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Abstract
Cyber‐physical systems have behaviour that crosses domain boundaries during events
such as planned operational changes and malicious disturbances. Traditionally, the cyber
and physical systems are monitored separately and use very different toolsets and
analysis paradigms. The security and privacy of these cyber‐physical systems requires
improved understanding of the combined cyber‐physical system behaviour and methods
for holistic analysis. Therefore, the authors propose leveraging clustering techniques on
cyber‐physical data from smart grid systems to analyse differences and similarities in
behaviour during cyber‐, physical‐, and cyber‐physical disturbances. Since clustering
methods are commonly used in data science to examine statistical similarities in order to
sort large datasets, these algorithms can assist in identifying useful relationships in cyber‐
physical systems. Through this analysis, deeper insights can be shared with decision‐
makers on what cyber and physical components are strongly or weakly linked, what
cyber‐physical pathways are most traversed, and the criticality of certain cyber‐physical
nodes or edges. This paper presents several types of clustering methods for cyber‐
physical graphs of smart grid systems and their application in assessing different
types of disturbances for informing cyber‐physical situational awareness. The collection
of these clustering techniques provide a foundational basis for cyber‐physical graph
interdependency analysis.
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1 | INTRODUCTION

Clustering analysis has played a prominent role in data analysis
for a multitude of domains and has a long history of providing
insight into unexpected relationships and interdependencies.
Clustering is an exploratory technique using algorithms to sort
large datasets into groups defined by statistical similarities. The
goal is to identify useful patterns or relationships within data

that are otherwise not readily apparent. The resultant clusters
or groupings of data can be achieved through a variety of
measures and models; each cluster's significance depends on
the application area, data availability and type, and under-
standing of clustering goals and needs [1]. With these con-
siderations, clustering analysis is an extremely effective tool.
For example, one can cluster different data objects that exhibit
similar behaviour when certain events occur or understand
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which data objects have no association or dependence on one
another.

In power systems applications, clustering analysis has often
been used to provide insight into relationships between
different grid components (e.g. generators, lines, loads), impact
of different disturbances (e.g. faults, outages), and similar,
localised behaviours (e.g. modes, stability margins) [2]. These
types of clustering analyses focus on power system data such as
nodal/edge connections and time‐series measurements.

Yet the power grid and other critical infrastructure systems
are becoming increasingly cyber‐physical, rapidly evolving with
smart grid technologies, wide‐area monitoring capabilities, and
advanced automation. This strengthening cyber‐physical
mutuality does not limit cyber disturbances to the cyber sys-
tem (e.g. communication network) and physical disturbances to
the physical system (e.g. power system)—disturbances can
propagate between systems [3]. Similarly, operational system
changes can affect both cyber and physical domains; cyber‐
physical situational awareness (CPSA) is needed for both
normal operation and during disturbances [4].

An improved cohesive cyber‐physical mathematical
modelling notion of the system that links its state with its
data is needed [5], as described in different applications
including cyber‐physical state‐based modelling and analysis of
large‐scale power system infrastructure. To help improve
CPSA and provide a more quantitative assessment of cyber‐
physical system relationships, we study graph clustering
techniques to apply to cyber‐physical data. This paper fo-
cuses on grid cyber‐physical graph models and the applica-
tion of several different types of clustering methods. These
methods are compared for their diagnostic value in assessing
cyber‐physical interdependencies during different types of
disturbances. Understanding where the clustering methods
overlap and where they have gaps for assessing these dis-
turbances will provide next steps in achieving more
comprehensive CPSA.

Specifically, this paper will focus on grid cyber‐physical
graph models and the application of several different types
of clustering methods. These methods will be compared for
interpreting cyber‐physical interdependencies during different
types of disturbances. Understanding the overlap and gaps
between these different clustering methods for assessing these
disturbances will provide next steps in achieving more
comprehensive CPSA. This comprehensive CPSA can greatly
enhance cyber‐physical system (CPS) security with its risk
characterisation which can improve CPS vulnerability analysis,
attack detection, and adaptive response techniques. Addition-
ally, deeper insight into nodal and edge relationships in the
cyber‐physical graph can be achieved that can provide criti-
cality rankings, identification of important interfaces in the
CPS, and paths for cascading disturbances.

The main contribution of this paper is to develop a
foundational basis for graph‐based CPS interdependency
analysis that uses graph clustering techniques to characterise
CPSs during cyber‐, physical‐, and cyber‐physical disturbances.
This approach is developed through discussion of prior and
existing research in Section 2, development of an emulation

experiment with various disturbance scenarios in Section 3,
presentation of clustering methods of interest and their results
from the emulation scenarios in Section 4, comparison of the
clustering results and insight into the CPS interdependencies in
Section 5, and conclusions and future work in Section 6.

2 | BACKGROUND

In this section, we highlight previous work on the use of
different clustering techniques and graph analysis research as
applied to power grids and cyber‐physical power systems. In
refs. [6–8], the authors consider power grids as graphical
network models in which both the cyber and physical networks
are considered. In each piece of literature, the authors define
and test a different mathematical or theoretical approach to
define cyber‐physical resiliency of power systems, using graph
theory concepts.

For example, in ref. [6], the authors build a dependency
graph of the power system by monitoring system calls and
traffic between the different system components. These are
modelled as weighted nodes in a Bayesian network. The au-
thors rank physical contingencies using graph theory tech-
niques based on power system topology, which include vertex
centrality measures such as closeness centrality (to rank
generator outage contingencies) and edge betweenness cen-
trality (to rank line outage contingencies). In ref. [7], authors
construct a Competitive Markov Decision Process (CMDP)
model based on the power system and cyber topology infor-
mation and relative cyber‐physical interconnections. In ref. [8],
the authors treat the power system as a graph and define both
physical and cyber resiliency metrics based on the power sys-
tem topology and the communication network, which are
assumed to be isomorphic.

