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Abstract—The electric power grid has evolved immensely with
time and the modern power grid is dependent on communica-
tion networks for efficient transmission and distribution. Since
communication networks are vulnerable to various kinds of
cyber attacks it is important to detect them and prevent an
important machinery like the power grid to get affected from
cyber attacks. False data injection attacks (FDIA) are one of
the most common attack strategies where an attacker tries to
trick the underlying control system of the grid, by injecting false
data in sensor measurements to cause disruptions. Our work has
focused towards Least Effort attacks of two types i.e., Random
and Target Attacks. Further, we propose a data augmented deep
learning based solution to detect such attacks in real time. We
aim at generating realistic attack simulations on standard IEEE
14 architectures and train neural networks to detect such attacks.

Index Terms—False Data Injection, State Estimation, Random
and Target attacks, Long Short Term Memory (LSTM)

I. INTRODUCTION

The power system is a dynamic and complex system
connecting diverse electrical components such as generators,
transmission lines and distribution systems. To ensure reliable
operation of such a complex system, we require secure system
monitoring of systems comprising of synchrophasor, Current
Transformers (CTs), Potential Tranformers (PTs), etc. State
variables, like voltage and phase angles at each bus are
estimated from these measurements, and the system operator
controls the estimated state to operate the grid. With the use
of a state estimator and its associated analysis for contingency,
a system operator can review each critical contingency, in
order to determine whether each possible future state is within
reliability limits, and make decisions regarding its operation.
But with the fusion of advanced cyber infrastructure in the
physical domain, the measurements are easily altered by
the cyber invaders, affecting the process of state estimation
and misleading the power grid control system, resulting in
catastrophic consequences.

False Data Injection Attacks (FDIAs) can be introduced
in a transmission system to trick the state estimator into
predicting wrong states without getting detected [1]. Detection
based methods try to find anomalies in the data received
through the communication channel. Such methods depend on
the real-time correlation between data points or the temporal
structure of the data to classify a new set of measurements
as anomalous. A significant drawback of this approach is that
it does not adapt well to changing patterns in transmission
behavior over time. FDIAs are challenging to detect using
conventional residue based methods since they do not capture

the spatial or temporal structure of the measurement data
available. However, with the current case of FDIAs, we can
ensure that bad data can be injected even by keeping low
residual error. This is a classic contextual anomaly detection
problem. Deep learning has shown significant promises in
solving complex tasks and has been used in pattern recog-
nition problems like object detection, speech recognition, and
anomaly detection.

Deep learning uses a data-driven approach where a function
approximator is trained using gradient descent over a given set
of data points. The success of deep learning can be attributed
to the ability of neural networks to learn complex functions
and the availability of massive data-sets. Motivated by its
application and success in the field of speech recognition,
time-series prediction, and anomaly detection, we explore how
recurrent neural networks can be applied to detect false data
injection attacks in the electric power grid.

Artificial Neural Networks (ANNs) have shown significant
performance in representing complex functions [2]. With the
advent of Graphics Processing Units (GPUs) and availability
of massive data-sets, neural networks have helped to solve
complex problems in the fields of object recognition [3],
speech recognition [4] and anomaly detection [5]. Especially
in anomaly detection, deep neural networks have been applied
in many applications like fraud detection, sensor network
anomaly detection, video surveillance, log anomaly detection
and Internet of Things (IoT). Deep neural networks have been
used in supervised [6], semi-supervised [7] and unsupervised
setting [8] in the past for anomaly detection. Specifically for
anomaly detection in spatially and temporally correlated data,
direct supervision using classification networks and unsuper-
vised methods using auto-encoders have shown impressive
results in the past. Generative methods like Generative Adver-
sarial Networks (GANs) [9] and Variational Auto-Encoders
(VAEs) [10] have also been explored. Both of them are
unsupervised methods where neural networks are trained to
learn the latent distribution of non-anomalous data. GAN uses
a discriminator to judge whether a new set of data points are
different from the old set of data on which it was trained on.
VAE uses the reconstruction error of the test set of points to
find anomalies.

