∈ Z in a way that the resultant z can
be decoded back to V ∗. The error function of the encoder is
expressed using Kullback–Leibler (KL) divergence as follows:

EE = KL [Q (z | π, V ∗) ∥N(0, 1)] (8)
= KL [Q (z | R(G), V ∗) ∥N(0, 1)] .

To capture the temporal correlations within the time-series
data, an LSTM module is integrated to control the recurrent
flow of information. The memory module also exhibits re-
markable adaptability in addressing the vanishing/exploding
gradient problem encountered during the learning process
of the time-series data, particularly in scenarios involving
extended time intervals. The LSTM cell is equipped with three
gates: input gate itlE , output gate otlE , and forget gate f tlE . Each
LSTM cell presents two states: cell state Ct

lE
, which retains

information over extended time steps, and hidden state Ht
lE

(a.k.a. LSTM output). In particular, the following relationships
hold:

• itlE = φ
(
W i

lE
Xi

lE
+U i

lE
ht−1

lE
+ V i

lE
st
lE

+ bilE

)
• ot

lE
= φ

(
W o

lE
Xo

lE
+Uo

lE
ht−1

lE
+ V o

lE
st
lE

+ bolE

)
• f t

lE
= φ

(
W f

lE
Xf

lE
+Uf

lE
ht−1

lE
+ V f

lE
st
lE

+ bflE

)
• Ct

lE
= f t

lE
Ct−1

lE
+ itlE tanh

(
WC

lE
Xt

lE
+UC

lE
Ht−1

lE
+ bClE

)
• Ht

lE
= ot

lE
tanh

(
Ct

lE

)
,

where Ct−1
lE

and Ht−1
lE

represent the cell and hidden state
of the previous cell, respectively; φ (·) denotes the activation
function; W and b refer to the weight matrix and bias,
respectively.

D. Attention mechanism

The attention layer dynamically assigns higher significance
to timestamps that present a greater impact on generating
a specific output [41]. To achieve this, the attention layer
receives inputs in the form of the GAE’s hidden states, Sh

and Sh−1 at time stage t and t−1, respectively. The attention
process involves the computation of an alignment score ν and
Softmax function Ω. The alignment score ν is calculated as:

ν = κ
(
h
LE/2
t ,hLD

t−1

)
. (9)

The alignment function (κ) represents an FNN trained with
both Sh and Sh−1. The attention weight is obtained by per-
forming the Softmax transformation on the alignment scores:

Ω =
exp(ν)∑
|ν| exp(ν)

, (10)

where |ν| denotes the cardinality of ν. The attention layer
returns a context vector C at time stage t that it is expressed
as a weighted sum of GAE’s hidden state vectors:

C =
∑
T

Ω× Sh . (11)

E. Graph Decoder

Similar to the encoder, the decoder adopts ReLU as activa-
tion function. The objective of the decoder is to generate V̂ as
close as possible to the output of the previous layer V ∗. The
reconstruction error is defined as

EDP =
∥∥∥V ∗ − V̂

∥∥∥2 . (12)

Similar to the graph encoder, the LSTM memory module is
also integrated with the graph decoder. The state of each cell
in the decoder-LSTM is controlled by input itlD , output otlD ,
and forget gate f tlD and is governed by these relationships:

• itlD = φ
(
W i

lD
Xi

lD
+U i

lD
ht−1

lD
+ V i

lD
st
lD

+ bilD

)
• ot

lD
= φ

(
W o

lD
Xo

lD
+Uo

lD
ht−1

lD
+ V o

lD
st
lD

+ bolD

)
• f t

lD
= φ

(
W f

lD
Xf

lD
+Uf

lD
ht−1

lD
+ V f

lD
st
lD

+ bflD

)
• Ct

lD
= f t

lD
Ct−1

lD
+ itlD tanh

(
WC

lD
Xt

lD
+UC

lD
Ht−1

lD
+ bClD

)
• Ht

lD
= ot

lD
tanh

(
Ct

lD

)
.

F. Training and Testing

The GAE model is developed to differentiate between
normal operation (benign samples) and abnormal operation
(malicious samples) by looking at the variations from the
learned benign samples. This differentiation is accomplished
by analyzing the error throughout the reconstruction proce-
dure. The model learns the data patterns from benign sam-
ples and detects the samples of abnormality by comparing
the reconstructed samples with the original ones. When the
reconstruction error surpasses a certain threshold value, the
GAE model flags the event of FDIAs. The overall objective
function of the proposed model is formulated as:

min
Φ
C (X, EE + ED) , (13)

where Φ indicates the model parameters.
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The training procedure of the proposed GAE is outlined
in Algorithm 1, where the main aim is to optimize the
model parameters: ϕ (W , b,U ,V ). The optimization proce-
dure involves an iterative gradient descent algorithm, which is
executed via a stochastic gradient descent approach. To expe-
dite the training procedure, we divided the training samples,
X ∈ Xn, into equally sized mini-batches, which we feed them
into the model over 128 epochs with the learning rate η. In
addition, we incorporate convolutional spectral graph layers
to facilitate sample differentiation. This allows GAE to be
proficient at distinguishing benign from malicious samples.
The importance ranking of the nodes during the training
process is illustrated in Fig. 6. Once trained, the proposed
GAE model applies its learned knowledge to analyze new
and previously unseen data. This means that its performance
remains stable and reliable even when tested on data that differ
from those on which they were initially trained.