In ref. [9], Baranwal and Salapaka work on improving
power system management through use of clustering tech-
niques to enhance voltage control in large power systems,
which can help in controlled islanding applications that can
limit large‐scale blackouts. As with refs. [6–8], the authors view
the power system as a weighted graph network, with the nodes
denoting the buses. The difference in this work is that the
edges between the nodes are quantified as the “electrical
similarity” between components. This similarity is defined as
the “influence” of the two buses on the rest of the network,
which is quantified as the measure of system‐wide voltage
fluctuations resulting from reactive power injections from the
two buses. Since this electrical similarity is inherently physical,
it can be calculated using power flow equations. Once the
graph is developed, control strategies are then developed for
voltage control and islanding case studies. Similar work is done
in ref. [10], in which the authors focus on controlled islanding
applications by using spectral clustering of the power system
and performing N‐k line contingency analyses with statistical
correlations studied as well. In both refs. [9, 10], it is important
to note that the authors studied the power system as a purely
physical system, instead of cyber‐physical, which is the focus of
our paper.
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In ref. [11], the authors implement and compare different
clustering techniques to help identify demand days in the
system, where the goal would be to cluster similar energy
demands with respect to the time periods selected. The
different clustering techniques studied include k‐centres, k‐
means, k‐medians and k‐medoids, with k‐medoids showing
the best clustering results. In ref. [12], the authors focus on
spectral graph theory and hierarchical clustering techniques to
study and analyse islanding in hybrid energy systems (HESs).
The integration of renewables has made the traditional power
system more complex, thus requiring more complex contin-
gency analyses to ensure overall system resiliency and reli-
ability. Other applications of clustering can include the use of
spectral clustering using topology information and electrical
grid data to implement “locational marginal pricing, phasor
measurement unit (PMU or synchrophasor) placement, and
power system protection,” according to work done in ref.
[13]. Another important application of clustering in power
systems is the creation of synthetic power network graphs
which accurately represent real power system topology and
system characteristics, as developed by ref. [14]. In ref. [15],
the authors propose a method of dividing a power network
into different zones based on the “electrical distance” be-
tween the elements in the system, which is defined by the
authors as the “absolute value of the inverse of the system
admittance matrix.” Other work in the literature includes
further analysis and studies related to hierarchical spectral
clustering applications [16] and electrical and topological
structure of electric grids, where an algorithm is developed
that generates an accurate weighted “minimum distance
graph” that is similar in properties and structure to real‐life
power grids, as done in ref. [17].

Building on the existing literature in this field, this paper
will focus on comparing different cyber‐physical clustering
techniques to analyse the inter‐dependencies between the
physical network and its components and the cyber network
and its components.

3 | CYBER‐PHYSICAL EMULATION
EXPERIMENT DESIGN

3.1 | WSCC 9‐bus emulation

The WSCC 9‐bus system is a simple approximation of the
Western System Coordinating Council (WSCC) to an equiva-
lent system with 9 buses and 3 generators [18]; the oneline
diagram is pictured in Figure 1. Additionally, a corresponding
synthetic cyber network was created for the WSCC 9‐bus
system, described in detail in ref. [19], and is shown on the
right side of Figure 1. The power system oneline diagram will
be referred to as the physical model and the network diagram
will be referred to as the cyber model. Together, they comprise
the cyber‐physical model of this power system, encompassing
the integrated power system operational physics, sensing,
computation, and communication to and control of power
system components [20].

A combined, directed graph of the WSCC 9‐bus cyber‐
physical model is generated using graph‐theoretic, power sys-
tem and network observability techniques. The graph is
pictured in Figure 2a. Additional details on this observability‐
based approach are provided in ref. [21]. To simplify identifi-
cation, we will use a set of letters and acronyms to denote
system components as follows: for physical components, bus
(B), load (L), and generator (G), and for cyber components,
relay (R), switch (SW), human machine interface (HMI), and
control centre (CC). This will allow easier notation for specific
components in the results, such as bus 1 being represented as
B1 and relay 10 being shown as R10. The graphs of cyber and
physical networks are based on their configurations and power
flow direction. The integration of cyber and physical networks
depends on digital protective relays and other control and
sensor devices that bridge the cyber‐physical domains.

Digital protective relays have both communication and
control capabilities and thus link the cyber and physical net-
works. They deliver data among cyber networks and control

F I GURE 1 Oneline diagram of WSCC 9‐bus physical power system with labelled relay placement and corresponding cyber network.
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physical devices to maintain the stability of physical networks
and provide system safety. For each substation in the WSCC 9‐
bus case, there are relays protecting nearby components; thus
there is a directed connection from relay to bus or relay to load
that serves to integrate the cyber and physical networks. The
relay locations are shown in Figure 1. Details for this approach
are provided in our prior work [21]. This results in a model that
can be readily applied to compare the clustering methods
described in this work.

3.2 | Cyber‐physical disturbance scenarios

To compare between the different techniques studied in this
work, we examined how different modifications to the cyber
and physical graph connections affect the results gathered. As
each technique is used to examine different aspects of the
graph structure, this can result in differences in the intuition
gained about the system. For this, we will use the WSCC 9‐
bus power system use case along with a hypothetical cyber
network as described in ref. [22], with three substations (A, B,
C). The scenarios that will be studied involve changes in the
CPS graph structure used for clustering analysis. They are as
follows:

1. Generator 1 and line 6‐9 outage
2. DoS against load 5 and 6 relays (R13 and R20)
3. DoS þ line and generator outage
4. Double line outage: line 7–5, line 6–4
5. DoS against control centre switch (cc_sw) and substation C

switch SubC1_SW
6. Double line outage: line 7–5, line 6–4 and DoS against

control centre switch (cc_sw) and substation C switch
SubC1_SW

In Scenario 1, generator 1 and line 6–9 are disconnected,
which requires load shedding to prevent over‐current faults.
Scenario 2 looks instead at a cyber attack on the control
network that is aimed at preventing the relays at loads 5 and 6
from responding to any load shedding commands. Scenario

three is the combination of both. These scenarios can be
represented as modifications to the CPS graph through node
or edge deletion. In Scenario 4, a double line outage occurs and
no mitigation is deployed. Scenario 5 studies a distributed DoS
(DDoS) at two locations and Scenario 6 studies the DDoS in
conjuction with the double line outage.