The results are validated in these dynamic attacks through
simulation, utilizing both IEEE 14 and 118 based test system.
For the first case, we utilize a modified version of the 14-bus
system, while utilizing real time data, for a period of a year
study. The simulation results demonstrate that the attacker can

978-1-7281-0407-2/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on April 08,2024 at 20:33:34 UTC from IEEE Xplore.  Restrictions apply. 



systematically and efficiently construct different attack vectors
in real time for false data injection attacks at any instance
of time, making them impossible to detect by conventional
methods. The proposed deep learning based defense technique
has not been introduced previously.

The organization of the rest of the papers sections are as
follows: Section II introduces the background on state esti-
mation and FDI attacks. Section III elaborately explains two
types of FDI attacks: Random and Target Attacks. Section IV
presents the defense algorithm proposed for detecting the FDI
attacks. Section V presents the attack and defense case results
and analysis on the IEEE 14 bus system. Finally, section VI
concludes our paper with scope of future work.

II. BACKGROUND

The electric power grid uses a set of measuring devices
spread across various branches in order to determine the state
of the system. These states are then used to take necessary
control actions. However, the true state of the system cannot
be directly determined from the measuring devices because
of induced noise and measurement inaccuracies. Therefore, a
Kalman filter is used to determine the correct state of the grid
using those measurements. Such an estimation mechanism is
described by the equation 1:

z = Hx+ ε (1)

where z denotes the measurement vector, x represents the
state vector, H stands for the system characteristic matrix and ε
is the error in estimation. The objective is to find a state vector
x that minimizes the energy (variance) of residue ε defined as

min
x

1T (z −Hx)2 (2)

In conventional state estimators, for a new state vector
to be considered as a correct state the residue should be
below a defined threshold. In a false data injection attack, an
adversary aims to hack the readings of multiple measurements
to mislead the state estimator to predict incorrect states without
affecting the residue. These attacks can be random without any
particular motive [1] or targeted to certain state variables with
specific intentions [11].

It has been established by some researchers that such attacks
can be prevented totally by securing a subset of all measuring
devices completely on a encrypted network [12] but as the size
of the network increases the number on devices that needs
to be secured increases, hence it is not scalable. The basic
residual based detection can also be improved by using L∞-
norm instead of L2-norm [13].In most of the prior work it has
been assumed that the attacker has complete knowledge of the
system. However, in a practical scenario it can be assumed that
an intruder will not be aware of the entire power system and
will only have the information of a part of it. Recently, it has
been shown that FDIAs can be possible with partial system
information as well [14].

The residual based detection systems fail to consider the
spatial distribution of the measuring devices and temporal
distribution of the measurements. This is an important infor-
mation that can be used to derive spatio-temporal correlation
between measurements which can be used to detect attacks.
In a superficial sense the problem can be reduced to detecting

anomalies in a dense graph. Inspired by various classical
machine learning applications in cyber intrusion, sensor net-
works and image processing, researchers have tried to apply
nearest neighbor classifiers and other statistical classification
techniques [15]. However, these methods are slow for huge
systems and have a nonlinear run time complexity. In addition,
these models do not scale well with respect to the size
of the network and cannot be applied effectively to power
grids [15]. With the current advancements in deep learning
and sequential pattern recognition we propose a deep learning
based anomaly detection system to detect and identify various
kinds of intrusions.

III. ATTACK DESIGNS

The basic concept behind FDIAs is very simple, i.e., to
generate an attack vector a such that 3:

z + a = H(x+ c) + ε (3)

where c is the change in states induced due to the attack vector.
We have experimented on generation of two types of FDIAs.