Directed Graph with Randomly Grouped and Colored Nodes (No Arrows)

Most important

Least important

Fig. 6: Graph structure of the considered power system with
node color indicating the importance of nodes.

V. EXPERIMENTAL SETUP

We herein introduce the benchmark detectors and optimize
their hyperparameters. The selection of optimum hyperpa-
rameters enables them perform best and ensures a balanced
comparison between them. Later in this section, we define
the evaluation metrics and obtain the AHP outputs for the
considered metrics.

A. Benchmark Detectors

We evaluate and compare the detection performance of the
proposed strategy with two primary categories of detection
models: graph-based detection model (presented in [24]) and
traditional ML-based detection models. Later in this section,
we briefly introduce a graph CNN (GCNN)-based detection
scheme as well as other benchmark schemes.

1) GCNN based Detector: The input layer of GCNN-based
detector indicates the graph representation of considered power
system. Following the input layer, there are Lv hidden layers
which perform Chebyshev graph convolution on the input data.
Let clv denote the channel number in a hidden layer lv , which
takes X lv−1 ∈ Rn×clv−1 as input and outputs X lv ∈ Rn×clv .
Each lv captures the spatial features from the graph structured
data by employing graph convolutional operation and ReLU
activation function. The ReLU function produces the output
tensor X lv of hidden layer lv . The subsequent dense layer

Algorithm 1 Training procedure of GAE model

1: function TRAIN GAE(Xn : optimal ϕ (W , b,U ,V ))
2: ▷ This function aims to minimize training parameters
3: while not converged to minimum do
4: for every training instances X do
5: Forward propagation:
6: Graph encoding:
7: for every graph encoder layers lE ∈ LE do
8: obtain X lE through ReLU activation
9: for each time stamp do

10: Obtain:
11: itlE ,o

t
lE
,f t

lE
, stlE , and ht

lE
12: end for
13: end for
14: for every graph decoder layers lD ∈ LD do
15: obtain X lD through ReLU activation
16: for each time stamp do
17: Obtain:
18: itlD ,o

t
lD
,f t

lD
, stlD , and ht

lD
19: end for
20: end for
21: Back propagation:
22: Compute:
23: minΦ C (X, EE + ED)
24: Obtain the derivatives:
25: ∇µl(·)C,∇bl·()C,∇W

l(·)
(·)
C,

26: ∇
U

l(·)
(·)
C, and ∇V l

(·)(·)
C

27:28: end for
29: Parameter updating rule:
30: µl(·) ← µl(·) − η

|XTR|
∑

x∇µl(·)C

31: bl(·) ← bl(·) − η
|XTR|

∑
x∇bl

(·)
C

32: W
l(·)
(·) ←W

l(·)
(·) −

η
|XTR|

∑
x∇W

l(·)
(·)
C

33: U
l(·)
(·) ← U

l(·)
(·) −

η
|XTR|

∑
x∇U

l(·)
(·)
C

34: V
l(·)
(·) ← V

l(·)
(·) −

η
|XTR|

∑
x∇V

l(·)
(·)

C

35: end while
36: end function

determines the presence probability of an attacked sample. The
output layer conveys the final decision.

For training of the GCNN-based detection model and es-
timation of its free parameters, we adopt the cross-entropy
function:

C(z̃, σ) =
−1
|XT|

∑
XT

{z log(z̃) + (1− z) log(1− z̃)}, (14)

where XT and σ indicate the number of training samples and
trainable parameters, respectively; z and z̃ represent the true
(benign) and predicted (malicious) labels, respectively. The
model is trained using an iterative optimization process based
on gradient descent. During this process, the samples X from
the original training dataset XT are divided into evenly sized
mini-batches, which are then fed into the model.

2) Traditional ML-based Benchmark Detectors: The tradi-
tional ML-based detectors exhibit a range of features, includ-
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ing shallow or deep architectures, supervised or unsupervised
training approaches.

• ARIMA, a shallow unsupervised dynamic model that
takes the normal condition data for training and predicts
the future pattern by minimizing the MSE. During testing,
it flags a data point as an anomaly if the data exceeds a
predefined threshold value.

• LSTM, a deep dynamic variation of traditional RNN
model, is trained on both normal and attack data in a
supervised manner. It operates by holding the previous
knowledge through recurrent cycles of information flow.

• FNN, a supervised deep static model, is trained on both
normal and attack condition data. It extracts the patterns
through stacked hidden layers characterized by fully-
connected neurons where information propagates in a
feed-forward fashion.

• CNN learns the features adaptively in a supervised man-
ner by employing convolution operations.

• SVM assumes a supervised learning framework by de-
termining the optimum hyperplane that maximizes the
margin between classes.