The emulation comprises two key elements. A real‐time
digital simulator (RTDS) enables streaming C37.118 data
from PMUs in the RTDS WSCC 9‐bus model. SCEPTRETM, a
Sandia industrial control system (ICS) emulation tool, enables
modelling of ICS cyber/control networks and implementation
of actual communication protocols such as Modbus and
DNP3. The details of this emulation, scenarios, and imple-
mentation method are described in more detail in ref. [22]. The
physical disturbance data sets, consisting of bus frequencies,
are collected from 8 different PMUs in the WSCC 9‐bus
model. The cyber disturbance data sets, consisting of round‐
trip times (RTTs), are collected from 3 different relays in
each Substation A, Substation B, and Substation C. The tools
pyPMU and iperf3 were used to collect the PMU C37.118 and
RTT data collection, respectively [23, 24].

4 | CLUSTERING METHODS OF
INTEREST AND RESULTS

In our examination of various clustering methods for analysing
the structure of cyber‐physical interconnections, a few
different methods were identified. Throughout this study we
will focus on what insights are gained about the system
structure, what information is required, and the complexity for
each technique. These results will inform our discussion on
similarities and differences between the various methods and
aid our understanding of how changes to CPS appear and
affect the structure of the system under the scenarios described
in Section 3.2. The methods examined in this work will consist
of examining the graph components and condensation graphs,
K‐Shell cores, graph modules generated by examining the
system as a bipartite graph related to producer‐consumer re-
lationships, and clustering from graph embedding techniques.

F I GURE 2 Graph components and condensation graph for full system. (a) Graph components for full CPS. (b) Condensation graph for full CPS.

4 - JACOBS ET AL.
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Each of these methods can be used to analyse various struc-
tural properties of the CPS and assist in understanding system
interconnections.

All the techniques studied here are applied on a cyber‐
physical system graph, constructed as described in ref. [21].
A graph G is defined as a set of vertices V and a set of edges E
which connect those vertices. There are both directed and
undirected graphs, where the edges E either contain inherent
information on direction or not. In all cases in this paper, we
will be using directed graphs, where each edge ei ∈ E is a set of
vertices {vi, vj} which shows interaction from vi to vj but not
the other way around which would require a corresponding
edge ej ∈ E with {vj, vi}. We will use the terms vertex and
node interchangeably throughout this paper.

4.1 | Graph analysis

We begin our analysis with fundamental graph analysis
methods and metrics. Using this foundation we can better
study the relationships and information gleaned from the
various graph decomposition approaches and related tech-
niques. Graph analysis is used in many applications to better
understand system structure, including path analysis, such as
for network routing protocols and search algorithms [25],
community detection [26], change detection and distance
metrics [27], and many other areas of interest. For more
complete background on graph theory and techniques used for
analysing graph structures, see [28].

There are several structural properties of graphs that could
be useful in analysing important dependencies in the system
across both the cyber and physical domains. One example is
ranking importance of different nodes or edges in the graph
for the purpose of keeping the graph connected. There are a
variety of metrics that could be used for such a purpose, such
as node centrality, commonly used paths, and cut sets, among
others. One such method that examines this part of the graph
structure is K‐Shell decomposition which uses the number of
edges attached to each node, otherwise known as node degree,
as a way to examine how central each node is. This is further
described in Section 4.2.

An additional application of interest is in better visualising
complex networks and inferring which nodes and edges are
critical to keep the overall CPS connected and operational. By
examining graph components and condensation graphs, we
can deconstruct overall structure of the graph and how it can
be decomposed into subgraphs where nodes are highly con-
nected to each other but may be mostly separate from the rest
of the graph.

For this analysis, the structure of a graph is examined
through the existence of paths to and from each node. In an
undirected graph, where there is no direction associated with
each edge, the graph is said to be connected if every node has a
path to every other node. In directed graphs, this concept needs
to be extended to account for the direction of the edges, where
weakly connected graphsmean every node has a path either to or
from that node to the rest of the graph, while strongly connected

graphs require paths in both directions from every node. Often,
only subgraphs are connected instead of the entire structure, and
these subgraphs are called graph components. A representation
of the graph that uses the connections of the graph components
is called a condensation graph.

4.1.1 | Results from WSCC 9‐bus emulation
scenarios

In Figure 2 we can see how a graph can be decomposed using
graph components into sections which are each strongly
connected. In the case of the full CPS graph for the WSCC 9‐
bus system, the majority of the system is highly interconnected
in a central component, with only the 3 generators in the
system being separate. This shows how the generators and
their connections to the rest of the system are critical, which
matches existing intuition about power systems where gener-
ation capacity and placement are very important.

The graph structure itself changes for each of the disrup-
tion scenarios described in Section 3.2. As certain nodes or
edges in the graph are deleted or modified due to various
system failures, that can result in potential issues or significant
changes in the graph structure. Figures 3 and 4 show how the
graph structure changes for each scenario.

The condensation graphs for the WSCC 9‐bus system
show some fairly interesting but simple aspects of the graph.
As noted previously, the entire cyber‐physical graph is
strongly connected except for the generators in the power
system, which due to the direction of power flow are rep-
resented only as supplying power to the power system.
Because of this, each generator ends up being in a graph
component on its own. When G1 is disconnected, the
number of graph components drops from 4 to 3, showing a
very simple way to easily isolate, identify, and measure when
important structural changes, such as losing a generator,
occur in the CPS. In the DOS scenario, the loads at buses 5
and 6 are disconnected from communications‐enabled relays
controlling any load shedding that could be performed, and
this makes them no longer strongly connected to the rest of
the system. In other words, the loads themselves still are
connected to the power system but cannot interact with the
control network, which splits those nodes out of the strongly
connected central component in the graph. This is easily seen
by examining the condensation graphs in Figures 4b and 4c.
In scenarios 5 and 6 where the control centre switch is
DOSed, the control centre is disconnected from the rest of
the system, which means that observability of system con-
ditions will be lost from the control centre, as shown in
Figures 8e, 4e, 8f, and 4f.