A. Random Attacks
One of the simplest attacks is least effort random attack

where an attacker with access to a fixed set of compromised
measuring devices tries to bias random state variables. This
attack can be possible only if the attacker has access to all
the meters. However, in a real scenario it is not feasible for
attacker to get hold of all the measuring devices in a network.
As a result we cannot choose any random attack vector. The
attacks were generated following the methods described in [1]
with some conditions as described in that paper. It can also be
logically inferred that the probability of generating a random
attack increases if we have access to more meters.

B. Targeted Attacks
In a targeted attack the attacker wants to control particular

state variables. We denote the states affected by such an attack
as follows:

Istates = {i1, . . . , ik} where k < n (4)

This set denotes the state variables to be attacked. The
objective of the attacker is to inject an attack state vector c
such that x̂bad = x̂ + c where c = (. . . c1, . . . , ck . . . )

T . We
consider two cases of attacks over here: a constrained case
and an unconstrained case. A constrained case is one where
we assume that the injected attack does not affect any other
state apart from the targets. In the unconstrained case it is
assumed that the attacker doesn’t care about the impact of
his attack on other state variables apart from his targets. The
attacks were designed following the algorithm proposed in [1].

IV. DEFENSE MECHANISM

As mentioned earlier, the state estimator relies on simple
Euclidean distance based anomaly detection mechanisms to
recognize incorrect measurements. We have proven that such
a system is easy to trick and therefore the spatio-temporal
correlation of these measurements need to be accounted in
our new FDIA detection system.

In [15], a correlation based FDIA detection mechanism has
been proposed, where a semi-supervised structure is employed.
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An operator needs to define a correlation sphere for various
meters on the network. A single meter might lie in multiple
correlation spheres. This approach ensures that the spatio-
temporal correlation between the measurements are preserved.
At every iteration, correlations within a correlation sphere are
calculated and if a huge divergence is found then an anomaly
is flagged. This method is highly efficient in terms of run-time
complexity but would need humongous effort in designing the
correlation spheres manually. In addition this method will not
allow adaptive changes to network topologies.

In [16], a few more approaches based on sparse opti-
mization, low rank matrix factorization and nuclear norm
minimization have been explained. The assumption here is that
the gradually changing state variables will typically lead to a
low rank measurement matrix Z0 and the attack matrix (attack
vectors over time) is sparse. Therefore, the problem translates
to a matrix separation problem as

min
Z0,A

Rank (Z0) + ‖A‖0 (5)

s.t. Za = Z0 +A
which can be formulated as a convex optimization problem

as:

min
Z0,A

‖Zo‖∗ + λ‖A‖1 (6)

s.t. Za = Z0 +A
‖Z0‖∗ is the nuclear norm of Zo, i.e., the sum of singular

values of Zo. This kind of optimization problem has been
studied across the domains of compressive sensing and matrix
completion and can be solved using off the shelf optimization
algorithms. The problem with this approach is the compu-
tational complexity because of its iterative nature [16]. This
paper also proposes a faster way using low rank matrix factor-
ization where low rank matrix Z0 is represented as product of
two matrices U and V. Even though this approximation helps
to remove the expensive SVD step, it is iterative in nature,
which is not linear in time.

We propose a deep learning based data driven FDIA de-
tection method which is robust, has an almost linear run-
time complexity. Recurrent neural networks are heavily used
to capture temporal correlation in data, see e.g., [17], [18].
In addition to addressing variable length sequences they also
help to keep the predictor small and are computationally light
because of shared parameters.

A. Approach 1

In our first approach we define a recurrent neural network
for the entire grid which will take in the actual measurement
values in time from all the available meters and combine them
into the hidden recurrent state. The last recurrent state is used
to determine the status of all the meters. In the actual scenario,
we use an advanced version of recurrent neural network called
Long Short Term Memory (LSTM) to prevent vanishing and
exploding gradients [19]. The output of this network can be
represented as:

yt = σ (Woht)

= σ (Wo (LSTM (Wizt,Whht−1))
(7)

Fig. 1. Architecture of the network.

where yt ∈ Rm×1 is the vector of probabilities of m mea-
suring devices to be under attack at time t, zt ∈ Rm×1 is
the vector of measurement values at time t, σ is the sigmoid
activation function, Wo is the weight of the neural network .
This forms a recursive chain, where the characteristics of the
dynamic process is captured by the weights Wh. Wi captures
the mutual information of the nodes or for a graph as in our
case it might be thought of as a representation of the adjacency
matrix parameterized by the weights of each measurement.
In this approach we are enabling the network to learn the
dynamics of the process as well as the similarity matrix of the
measurements. However, this approach would need the number
of input measurement devices for the entire system to be fixed
and therefore is not scalable easily.