B. Hyperparameters Selection

To maximize the detection performance of the proposed
and benchmark models we employ a sequential grid search
strategy to fine-tune the models’ hyperparameters. The
sequential grid search strategy is a straightforward and
transparent optimization technique. Given the complexity
of our coupled power and transportation network model,
we prioritize simplicity to ensure ease. Moreover, it
systematically explores a broad range of hyperparameter
combinations, ensuring that we do not overlook critical
configurations. Lastly, opting for a well-established optimizer,
we aim to provide a fair and consistent benchmarking process
across all considered models. The sequential hyperparameter
selection strategy assumes systematic exploration of the
hyperparameter space. The hyperparameters yielding
the highest performance during the validation step are
selected. The search for the optimal hyperparameter values
considers that β = {L,P,O,U ,A,K} is constrained
within a predefined search space: number of layers
L ={2, 3, 4, 5, 6, 8}, rate of dropout P = {0, 0.2, 0.4, 0.5},
optimizer O ={Adam, Rmsprop, SGD, Adamax}, unit
number U = {4, 8, 16, 32, 64}, order of neighborhood
K = {2, 3, 4, 5}, and the activation function A =
{Sigmoid, ReLU, Tanh, Elu}. The optimal hyperparameters
for LSTM, FNN, CNN, GCNN, and the proposed approach,
are βLSTM = {3, 0.2,Adam, 32,Relu,N/A}, βFNN =
{4, 0,Adam, 32,Relu,N/A}, βCNN = {4, 0.4,Rmsprop,
32,Relu, 5}, βGCNN = {5, 0.2,Rmsprop, 32,RelU, 4}, and
βGAN = {6, 0.2,Adam, 64,Relu, 5}, respectively. For the
SVM, the optimum kernel, gamma, and regularization
are selected as Sigmoid, auto, and 1, respectively. For
ARIMA model, after exploring the search space {0, 1, 2, 3},
we selected the best values for the moving average and
differencing degree as 0 and 1, respectively.

C. Evaluation Metrics

To assess the effectiveness of the FDIA detectors under
study, we make use of the following performance metrics.
First, the detection rate: DR = TP

TP+FN , which indicates how
many actual malicious samples are detected. Second, the false
alarm rate: FAR = FP

FP+TN , which is indicative of how often a
model erroneously detected non-malicious samples as threats.
Lastly, the accuracy metric, ACC = TP+TN

TP+TN+FP+FN , which
provides a holistic perspective on the model’s performance,
revealing its efficacy in detecting both malicious and benign
samples. Here, TP (True Positive) and TN (True Negative)
denote the correctly identified malicious and benign samples,
respectively. In contrast, FP (False Positive) refers to benign
samples misidentified as malicious, while FN (False Negative)
indicates the malicious samples that the detector overlooked.

The vulnerability of buses not only depends on the topolog-
ical characteristics but also on the power flow dynamics. Thus,
we consider a detailed set of metrics, combining topological
and electrical metrics. The topological metrics include i) the
CSs neighborhood density, which measures the importance of
a bus based on the density of CSs in the neighborhood area,
ii) connectivity impact, which refers to the number of buses
that remain connected after a failure [49], iii) connectivity
loss, which captures the average decrease in the number of
generators after a failure event [50], iv) betweenness centrality,
which indicates the extent to which a bus lies on the shortest
paths connecting other pairs of buses [51]. As for the electrical
metrics, they include i) load shedding, which measures the
total apparent power after a bus failure [49], ii) effective
graph resistance, which captures the total cost to transfer
power between a pair of buses [54], iii) electrical degree
centrality, which indicates the number of power flows that
directly influence the status of a bus.

D. AHP Outputs

The AHP outputs obtained for topological metrics are: CSs
neighborhood density: 0.3637, connectivity impact: 0.1612,
connectivity loss: 0.2458, and betweenness centrality: 0.2294.
For the electrical metrics, the AHP outputs are: Load shedding:
0.7555, Effective Graph Resistance: 0.0300, and electrical
degree centrality: 0.2145. After obtaining the weights through
AHP analysis, each normalized metric is multiplied by its
respective weight. Thereafter, the weighted metric scores are
summed up to obtain the vulnerability score of each node.
After obtaining the weighted sum of topological as well as
electrical metrics we perform AHP analysis again to obtain
weight for Topological: 0.8713 and the weight for Electrical:
0.1287 metric.

E. Metrics of User Experience

During the considered attack scenarios, the original power
measurements of some buses are tempered, causing more users
to be unsatisfied with the service than in normal conditions.
Thus, to assess the user experience we considered two metrics:
the user satisfaction rate and the percentage of service denied.
The user satisfaction rate is defined as: S = Pcs

nev×Pev
×100%,
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where Pcs = Ptotal − Pres signifies the available charging
power at a bus with Ptotal and Pres representing the total
power and total residential load of a bus, respectively. During
the considered attack scenarios, the actual power measurement
of a CS Pcs is tempered causing more users to be unsatisfied
with the service than in normal conditions. The residential load
is assumed to be variable over the day and modeled following
the IEEE reliability test system load pattern [61]. Variable nev
denotes the number of EVs being charged at a bus.