As shown here, graph components and condensation
graphs help to isolate structural changes to CPS graphs under
various cyber‐physical attack or failure scenarios. These results
can help in visualising such changes and identify when addi-
tional issues could arise, such as disconnections of portions of
the graph or where certain edges could become critical in
keeping the graph connected.

JACOBS ET AL. - 5
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4.2 | K‐Shell decomposition

In the analysis of complex networks, understanding node
importance and hierarchical structure is paramount. A fast
technique that offers insight into this hierarchical nature is the
K‐Shells decomposition method [29]. At its core, this

technique operates on the principle of iteratively peeling away
the least connected nodes. Each shell is described by the
number of edges into and out of each node in the graph, which
is the node degree. The 1‐shell is the shell where each node has
a degree of one, the 2‐shell a degree of two, and so forth. This
layered structure reveals the hierarchy of the nodes [30]. This

F I GURE 3 Graph components and condensation graph for scenarios. (a) Scenario 1 graph components, (b) Scenario 2 graph components, (c) Scenario 3
graph components, (d) Scenario 4 graph components, (e) Scenario 5 graph components, (f) Scenario 6 graph components.

F I GURE 4 Condensation graphs for scenarios. (a) Scenario 1 condensation graph, (b) Scenario 2 condensation graph, (c) Scenario 3 condensation graph,
(d) Scenario 4 condensation graph, (e) Scenario 5 condensation graph, (f) Scenario 6 condensation graph.
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technique is often applied to epidemiology [30], social net-
works [30] and, more recently, cybersecurity [31]. Here, we
present the unweighted K‐Shells methods on a cyber‐physical
network.

The K‐Shell decomposition of a network is a method used
to characterise the structural importance or resilience of nodes
in a network.

1. Structural Importance: Nodes in higher‐numbered shells
tend to be more central in the network. They are more
deeply embedded in the network, making them crucial for
network connectivity. This does not consider that a node
like a generator is central to the physical network but not
the cyber network. In this network configuration all the
generators are in shell one.

2. Resilience: From a network resilience perspective, removing
nodes in the higher shells would typically have a more
profound impact on the network's connectivity than
removing those in the lower shells. In other words, nodes in
the higher shells are often more critical for maintaining
network connectivity. This is observed in scenarios 5 and
six in which adverse events affect both the cyber and
physical systems.

3. Granular Node Classification: Instead of a single centrality
measure, K‐Shell gives a granular classification. For
example, all nodes in the 1‐shell have similar importance, all
in the 2‐shell have a higher importance, and so on. While
this may be true for social networks, this does not neces-
sarily apply to power systems.

4. Hierarchy: In many real‐world networks, most nodes will
belong to lower shells, and only a few nodes will belong to
the highest shells. This hierarchy often reflects various roles
or functions of nodes in the network. For instance, in social
networks, higher‐shell individuals might be hubs.

5. Robustness: In terms of network robustness, nodes in
higher shells can be considered more robust because they
are connected to more nodes that are also well‐connected.
Conversely, nodes in the outermost shells (lower‐numbered
shells) are the most vulnerable to disconnection.

In summary, the K‐Shell decomposition provides a hierarchical
way to classify nodes based on their connectivity and the
overall structure of the network. This classification can be
instrumental in various applications where understanding the
structural importance or resilience of nodes is crucial.

4.2.1 | Results from WSCC 9‐bus emulation
scenarios

The K‐Shell analysis results for each scenario are presented in
Figure 5; the colour interpretation of the nodes for each sce-
nario is provided in Table 1.

The pre‐scenario K‐Shell analysis finds that the original
WSCC 9‐Bus CPS interface is made up of three shells. Shell 1

contains 7 nodes, Shell 2 contains 20 nodes, and Shell 3 con-
tains 30 nodes. The first disturbance scenario does have a
physical impact to the CPS. This results in a change of the shell
structure, as seen in Figure 5a. Generator 1 has been discon-
nected from the system and Shell 1 now contains 6 nodes. The
second and third scenarios result in L5 and L6 moving from
Shell 2 to Shell 1 (Figures 5b and 5c). Scenario four results in
physical change to the system. However, it does not affect the
K‐Shell output (Figure 5d). Scenarios five and six have the
greatest impact to the K‐Shell output as seen in Figure 5e,f. In
scenarios five and six, where multiple nodes are modified, we
see the appearance of a zero shell where the Control Centre
HMI is disconnected from the network, as can be seen in
Figure 5e,f.

4.3 | Bipartite graphs

Mutualistic networks in nature, such as plant‐pollinator or
plant‐herbivore models, have been found to be resilient to
unexpected disturbances [32–34]. Ecologists have attributed
this to their unique hierarchical network structure, which
also supports highly specialised actors [35]. Ecological ana-
lyses of mutualistic networks use bipartite graphs and clus-
tering analyses to model and quantify interaction structures
as related to network function and to allocate conservation
efforts amongst species [34, 35]. A bipartite model groups
actors into two sets and highlights interactions between the
two groups. A modularity analysis is then used to identify
generalist and specialist species, interaction clusters or
modules between species, and general interaction distribution
patterns across all species. These modules may be thought
of as similar to the clusters identified in the other tech-
niques investigated here. Modularity (QN) quantifies the level
to which components are clustered into modules based on
interactions. The Newman algorithm [36, 37] from by Zuo
[38], produces a value from zero to one for QN (Equa-
tion (1)) where eii is the percentage of edges in module i,
and ai is the percentage of edges with at least one end in
module i, with zero indicating no clustering or modules
based on interaction patterns and one indicating clearly
defined clusters with no interactions crossing clusters. A
modularity analysis also produces a visual depiction of the
clusters, using colours to highlight within module in-
teractions. The level of modularity that can be achieved is
controlled somewhat by the overall connectance (Equa-
tion (2)) of the interface, or the ratio of actual interactions
or edges (L) to total possible edges in the graph. A higher
connectivity (closer to one) limits the level of modularity
that can be achieved while a lower level (closer to zero)
makes modularity more likely, but not guaranteed. A bipar-
tite network graph is relevant in cyber‐physical systems as it
uniquely focuses on the interface between the cyber and
physical components, helping to identify any patterns that
are impacting performance.