B. Approach 2

In the second approach we define a similar network as
discussed earlier but we do not take all measurements as
inputs. Instead we select a set of measuring devices which
are connected on the actual power grid graph. In this way
we are enforcing the spatial arrangement of the devices on
the network. Therefore, the major learning happens in the
temporal domain. This is a distributed approach and therefore
can be scaled easily. The output of this network can be
represented as:

yit = σ
(
Woh

i
t

)
= σ

(
Wo

(
LSTM

(
Wiz

i
t,Whh

i
t−1

)) (8)

where yit ∈ Rk×1 is the vector of probabilities of k measuring
devices to be under attack at time t, zit ∈ Rk×1 is the vector of
measurement values at time t for the ith region with k devices
in space.

In addition our architecture should be able to detect attacks
even when all measurements are not accessible. This might
occur due communication network failures and such oppor-
tunities can be used by intruders to attack the system. The
system should also be able to detect attacks on measurements
which have not occurred in the training set.
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Fig. 2. Topology for the IEEE 14 Bus Case

V. RESULTS AND ANALYSIS

A. IEEE 14 Bus Case
The simulation uses real world power consumption data

to generate 39 measurements and the intrusion state of these
devices at each time step. The methodology for the bus level
modeling is based on the synthetic load model proposed
in [20]. This model has an hourly basis specification, including
residential, commercial and industrial sectors loads and its
results were validated utilizing ERCOT Data. The topology
for the model developed contains 14 buses, 2 generators, 3
synchronous condensers, and 11 loads. It also contains a three
winding transformer equivalent. The final 14 bus topology is
presented in Fig. 2.

The data generated has a 5 minute resolution data, as a
basis design and specification, for an entire year, which gives
105397 time steps of SCADA data for the test case. For each
timestep, a state estimation model is solved utilizing the power
flow equations. In order to obtain a flawless resolution of 5
minutes in our test case, a piecewise polynomial algorithm
based on the cubic spline extrapolation methodology is utilized
to correct the missing measurements in the grid.

1) Attack generation: We design random and targeted at-
tacks on these measurements to affect the state variables. The
attack data is stored along with the state variables under attack
and the devices compromised. This is treated as the training
data for our deep learning models.

For the random FDI attacks, the attacker is trying to observe
its influence on the probability of finding an attack vector by
modifying the number of meters . The IEEE 14 bus system
with 39 measurements and 26 state variables to estimate is
considered for the case study. The experiment is repeated for
105397 timestamps. As it can be observed from Fig. 3, as
the number of meters increased, the probability of finding an
attack vector increases. At n = 2, it can be seen that it has
a probability of attack at around 0.27, while at n = 11, it
is possible to have a higher probability of almost 1. From
the equation, k ≥ m-n+1, it is observed that if k = 11, then

Fig. 3. Probability of finding an attack vector with varying number of meters
compromised

Fig. 4. Probability of detection using conventional Chi square Test with level
of significance α = 0.005

to perform a successful attack with 26 state variables, 36
measurements are needed at least.

To check the efficiency of the Random attack, the Chi-
square test is implemented, which is a conventional bad data
measurement detection algorithm. As per the chi-square test,
the minimum threshold to prevent the attack detection is 29.8,
for degree of freedom 13, which is the difference between
the number of meters and the state variables, with level of
significance α set to 0.005. While keeping this threshold, the
probability of detection is evaluated, for varying number of
meters compromised by the attacker as shown in Fig. 4.