Under the purview of FDIAs, nev transforms to nfev ,
indicating the false number of EVs to be served. The denial
of service metric is defined as D =

|nfev−nev|
nev

× 100%. By
employing the user experience metrics we can better anticipate
challenges and devise resilient strategies to maintain high user
satisfaction rate.

VI. EXPERIMENTAL RESULTS AND INSIGHTS

Tables I and II depict the detection performance of the
proposed and benchmark models for the three different attacks
and four different attack percentage levels. For the combined
attack scenario, the additive and deductive attacks are selected
with 1:1 ratio.

A. Detection Performance Against Random Attacks

Table I presents the overall detection performance of the
considered models against random buses attacks. In this ex-
periment, the models are tested with varying levels of random
attack percentage. The findings indicate that as the attack
level increases, the detection performance decreases. Such
decline is due to the increase in false positives. Specifically,
testing the models on additive attacks offers 3-4% performance
improvement compared to the combined attack scenarios.
Moreover, all the models show similar performance for both
the additive and deductive attacks. Overall, the proposed strat-
egy offers about 4-38% performance improvement compared
to the benchmark detectors over the different attack types. The
improvements in the detection performance of the proposed
approach are listed next:

• In the case of additive attacks, the proposed approach
improves the performance by 2.63-32.52% in DR, 3.85-
40.86% in FAR, and 3.22-33.38% in ACC. GCNN-based
detector exhibits slightly lower performance. While still
considerable, there might be some data points where
GCNN detector does not perform adequately.

• In the case of deductive attacks, the proposed approach
achieves 98.19-94.67% in DR, 8.20-12.29% in FAR, and
97.04-94.74% in ACC. GCNN-based detector exhibits
slightly lower performance which is still considerable.

• In the case of camouflage attacks, the proposed approach
outperforms the other detectors and exhibits 97.28-
93.04% in DR, 10.27-13.71% in FAR, and 95.28-93.78%
in ACC. The performance gap between the GCNN-based
detector and the proposed approach is higher in this
scenario. This may due to the fact that the GCNN detector
struggles to capture the underlying features set from the
complex attack dataset.

TABLE I: Performance of benchmark detectors against differ-
ent types of attacks and attack injection levels during random
node attacks.