JACOBS ET AL. - 7
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QN ¼max

 
Xk

i¼1

�
eii − a2i

�
!

ð1Þ

C ¼
L

NðN − 1Þ
ð2Þ

4.3.1 | Results from WSCC 9‐bus emulation
scenarios

This work builds on that of ref. [39] to examine how un-
derstanding modules describing the cyber‐physical (CP)
interface can inform our understanding of disturbance
(removal of nodes and edges) propagation between cyber
and physical parts of the network. As the entire CP power
system is highly complex, understanding what impact the
interface design has on the overall network response is
highly beneficial. The modularity analysis finds that the
WSCC 9‐Bus CPS interface is made up of 12 modules, seen
in Figure 6 and detailed in Table 2. Three modules contain
one of 3 buses (B7, B9, and B4), each having a dedicated
set of 3 relays. Three modules have a set of 2 relays per bus
(B8, B6, and B5) and the remaining 6 modules are made up
of one bus or load connected to one relay. The modularity
for the original WSCC 9‐Bus CPS and disturbance scenario
1 is QN = 0.898. This is a high modularity (very close to

TABLE 1 K‐Shell result colour interpretation for each scenario.

Scenario Colour Order of K‐Shells

1 Red, orange, grey 1,2,3

2 Red, orange, grey 1,2,3

3 Red, orange, grey 1,2,3

4 Red, orange, grey 1,2,3

5 Red, purple, brown, grey 0,1,2,3

6 Red, purple, brown, grey 0,1,2,3

F I GURE 5 K‐Shell analysis results for different scenarios. (a) Scenario 1 K‐Shells, (b) Scenario 2 K‐Shells, (c) Scenario 3 K‐Shells, (d) Scenario 4 K‐Shells,
(e) Scenario 5 K‐Shells, (f) Scenario 6 K‐Shells.

8 - JACOBS ET AL.
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one), a result of the low levels of connectivity (C = 0.0834,
Equation (2)) at the interface. Mutualistic networks in nature
have been found to have low levels of modularity,
prompting the question: What would a biologically inspired
CPS interface look like and how would it perform ‐ both
under normal circumstances and during disturbances? Bio-
logical ecosystems have been found to be characteristic of

high levels of performance in both of these cases, most
likely a result of long periods of reformation to be able to
both grow and develop as well as survive [40].

The first disturbance scenario does not directly impact
the interface at all and leaves the 12 modules intact. The
second disturbance scenario takes out two of the 1:1 mod-
ules: load 6 to relay 13 (module 10 in Table 2) and load 5 to
relay 20 (module 12 in Table 2). The third disturbance sce-
nario, which combines both the generator and line outage
with a DoS, results in the same 10 modules as the second
scenario—losing modules 10 and 12. The fourth, fifth, and
sixth disturbance scenarios investigated here (a double line
outage of B7‐B5 and B6‐B4, a DoS against the control and
SubC1 switches, and the combination of the two) do not
directly impact the cyber‐physical interface and therefore
maintain all 12 original modules listed in Table 2. The
modularity for the second and third disturbances, the only
two that directly impacted the interface, drops slightly to
QN = 0.881, down from 0.898. This is still an extremely high
modularity (very close to one), still mostly a result of the low
levels of connectivity at the interface (0.1 for the second and
third disturbance). It should be noted that the disturbance
scenarios being tested here are not full disturbance propa-
gation scenarios and therefore we are unable to truly see the
impact on the interface of cyber disturbances propagating
across the interface to impact the physical network compo-
nents (which would further impact the modules at the
interface) and physical disturbances propagating across the
interface to impact the cyber network components. Future
work will expand to include these simulations.

F I GURE 6 Modules found within the cyber‐physical interface of WSCC 9‐Bus case study for (a) the original, Scenario 1, and Scenarios 4–6; and (b) for
Scenarios 2 and 3. There are no connections at the interface that fall outside of a module.

TABLE 2 Modules for WSCC 9‐bus CPS system.

Module Physical components Cyber components

1 B7 R2, R3, R4

2 B9 R8, R9, R10

3 B4 R15, R16, R18

4 B8 R5, R6

5 B6 R12, R14

6 B5 R19, R21

7 B2 R1

8 L8 R7

9 B3 R11

10 L6 R13

11 B1 R17

12 L5 R20

Note: During disturbance scenarios 2 and 3, modules 10 and 12 are taken out, leaving 10
of the original 12 modules remaining.
Abbreviations: B, bus; L, load; R, relay.

JACOBS ET AL. - 9
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4.4 | DeepWalk based technique

DeepWalk is a type of graph embedding technique which
extracts the information based on a graph's topology [41].
The DeepWalk method generates random walks on the
graph, and uses a random path traversing approach to learn
the node interdependencies. The term “random walk” is
interchangeable with Markov Chain when the walks are
time‐homogeneous and finite state spaces are considered
[42]. In the DeepWalk algorithm, random walk at each step
following an outgoing edge is uniformly random, while a
Markov chain could generate next state based on diverse
distribution functions [43]. The DeepWalk approach draws
inspiration from natural language processing, in which
proximate nodes express similar meanings and tend to
cluster together. Similarly, within a certain amount of time,
adversaries may target the most relevant connecting
components in the power grid during DOS events.
Random walk on a directed graph starts with every single
vertex in the graph and visits its connected nodes in the
path [44]. Figure 7 shows a simple illustration of a random
walk with a starting point ‘G1’. The sequence of nodes
could be represented as shown in the sample random
walk in Figure 7. We considered the random walk process
as the potential access path each time the DeepWalk
generated.

To defend a power system against advanced adver-
saries, defenders must seek to anticipate the corresponding
components that might be affected. This can help stake-
holders to provide a preventive and proactive response,
minimise damage and protect the system. The random
walk process simulates the attacking path and estimates the
likelihood of the starting node given all the passing nodes.
The authors in [41] propose a direct method by estimating
the likelihood of a starting vertex given all the possible
passing vertices during the random walks. The estimated
likelihood equation can be denoted as: Pr(vi|(v1, v2, …,
vi−1)).