For the targeted FDI attack, the objective of the attacker
is to attack a specific state variable. So the targeted attack
is performed, with different numbers of target state variables.
It is observed that the probability of attack required at least
15 meters to be compromised, to perform attack on 3 state
variables. For 31 meters, the probability of attack is 1, if the
attacker is aiming at 3 target variables. As the number of target
state variables is reduced, the number of meters required to
be compromised reduces. For example, as the target variables
become 1, the distribution of the meters ranged primarily from
2 to 7, as shown in Fig. 5.

2) Preprocessing the data for training: The attack data
needs to be formatted for the training process. This step splits
the data into sequences over a rolling window for training.
The data is already in per unit scale therefore, normalization
is not necessary. This split in sequences is important because
we are using a recurrent framework which needs features at
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Fig. 5. Probability of a successful attack when Y meters are considered to
target X number of state variables

Fig. 6. Predicted vs Actual data for detection using Approach 1

every time step over a fixed sequence length for training.
3) Training: We trained two neural networks using each

of the approaches described in Section IV on the attack data
generated. Training is done using binary cross entropy loss on
an ADAM optimizer. The performance of both approaches is
described below:

In approach 1, we trained one network on all 39 mea-
surements to predict the state of all 39 devices for attacked
and non attacked conditions. The results are shown in Fig. 6.
We categorized our test conditions into two segments: normal
and unseen conditions. In unseen conditions we ensure that
the training data never encounters an instance of an attack
on a particular bus and the test data has instances of attack
on the same bus. To check for addressing unseen attacks, in
approach1, we trained a neural network for scenarios where
devices 19 and 24 are un-attacked. For this we fit our network
on attacks of all other devices. Finally during testing we have
tested our model on the rows where attacks on device 19 and
24 are present and the results are shown in Fig. 7.

Fig. 7. Predicted vs Actual data for detection of unseen attacks using
Approach 1

Fig. 8. Predicted vs Actual data for detection attacks using Approach 2

Similarly, for approach 2, we trained a network on two
measuring devices which are spatially located nearby to predict
the state of their state. The output is shown in Fig. 8. After
that to make it robust for other devices we have fine-tuned this
network over measurements from devices 8 and 25 which are
not under-attack during training. Finally we test this network
under attacked conditions and the results are shown in Fig. 9.

TABLE I
COMPARISON OF PERFORMANCE OF TWO APPROACHES

Approach Normal Attacks Unseen Attacks
Approach 1 0.999 0.923
Approach 2 0.949 0.534
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Fig. 9. Predicted vs Actual data for detection of unseen attacks using
Approach 2

Fig. 10. Red nodes indicate compromised meters on bus 10 and 14

The performance of both these approaches are compared
in Table I. Since this is a classification problem we use
ROC-AUC (Receiver Operating Characteristics-Area Under
The Curve) to measure the performance of our approaches.
We also generate a visual of the network graph to denote
the buses under attack based on the devices we detect to be
compromised as shown in Fig. 10.

VI. CONCLUSION AND FUTURE WORKS

We have explored a few ways to detect attacks on the
power grid in real-time using deep learning. The proposed
approach is highly scalable and runs in linear time. We
have demonstrated strictly supervised and semi supervised
approaches towards attack detection for targeted and random
attacks. It can be seen that the performance of the network
which trains on all measurements is better than that of the
one which trains on localized measurements. Especially the
difference is noticeable for the cases of unseen attacks. This
can be because an attack does not just affect states at local
clusters but also some far off connections. The correlations

between these connections are learnt in the first approach
whereas we fail to encode them in the second approach.
Moreover, we need to find a better decentralized approach
for intrusion detection so that it is scalable and also performs
well on unseen attacks. We have tested our framework on a
14-bus case for random and targeted attacks. This system can
be scaled to larger scenarios and other kinds of attacks like
LMP attacks, voltage over loading attacks, load redistribution
attacks etc.
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