Attack 

type 
Detector Metric 

Attack data percentage 

5% 10% 20% 30% 

Additive 

attacks on 

random 

nodes 

ARIMA 

DR 66.67 59.41 51.13 40.74 

FAR 47.78 53.98 62.99 73.71 

ACC 65.44 58.33 50.40 40.40 

SVM 

DR 69.72 63.68 55.58 45.29 

FAR 40.17 46.35 54.36 64.17 

ACC 68.54 62.39 54.17 44.06 

FNN 

DR 74.05 70.02 63.08 54.95 

FAR 32.34 37.59 43.14 51.38 

ACC 72.69 68.60 61.50 53.52 

LSTM 

DR 80.27 75.09 68.84 61.66 

FAR 26.79 30.15 36.00 44.11 

ACC 78.57 73.54 67.47 60.35 

CNN 

DR 83.04 80.29 75.40 68.52 

FAR 20.51 24.52 29.74 36.11 

ACC 82.79 79.98 75.09 68.16 

GCNN 

DR 96.56 93.67 90.72 85.96 

FAR 10.77 12.55 16.59 20.92 

ACC 95.60 92.60 89.63 84.78 

GAE 

DR 99.19 99.11 98.33 96.33 

FAR 6.92 8.20 9.56 10.78 

ACC 98.82 98.74 97.87 95.80 

SAT-

GAE 

DR 99.20 99.08 98.18 96.42 

FAR 6.50 8.25 10.01 10.83 

ACC 98.85 98.76 97.90 95.78 

Deductive 

attacks on 

random 

nodes 

ARIMA 

DR 65.33 57.55 49.47 39.20 

FAR 49.00 55.30 64.45 75.29 

ACC 63.90 56.69 49.38 38.53 

SVM 

DR 67.97 62.49 54.42 44.12 

FAR 41.40 47.70 55.85 65.69 

ACC 66.99 61.26 52.91 42.73 

FNN 

DR 72.64 68.31 61.90 53.49 

FAR 33.60 38.90 44.65 52.89 

ACC 71.63 66.75 59.63 51.79 

LSTM 

DR 79.00 74.00 67.22 60.26 

FAR 28.00 31.50 37.45 45.69 

ACC 77.34 71.94 66.19 58.88 

CNN 

DR 81.55 79.12 73.53 66.82 

FAR 21.80 25.90 31.25 37.69 

ACC 81.71 78.80 74.05 66.87 

GCNN 

DR 95.21 92.43 88.97 84.64 

FAR 12.00 13.90 18.05 22.49 

ACC 94.53 90.71 87.93 83.60 

GAE 

DR 98.19 97.38 96.69 94.67 

FAR 8.20 9.50 11.05 12.29 

ACC 97.04 97.18 96.57 94.74 

SAT-

GAE 

DR 98.07 97.31 96.59 94.63 

FAR 8.24 9.55 11.08 12.36 

ACC 97.00 97.12 96.48 94.61 

Combined 

Attacks 

on 

random 

nodes 

ARIMA 

DR 64.06 55.70 47.84 37.70 

FAR 50.46 56.76 65.81 77.46 

ACC 62.40 55.08 48.46 36.66 

SVM 

DR 66.24 61.38 53.34 43.04 

FAR 43.00 49.52 57.58 67.28 

ACC 65.48 60.22 51.72 41.46 

FNN 

DR 71.28 66.62 60.80 52.08 

FAR 35.49 40.25 46.56 54.36 

ACC 70.66 64.90 57.76 50.08 

LSTM 

DR 77.80 73.00 65.64 58.92 

FAR 29.42 33.30 38.78 47.90 

ACC 76.18 70.38 64.98 57.46 

CNN 

DR 80.10 78.04 71.66 65.14 

FAR 24.04 28.09 33.15 39.91 

ACC 80.72 77.70 73.10 65.64 

GCNN 

DR 93.92 91.26 87.24 83.38 

FAR 13.58 15.74 19.49 24.59 

ACC 93.56 88.82 86.26 82.50 

GAE 

DR 97.28 95.66 95.08 93.04 

FAR 10.27 10.87 12.71 13.71 

ACC 95.28 95.66 95.34 93.78 

SAT-

GAE 

DR 97.17 95.54 94.95 92.93 

FAR 10.33 10.94 12.78 13.75 

ACC 95.24 95.60 95.28 93.71 
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TABLE II: Performance of the benchmark detectors against
different types of attacks and attack injection levels during
most vulnerable node attacks.