The technique is an unsupervised feature learning
technique, in which each node has the same possibility of
being chosen during the random walk step. It then captures
interdependencies between the nodes by using latent vari-
ables through the skip‐gram method. The skip‐gram
approach will gather highly pertinent nodes in n‐
dimensional vectors space. The clustering results of a
DeepWalk‐based approach will be accomplished with prin-
cipal component analysis (PCA) and k‐means. We are
assuming that nodes in the same cluster have high
interdependencies.

4.4.1 | Results from WSCC 9‐bus emulation
scenarios

In this paper, we are setting the number of DeepWalk‐based
clustering groups to be 6. The random walk conducted by
each node is set to be 100,000 times. Figure 8 illustrates the
graph representation of DeepWalk based clustering results of
scenario 2. The full clustering results are listed in Table 3.

Due to the stochasticity of the DeepWalk process, we
noticed discrepancy in the cluster results of test scenarios.
Certain nodes appears in different clusters across these sce-
narios. However, it is notable that there are high similarities
across these cluster results. To facilitate the cross‐analysis
process, we found most of the nodes resided at least three
times in the six scenarios, which implies the recurring pattern
among the clusters.

For example, {G1,B1,B4,R15,R16,R17,R18,SubB2_SW,
SubB_HMI,SubB_FW} components are considered an iden-
tical cluster for most are found in Cluster 1, Table.3. Any node
that happens to be attacked may lead to a following DOS
attack within the same cluster. For the first scenarios involving
Generator 1 and the line 6‐9 outage, people are seeking stra-
tegic reactions for isolating affected components, shifting
focus on the potential next targets and assessing system losses.
The DeepWalk based clustering results behave like attack‐
forecasting results and provide insights to proactive security
approaches. The operators may take advantage of the clus-
tering results to make a proactive response, prevent a cascading
failure, and reduce losses.

Assumption is made that the possibilities of each node
being attacked during a single random walk in different sce-
narios are identical. During attack events, adversaries tend to
achieve the most damage with a constrained time frame. Based
on our findings, it seems that higher correlation between
certain nodes is related to being more susceptible to the effects
of each incident. This observation suggests that nodes within
the same cluster are more likely to be attacked at the same time.
This will be investigated further in the future, and different risk
levels will be incorporated into the clustering process.

5 | COMPARISON OF GRAPH
CLUSTERING TECHNIQUES

Each graph clustering technique examined in this work de-
composes the structure of a graph to expose important
properties and relationships between nodes in the graph. These
analyses can be performed to examine node importance and
used as a selection tool in a network to identify nodes that are

F I GURE 7 Random Walk with Starting Point ’G10 and Eight as the Walk Length. In this experiment, it was considered as a simulated access path.

10 - JACOBS ET AL.
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highly interconnected. The results of these analyses directly
impact, and should be embedded within, the risk assessment,
management, and mitigation solutions for the system. Ac-
cording to [45], these interdependency clusters can help meet
three main objectives to achieve cyber‐physcial security:
strengthen energy sector cybersecurity preparedness, coordi-
nate cyber incident response and recovery, and provide
research results that inform the development of more resilient
energy delivery systems. In this context, several key observa-
tions are noted:

� Graph Analysis. General graph analysis is a well‐
established foundation with which to begin an interde-
pendency analysis for cyber‐physical systems. It provides a
“ground‐truth” baseline that can be transferred into more
advanced applications such as comparisons with, or further
development of, graph decomposition and analysis strate-
gies. A basic understanding of different graph concepts
and components is useful in clustering cyber‐physical sys-
tems and interdependency analysis. For example, graph
components can come in several varieties, such as strongly
or weakly connected. It is also important to consider
whether different variations in graph components apply for
either undirected or directed graphs, as this impacts the use
cases where it may be relevant. Examples are biconnected
components and graph cliques. In our results, condensa-
tion graphs are seen to be a useful mechanism for visu-
alising important edges in the graph and decomposing the
complex graph structure into a condensed and logically
verifiable structure. Another observation is that since CPS
are highly interconnected, graph components may be

almost the entire graph. For example, in Section 4.1.1, the
three generators are identified as individual components,
which exposes them as important, and it matches our
intuition about power systems. Additionally, in Scenarios 5
and 6, the control centre in the communications network
becomes split from the rest of the CPS, which is evident in
Figures 8e and 8f.

� K‐Shell Decomposition. K‐Shell decomposition is a
technique that uses the node degrees to cluster nodes in the
graph. Node degree is specifically for undirected graphs, so
an undirected graph is required for K‐Shell. Directed
graphs split the concept into in‐degree and out‐degree, for
incoming and outgoing edges, respectively. K‐Shell can be
seen to help identify and rank the importance of nodes
based on how many connections they have. A node in a
higher K‐Shell has more edges coming into or out of the
node, so it may be more central in the graph. It may thus
have more built‐in redundancy for that node's function.
Another interpretation is that more pathways through that
node may be enabled. Conversely, nodes in the 1‐shell have
only one edge, so disconnecting that edge would disconnect
that node from the graph. This 1‐shell connection is
reminiscent of the relationship of a critical controller or a
critical state variable on the physical side, as in refs. [46,
47]. This points to its potential utility in assessing and
improving the cyber‐physical controllability and observ-
ability of the system. In our system, that is observed to
happen in scenarios 5 and 6 when the control centre HMI,
which was in the 1‐shell, gets fully disconnected from the
rest of the CPS.