Attack 

type 
Detector Metric 

Attack data percentage 

5% 10% 20% 30% 

Additive 

attacks on 

most 

vulnerable 

nodes 

ARIMA 

DR 62.27 52.99 45.48 35.6 

FAR 51.92 58.22 67.11 80.06 

ACC 60.25 52.76 47.24 33.92 

SVM 

DR 63.52 59.65 51.66 41.36 

FAR 44.9 51.77 59.68 69.16 

ACC 63.11 58.61 49.86 39.48 

FNN 

DR 69.36 64.17 59.29 50.07 

FAR 37.65 41.53 48.74 55.84 

ACC 69.37 62.19 55.02 47.6 

LSTM 

DR 75.92 71.45 63.16 56.83 

FAR 31.03 35.5 40.25 50.76 

ACC 74.38 67.93 63.09 55.24 

CNN 

DR 78.04 76.55 68.92 62.71 

FAR 26.75 30.73 35.32 42.59 

ACC 79.39 76.2 71.84 63.93 

GCNN 

DR 91.91 89.44 84.52 81.42 

FAR 15.44 18.02 21.13 27.28 

ACC 92.05 85.85 83.63 80.79 

GAE 

DR 96.08 93.17 92.76 90.68 

FAR 12.71 12.2 14.49 15.11 

ACC 92.71 93.47 93.62 92.61 

SAT-

GAE 

DR 96.03 93.12 92.71 90.63 

FAR 12.74 12.23 14.52 15.14 

ACC 92.65 93.41 93.56 92.55 

Deductive 

attacks on 

most 

vulnerable 

nodes 

ARIMA 

DR 61.28 51.25 44.03 34.27 

FAR 52.62 58.92 67.69 81.69 

ACC 58.97 51.34 46.71 32.16 

SVM 

DR 61.94 58.87 50.92 40.62 

FAR 45.8 52.95 60.74 70.04 

ACC 61.81 57.93 48.98 38.5 

FNN 

DR 68.27 62.65 58.53 48.9 

FAR 38.92 42.09 50.03 56.56 

ACC 68.79 60.46 53.26 46.05 

LSTM 

DR 75.02 70.82 61.77 55.76 

FAR 31.69 36.64 40.79 52.44 

ACC 73.54 66.57 62.18 54.06 

CNN 

DR 76.83 75.81 67.16 61.2 

FAR 28.47 32.39 36.6 44.29 

ACC 78.77 75.45 71.28 63.01 

GCNN 

DR 90.9 88.59 82.94 80.46 

FAR 16.31 19.23 21.81 28.82 

ACC 91.45 84.07 82.13 80.03 

GAE 

DR 95.57 91.61 91.34 89.23 

FAR 14.21 12.8 15.46 15.76 

ACC 91.09 92.16 92.69 91.91 

SAT-

GAE 

DR 95.52 91.56 91.29 89.18 

FAR 14.24 12.83 15.49 15.79 

ACC 91.03 92.1 92.63 91.85 

Combined 

Attacks 

on most 

vulnerable 

nodes 

ARIMA 

DR 59.15 49.63 40.84 32.66 

FAR 54.41 61.93 69.67 84.86 

ACC 55.18 48.79 44.38 29.95 

SVM 

DR 59.97 56.58 48.22 38.95 

FAR 49.06 55.24 64.1 72.54 

ACC 58.79 54.61 46.43 36.02 

FNN 

DR 66.19 60.05 56.1 45.94 

FAR 40.67 45.44 51.74 58.38 

ACC 66.48 57.35 49.26 43.85 

LSTM 

DR 72.06 67.14 58.3 53.71 

FAR 34.06 39.94 43.17 55.09 

ACC 71.43 64.36 58.61 50.37 

CNN 

DR 74.97 73.61 64.35 57.45 

FAR 31.48 35.62 38.81 46.48 

ACC 76.88 72.29 67.42 59.81 

GCNN 

DR 87.24 84.81 79.4 76.89 

FAR 17.88 21.33 23.98 31.27 

ACC 88.75 81.77 79.54 77.13 

GAE 

DR 93.09 88.66 88.89 87.22 

FAR 16.62 16.06 18.8 18.97 

ACC 89.34 90.19 89.9 88.27 

SAT-

GAE 

DR 93.04 88.61 88.84 87.17 

FAR 16.65 16.09 18.83 19 

ACC 89.28 90.13 89.84 88.21 

 

B. Detection Performance Against Most Vulnerable Buses
Attacks

Table II shows the detection performance of the models
while testing against the most vulnerable buses attacks. Similar
to the random buses attacks, as the attack percentage increases,
their performance decreases. Overall, the proposed detector
yields superior performance in all of the three attack strategies.
Moreover, the overall performance of the detectors decreases
compared to the random buses attack conditions. In summary,
the proposed approach for the most vulnerable buses attack
strategy attains the following performance metrics.

• In the case of additive attacks, the proposed approach
achieves 90.57-95.97% in DR, 12.80-15.20% in FAR,
and 92.6-92.38% in ACC. GCNN achieves a comparable
performance while ARIMA model performs the worst
with 35.44% accuracy

• In the case of deductive attacks, the proposed approach
improves the performance by 2.5-30.52% in DR, 3.0-
42.86% in FAR, and 3.89-36.8% in ACC. GCNN per-
forms almost similarly to the additive attack scenarios.

• In the case of camouflage attacks, the proposed approach
outperforms the other detectors and exhibits 92.98-
87.11% in DR, 16.71-19.06% in FAR, and 89.23-88.16%
in ACC. The performance gap between the GCNN detec-
tor and the proposed approach is more pronounced in this
scenario. This confirms the superiority of the proposed
approach over the other models.

Our experiments were conducted in an experimental en-
vironment where the training process of the proposed and
benchmark models was carried out offline. Specifically, we
employed an NVIDIA GeForce RTX 3080 hardware accelera-
tor, and the training was implemented using the Keras sequen-
tial API. It is worth mentioning that offline training typically
takes between three to four hours to complete. The proposed
framework was primarily developed and trained offline where
it learns features of a normal system as well as potential
attack scenarios. Once the model is trained, we deploy it
in a real-time environment where it takes 3 miliseconds to
detect each testing sample. Research referenced in [62] has
shown that at the initial stages, power disturbances tend to
evolve slowly, often taking minutes or even hours to manifest
significant effects. This finding indicates that our model proves
to be sufficiently quick in identifying attacks during the earlier
phases of a cascading failure.

However, the challenges associated with real-time decision-
making in a dynamic environment include considerations
related to data acquisition and preprocessing for real-time
applications. Ensuring that data can be collected, processed,
and fed into the model with minimal delay is essential for
timely decision-making. Network conditions, data transmis-
sion delays, and data quality all play a role in this aspect.
In our specific case, where the model was trained offline,
the transition to real-time deployment would require careful
consideration and adaptation of the model architecture, as well
as optimization of the inference process. Future work may
explore the adaptation of our framework for real-time decision-
making, taking into account the specific challenges of dynamic

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2024.3355094

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Texas A M University. Downloaded on April 05,2024 at 18:27:57 UTC from IEEE Xplore.  Restrictions apply. 



13

operational environments in the context of coupled power and
transportation networks.

To deal with the wrong detections in the proposed approach,
several strategies can be employed. Firstly, data augmentation
techniques can be used to increase the diversity and volume
of training data which helps the model generalize and reduce
errors. Secondly, multiple models can be used in conjunction
to make decisions that can improve accuracy and reduce the
likelihood of wrong detections. Additionally, fine-tuning the
model with a more relevant dataset can significantly enhance
its performance. In summary, by enhancing the data and the
learning process, we can reduce the errors and improve the
overall robustness of the system.

C. Detection Performance Against Noisy Data

In a realistic system setting, the different components of
power systems are exposed to different weather conditions
and are operated under various conditions. As a result, the
data collected from the smart meters often contain interfering
signals, for instance, corona noise, jet flyovers, insulator noise,
wind-induced noise, or noise due to human intervention. These
factors suggest that the signals measured from power systems
exhibit irregular and dynamic properties, and crucial fault-
related information may be obscured by strong interfering
signals. To mimic this scenario, we included Additive White
Gaussian Noise (AWGN) to the original data with the signal-
to-noise ratio (SNR) varying from 10 to 20 dB (as per [63]).
We then tested our proposed system using the generated noisy
data. The results presented in Fig. 7 reveal that within the
considered noise range, the proposed model maintains a good
classification performance. Only 2% decrease in detection
performance is observed when referencing with respect to the
low noise condition at 10 dB SNR. Throughout the robustness
analysis, we maintained the training data devoid of noise and
evaluated the system using data injected with noise that it had
not encountered previously. The conducted analysis confirms
the noise-immune performance of the proposed method.
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Fig. 7: Performance of the proposed model against different
levels of noise.

D. Impact of Attack Detection on User Satisfaction Metrics

This section explores how the aforementioned detection
mechanism improves the EV power satisfaction rate and
lessens the percentage of service denied. Tables III and IV

illustrate how the post-implementation of the proposed de-
tection mechanism improves the EV power satisfaction rate
and lowers the denial of services, respectively. In a normal
setting and with all the initially integrated CSs, the EV power
satisfaction rate observed is 89.36%, and the service denial
rate is 11.28%. Later in this section, we will investigate the
change in user experience if corrective measures against the
FDIAs were taken based on the detection performance of the
proposed detector.

• Table III lists the EV power satisfaction rate when the
attack is active and after mitigating it. Overall, we can
see an average of 11-30% improvement in EV power
satisfaction rate over the considered attack scenarios.
Specifically, in the presence of 5% and 10% attack levels,
the detector offers the most stable performance with only
1.5-2.5% degradation of EV power satisfaction rate rela-
tive to the normal condition. On the other hand, a slight
degradation in EV power satisfaction rate is observed for
the higher percentage of attack level, yet the detector
improves the performance by 30-33% compared to the
active attack conditions. Such superior performance is
due to the model’s generalization ability against different
attack conditions.

• Table IV presents the percentage of services denied
during attacks and after detecting and mitigating them.
Across all types and levels of attacks, the service denial
rate decreases by 3.84 to 36.59%. With the increase in
attack levels, a higher denial of service is observed. The
highest deviation in denial rate is observed for the most
vulnerable node attacks with an increment of only 6%.

TABLE III: S (%) during attacks and after detection.

Attack 

strategy 
Attack type 

Attack level 

5% 10% 20% 30% 

Random 

node 

attacks 

Additive 17.48 25.87 36.21 43.29 

Deductive 18.48 29.47 39.22 49.65 

Combined 20.36 32.42 42.87 51.20 

Vulnerable 

node 

attacks 

Additive 20.63 28.01 40.71 48.85 

Deductive 21.03 30.87 43.01 51.56 

Combined 24.46 39.20 46.87 55.39 

 

 

 Before detection After detection 

Attack level 5% 10% 20% 30% 5% 10% 20% 30% 

 

Additive 76.98 71.97 67.46 59.80 87.54 87.29 85.61 83.29 

Deductive 73.79 70.63 62.13 51.23 85.77 84.92 82.39 80.91 

Combined 68.23 59.63 53.17 47.32 82.21 81.79 79.43 77.85 

 

Additive 73.42 68.53 65.33 54.74 87.04 86.16 85.11 82.18 

Deductive 71.63 67.21 59.97 46.22 85.12 84.48 82.01 79.94 

Combined 66.88 56.55 50.28 43.87 81.73 80.71 78.33 77.24 
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TABLE IV: D (%) during attacks and after detection.

Attack 

strategy 
Attack type 

Attack level 

5% 10% 20% 30% 

Random 

node 

attacks 

Additive 17.48 25.87 36.21 43.29 

Deductive 18.48 29.47 39.22 49.65 

Combined 20.36 32.42 42.87 51.20 

Vulnerable 

node 

attacks 

Additive 20.63 28.01 40.71 48.85 

Deductive 21.03 30.87 43.01 51.56 

Combined 24.46 39.20 46.87 55.39 

 

 

 Before detection After detection 

Attack level 5% 10% 20% 30% 5% 10% 20% 30% 

 

Additive 76.98 71.97 67.46 59.80 87.54 87.29 85.61 83.29 

Deductive 73.79 70.63 62.13 51.23 85.77 84.92 82.39 80.91 

Combined 68.23 59.63 53.17 47.32 82.21 81.79 79.43 77.85 

 

Additive 73.42 68.53 65.33 54.74 87.04 86.16 85.11 82.18 

Deductive 71.63 67.21 59.97 46.22 85.12 84.48 82.01 79.94 

Combined 66.88 56.55 50.28 43.87 81.73 80.71 78.33 77.24 

 

 Before detection After detection 

Attack level 5% 10% 20% 30% 5% 10% 20% 30% 

 Additive 17.48 25.87 36.21 43.29 13.64 15.55 16.30 17.20 

Deductive 18.48 29.47 39.22 49.65 14.03 15.91 16.37 17.73 

Combined 20.36 32.42 42.87 51.20 14.78 16.29 16.72 17.80 

 Additive 20.63 28.01 40.71 48.85 14.57 15.58 16.54 17.61 

Deductive 21.03 30.87 43.01 51.56 15.18 16.06 17.08 17.84 

Combined 24.46 39.20 46.87 55.39 15.42 16.35 17.46 18.80 
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E. Computational Cost and Accuracy Analysis