F I GURE 8 Graph Representation of DeepWalk based Clustered Results. (a) Generator 1 and line 6‐9 outage, (b) DoS against R13 and R20, (c) DoS þ Line
and G1 outage, (d) Double Lines Outage, (e) DoS against CC_SW and SubC1_SW, (f) Double Lines Outage and DoS against CC_SW and SubC1_SW.
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� Bipartite Graphs. Bipartite network graphs help to identify
patterns arising due to the cyber‐physical interface connec-
tions. A modularity analysis can aid in identifying interaction
patterns and level of clustering (termed modules) to enable
tying those to network functioning. The number of original
modules identified in the fully functioning CPS network
here are seen to decrease as a result of disturbance scenarios
2 and 3, which are the only ones that directly impact com-
ponents at the CP interface. The utility of this method for
screening whether disturbances have (or do not have) a
cyber‐physical (cross‐layer) property can be seen directly
here. Additional simulations are needed to use the approach
to understand disturbance propagation across in the inter-
face. The highly modular findings for the interface of the
WSCC‐9 bus case study suggests that an interesting future
optimisation problem could be to design the modularity of
the interface closer to what is seen in mutualistic biological

ecosystems, making a less modular and more hierarchical
interface to increase interface robustness. The results here
prompt the further exploration of modularity and interface
design, including its quantification in other larger and real-
istic power systems configurations. We do also see some
overlap with the clusters found by the DeepWalk method,
for example, module 1, made up of B7, R2, R3, and R4,
overlaps is contained within cluster three of the DeepWalk.
Similarly module 9, made up of B3 and R7, is contained
within cluster 4 and modules 1 and 3 are both contained
within cluster 1. There is less agreement however between
the modules and the k‐shells, for example, modules 3 and 9
do not line up with the k‐shells but module 11 does. That
there is some agreement between the clustering techniques
is promising to the combined use of multiple techniques to
understand different facets of these highly complex cyber‐
physical networks.

TABLE 3 Results of the DeepWalk methods.

No.
Cluster Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

1 {B1,B4,R15,R16, R17,
R18, SubB2_SW}

{G1,B1,R15,R16,R17,
R18,SubB2_SW,
SubB_HMI,
SubB0_SW}

{B1,B4,L6,R15,R16,
R17,R18,R19,
SubB2_SW}

{G1,B1,B4,R16,
R17,R18}

{G1,B1,B4,R15,
R16, R17,R18,
SubB2_SW,
SubB_HMI}

{G1,B1,B4,R15,R16,
R17,R18,
SubB2_SW,
SubB_HMI}

2 {L6,B6,R12,R13, R14,
SubB0_SW,
SubB1_SW,
SubB_HMI}

{L6,B4,B6,R12,R14,
SubB1_SW}

{L5,B5,B6,R12,R14,
R21, SubA2_SW,
SubB1_SW}

{B5,L5,R19,R20,R21,
SubA_HMI,
SubA2_SW}

{L6,B6,R12,R13,
R14,r1,r2, r3,
SubB0_SW,
SubB1_SW,
SubB_FW,
SubC_FW}

{L6,B6,R12,R13,R14,
r1,r2,r3,
SubB0_SW,
SubB1_SW,
SubA_FW,
SubB_FW,
SubC_FW }

3 {G3, B2,B7,R1,R2,R3,
R4,SubA1_SW}

{G3,B2,R1,R2,R3,R4,
SubA1_SW}

{G2,G3,B2,B3,B7,B8,
B9, L8,R1,R2,R3,
R4,R5,R6,R7, R8,
R9,R10,R11,
SubC1_SW,
SubC2_SW}

{G3,B2,B7,R1,R2, R3,
R4,SubA1_SW}

{G3,B2,B7,R1,R2,
R3,R4,
SubA1_SW}

{G3,B2,B7,R1,R2,R3,
R4, SubA1_SW}

4 {G2,L8,B3,B8,B9,R5,
R6, R7,R8,R9,R10,
R11, SubC0_SW,
SubC1_SW,
SubC2_SW,
SubC_HMI}

{G2,B3,B9,R8,R9,R10,
R11,SubC2_SW}

{SubC0_SW,
SubC1_SW,
SubC_HMI}

{G2,L6,B3,B6,B9,R8,
R9,R10,R11,
SubC0_SW,
SubC2_SW,
SubC_HMI}

{G2,B3,B9,R8,R9,
R10,R11,
SubC0_SW,
SubC2_SW,
SubC_HMI}

{G2,B3,B9,R8,R9,
R10,R11,
SubC0_SW,
SubC2_SW,
SubC_HMI}

5 {B5,L5,R19,R20,R21,
SubA0_SW,
SubA2_SW,
SubA_HMI}

{B7,B8,L8,R5,R6,R7,
SubC0_SW,
SubC1_SW,
SubC_HMI}

{SubB0_SW,
SubA_HMI,
SubB_HMI}

{L8,B8,R5,R6,R7,
SubC1_SW }

{B8,L8,R5,R6,R7} {B8,L8,R5,R6,R7}

6 {r0,r1,r2,r3,SubA_FW,
SubB_FW,
SubC_FW,
CC_HMI,CC_SW}

{L5,B5,R19,R21,r0,r1,
r2,r3, SubA_FW,
SubB_FW,
SubC_FW,
SubA0_SW,
SubA2_SW,
SubA_HMI,
CC_HMI,CC_SW}

{r0,r1,r2,r3,SubA_FW,
SubB_FW,
SubC_FW,
SubA0_SW,
CC_HMI, CC_SW}

{R13,R14,R15,r0,r1,r2,
r3, SubA_FW,
SubB_FW,
SubC_FW,
SubA0_SW,
SubB0_SW,
SubB1_SW,
SubB2_SW,
SubB_HMI,
CC_HMI,CC_SW}

{L5,B5,R19,R20,r0,
SubA_FW,
SubA0_SW,
SubA2_SW,
SubB1_SW,
SubA_HMI}

{L5,B5,R19,R20,R21,
r0, SubA0_SW,
SubA2_SW,
SubA_HMI }

12 - JACOBS ET AL.
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� DeepWalk‐based Technique. In the DeepWalk‐based
technique, a random walk step serves as a stochastic simula-
tion block. This step generates access paths for the
DeepWalk‐based clustering technique. By simulating
the stochastic access paths from each node in the graph, the
method examines common path traversals through the graph.
In this instance, the random walks are unweighted since there
is no additional information in the graph concerning edge
weights and probability of each edge being used. Through
Table 3, we can observe that there are high interdependencies
between the components. Attacks to anyone in the cluster will
potentially affect other nodes in the same cluster. We could
conclude that during a cyber event when certain devices aer
already being controlled, the likelihood of nodes residing in
the same cluster being affected will increase. Since risk is
defined by likelihood multiplied by impact [48], the risk level
of the nodes in the same cluster will rise when either node is
affected by the adversaries. This can help stakeholders to
better identify as well as predict attacks, to prevent cascading
failures and take corrective actions.
Further, the results can tell us how those risk levels change or
remain constant during specific disturbance scenarios. Clus-
tering results could also serve a role in predictive analysis to
help with anticipating incidents and making decisions. It
suggests that identifying and applying other control elements
that are in the same cluster as the compromised element(s) for
use in risk mitigation and response may have positive impacts
on the system's operational reliability. It suggests some next
steps such as high‐fidelity cyber‐physical testbed emulation to
further explore and validate this hypothesis. For example, the
DeepWalk‐based technique results suggest that the following
actions could be performed by operators after the DOS at-
tacks occur (which isolate the affected systems). Since later
stages of amulti‐stage attack, such as physical impact, typically
require a successful intrusion and earlier steps first, if

operators can anticipate the consequences and the possible
next‐step targets during an early stage, they should be able to
take appropriate actions more quickly and maintain better
control of the system. In summary, the clustering results can
help identify the potential available and successful proactive
response actions.

From each of these methods, different parts of the struc-
ture of a CPS graph can be isolated and identified. Many of the
differences between these techniques arise from the specific
information that each technique uses concerning the graph
structure. Table 4 provides a summary of the different input
requirements and output types of each technique. Each
method also has certain limitations. First, in examining graph
components and condensation graphs, only the paths to and
from nodes matter. Hence, we learn nodes' connections to
other nodes. If there is a distinct separation between portions
of the graph, this can be used to identify important edges, and
we can better visualise the structure using a condensation
graph. However, if the graph has many edges and everything is
connected, then looking at graph components does not help
decompose the structure any further. For K‐Shell decompo-
sition, it is based solely on node degree, so it is useful for
ranking nodes based on the number of connections of the
node, but that is all. For bipartite graphs, disturbances that
affect only the cyber side or only the physical side are not
captured.

Future work will look more at impact propagation, going
beyond the snapshots considered here. For this, we will need to
look at the time domain disturbance data as well as the rela-
tionship between some of the key characteristics identified in
this paper: node criticality, CPS clusters, and the differences in
those clusters, especially as the scenarios and systems change
over time. Then, we can observe more case‐specific and
scenario‐specific information that is contained in each of the

TABLE 4 Comparison of input
requirements and output types for each graph
clustering technique.

Input Output

Graph analysis Combined CPS graph Decomposed full CPS clusters

Number of clusters

Graph hierarchy

Important connections

K‐shell decomposition Combined CPS graph Decomposed full CPS clusters

K (number of edges) Node centrality

Bipartite graphs Partial CPS graph (only CPS
interfaces)

Decomposed interface clustersc

Number of clusters

Topological interface dependencies

Cluster coherence ‐ modularity

Deep walk‐based
technique

Combined CPS graph Decomposed full CPS clusters

K (number of clusters) Likelihood Estimation for node
vulnerability

Access paths

JACOBS ET AL. - 13
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method's results. Hence, there is value in expanding to larger
cases and to other disturbance scenarios where we can gain
further insight into the interdependency analysis methods as
well as validate our current hypotheses on the meaning of the
different clusters, shells, components, and interfaces.

6 | CONCLUSIONS AND FUTURE
WORK

In this paper, we examined various decomposition and clus-
tering techniques to study the structure and interconnections in
CPS graphs. This is useful for a variety of cyber‐physical
analysis applications, such as:

1. Studying interdependencies to identify potential cascading
failures or attack paths

2. Ranking graph nodes and edges as critical or non‐critical
3. Better visualising graph structure and interconnections
4. Identifying important interfaces between the cyber and

physical portions of the graph
5. Examining how the graph structure changes during failure

scenarios.

Several different techniques were studied in a representa-
tive cyber‐physical graph with using the WSCC 9‐bus bench-
mark power system model and an associated communication
network. These scenarios consist of different combinations of
generator and line outages alongside DoS attacks. The results
of applying each technique to these scenarios helped to identify
several application areas where the techniques studied in this
paper assisted in identifying important structural elements of
the cyber‐physical graph. Each of the techniques were
compared and were found to highlight different structural
characteristics of the cyber‐physical systems and provide
insight into different node and edge criticality.

The results of this paper are foundational in developing a
comprehensive approach for interpreting and studying cyber‐
physical system interdependencies for a multitude of applica-
tions and scenarios. By comparing and assessing the results of
multiple clustering techniques for cyber‐physical graphs, we
can understand the structural relationships in cyber‐physical
systems and how these relationships change or remain the
same for different disturbances. While this approach currently
only examines the structural properties and connections be-
tween components in the CPS, it does provide a basis for
assessing cyber‐physical system interdependencies for which
the natural next step is to assess the dynamic, time‐series
cyber‐physical relationships. With both structural and tempo-
ral understanding of cyber‐physical interactions, comprehen-
sive CPSA can be achieved that helps inform decision‐makers
for planning and response strategies.

In future work, we will add to the structural CPS clustering
analysis toolset with time‐ and data‐dependent analysis. This
includes diving deeper into the relationship between two cyber‐
physical nodes and assessing their data exchange to understand
what variations occur during different disturbances. For
example, if a relay cyber node is communicating open/close

commands to a generator bus physical node, this will involve a
stream of communications that transmit the control command
and also periodically check generator bus status. We will also
update the cyber‐physical graph model to include weighted
edges and nodes that differentiate component and edge criti-
cality, as well as closely examine how different types of attacks
and behaviours may appear as heterogenous interactions in the
system. Since the current work contained here is not modelling
dynamical behaviour but rather exposing structural properties
and important connections in the graph, the nature of the links
is abstracted and will be investigated further in future work.
The overall structural and data‐dependent interdependency
analysis approach will provide a comprehensive toolset to
assess cyber‐physical systems for a variety of disturbances.
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