We investigated the costs and benefits associated with reduc-
ing the model size of the Graph Autoencoder (GAE) equipped
with the attention mechanism. In this regard, we compared
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the reconstruction Accuracy and the computational efficiency
of the compromised models with a baseline model. Table V
summarizes the comparative analysis of different models in
terms of computational cost and autoencoder reconstruction
accuracy. We started with the original GAE model, which
has 6 layers and 64 neurons per layer. The original model is
optimized with a sequential grid search algorithm. The detail
of the hyperparameter optimization is discussed in Section V.
This optimized model serves as our baseline for performance
and computational efficiency. We experimented by reducing
the number of layers in the GAE while keeping the number
of neurons per layer constant . This model performed with
slightly lower accuracy though with faster training time. Later,
we kept the number of GNN layers constant but reduced the
number of neurons in each layer. This leads to faster training
and inference times with a slight reduction in performance.
Lastly, we performed a combined reduction in both the number
of layers and neurons per layer. From the aforementioned
analysis, it is observed that the larger models require com-
paratively longer training time as they extract more feature
information from the data. However, the training time and
computational ability of the proposed model do not create a
significant concern as the system operators can conduct offline
training on available datasets periodically (weekly or monthly).
Testing can be done in real time as per the reported decision
time which is 3 millisecond.

TABLE V: Model comparison based on training time and
reconstruction accuracy.

optimized with a sequential grid search algorithm. The detail of the hyperparameter optimization
is discussed in Section V. This optimized model serves as our baseline for performance and
computational efficiency. We experimented by reducing the number of layers in the GAE while
keeping the number of neurons per layer constant. This model performed with slightly lower
accuracy though with faster training time. Later, we kept the number of GNN layers constant but
reduced the number of neurons in each layer. This leads to faster training and inference times
with a slight reduction in performance. Lastly, we performed a combined reduction in both the
number of layers and neurons per layer. From the aforementioned analysis, it is observed that the
larger models require comparatively longer training time as they extract more feature information
from the data. However, the training time and computational ability of the proposed model do
not create a significant concern as the system operators can conduct offline training on available
datasets periodically (weekly or monthly). Testing can be done in real time as per the reported
decision time which is 3 millisecond.

TABLE I: Here you can type in your caption

Model description Reconstruction
accuracy (%)

Training time

Baseline model (L = 6,U = 64) 97.45 2h 30m
Reduced layer model (L = 4,U = 64) 94.20 2h 10m
Reduced neuron model (L = 6,U = 32) 92.31 1h 50m
Reduced neuron and layer model
(L = 4,U = 32)

87.49 1h 25m

Comment (7): It is suggested to provide details of the computational systems where the
proposed detection framework was trained and tested (e.g., device model and processing power).
Would it be feasible to deploy this system for real-time decision-making in practical, real-world
systems that may be dependent on legacy devices with low processing power?

Authors’ response: We appreciate the reviewer’s suggestion to provide more details about
the computational systems used for training and testing our proposed cyber attack detection
framework. Our experiments were conducted in an experimental environment where the training
process of the proposed and benchmark models was carried out offline. Specifically, we employed
an NVIDIA GeForce RTX 3080 hardware accelerator, and the training was implemented using
the Keras sequential API. It is worth mentioning that offline training typically takes between
three to four hours to complete.

While our experimental setup utilized a high-performance GPU for efficient model training,
we acknowledge the importance of considering the feasibility of deploying such a system for
real-time decision-making in practical real-world scenarios. In real-world systems, especially
those that may rely on legacy devices with lower processing power, there are indeed challenges
related to computational resource constraints. Legacy devices with limited processing power may
not be able to support the computational demands of real-time deep learning models, especially
those designed for complex tasks like cyber attack detection. Deploying such models on low-
powered devices may lead to significant computational latency and hinder their ability to provide
timely responses to potential threats.

Therefore, the feasibility of deploying our cyber attack detection system for real-time decision-
making in practical real-world systems would depend on several factors, including the specific

VII. CONCLUSIONS

This paper proposed a GAN-based FDIA detection frame-
work and investigated its performance against different attack
types and attack injection levels. FDIAs on coupled power and
transportation networks can cause up to 45.73% degradation in
EV power satisfaction rate and 44.11% escalation in services
denial rate. Our extensive simulation studies have revealed
that the proposed detector performed with as high as 95.80%
accuracy while improving the EV power satisfaction rate by
10-33%, and decreasing the services denial rate by 4-36%.
Moreover, the comparative performance analysis against the
benchmark detectors showed an average of 30% improvement
in DR for random node attacks and 35% improvement in
DR for the most vulnerable attack strategy. The proposed
GAE-based detector employs an autoencoder combined with
Chebyshev graph convolution recurrent layers that facilitate
extraction of the spatial and temporal correlations from the
measurement data. Localization and mitigation of the attacks at
node level and in the presence of errors and dynamic changes
in the network represent open research problems.

APPENDIX A
PARAMETERS OF THE PROPOSED MODEL

Number of layers, and neurons per layers: L = 6, U = 64
Dropout rate, P = 0.2
Optimizer, O = Adam
order of neighborhood, K = 5
Number of nodes= 2000
Number of edges= 2667
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