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ABSTRACT Modern power systems equipped with advanced communication infrastructure are
cyber-physical in nature. The traditional approach of leveraging physical measurements for detecting
cyber-induced physical contingencies is insufficient to reflect the accurate cyber-physical states. Moreover,
deploying conventional rule-based and anomaly-based intrusion detection systems for cyberattack detection
results in higher false positives. Hence, independent usage of detection tools of cyberattacks in cyber and
physical sides has a limited capability. In this work, a mechanism to fuse real-time data from cyber and
physical domains, to improve situational awareness of the whole system is developed. It is demonstrated
how improved situational awareness can help reduce false positives in intrusion detection. This cyber and
physical data fusion results in cyber-physical state space explosion which is addressed using different feature
transformation and selection techniques. Our fusion engine is further integrated into a cyber-physical power
system testbed as an application that collects cyber and power system telemetry from multiple sensors
emulating real-world data sources found in a utility. These are synthesized into features for algorithms to
detect cyber intrusions. Results are presented using the proposed data fusion application to infer False Data
and Command Injection (FDI and FCI)-based Man-in-The-Middle attacks. Post collection, the data fusion
application uses time-synchronized merge and extracts features. This is followed by pre-processing such
as imputation, categorical encoding, and feature reduction, before training supervised, semi-supervised, and
unsupervised learning models to evaluate the performance of the intrusion detection system. Amajor finding
is the improvement of detection accuracy by fusion of features from cyber, security, and physical domains.
Additionally, it is observed that the semi-supervised co-training technique performs at par with supervised
learning methods with the proposed feature vector. The approach and toolset, as well as the dataset that
is generated can be utilized to prevent threats such as false data or command injection attacks from being
carried out by identifying cyber intrusions accurately.

INDEX TERMS Multi-sensor data fusion, intrusion detection system, co-training, supervised learning,
unsupervised learning, cyber-physical systems, power systems.

I. INTRODUCTION
Multi-sensor data fusion is a widely-known research area
adopted in many sectors, including military, medical sci-
ence, finance, and energy. In certain natural systems, data
fusion occurs automatically. For example, human cognition
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of events seamlessly combines inputs from a human’s senses.
The brain can make a union, intersection, or exclusive or
with the data and enact a complex decoding or decrypt-
ing techniques. The brain will react the way it is trained
to process data since childhood. This ability streamlines
decision-making during typical as well as extreme events,
e.g., to recognize that a house is on fire and quickly
escape. However, this natural fusion process does not occur
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automatically for cyber-physical systems, yet it serves as a
model for what engineered fusion systems strive to achieve.

In the brain example, intra-domain sensor fusion refers to
the data collection from similar sensors such as vision from
left and right eyes. The inter-domain sensor fusion refers to
the fusion of sight, smell, acoustics, etc. Supervised learning
refers to how the mind is trained to perceive such sensor
data by guidance from an instructor. Unsupervised learning
refers to how without any instructions, the mind trains. In this
narrative, if the victim forgets to wear glasses, he loses some
labels from the accumulated information.

Automatic driving systems are cyber-physical systems that
widely use data fusion to fuse images and videos from sim-
ilar or disparate sensor types [1]. A power system is also
a cyber-physical system, yet most of its fusion applications
are currently intra-domain and consider only physical data.
Examples include fault detection [2] and intrusion detection
using principal component analysis (PCA) [3]. Similarly, for
network protection in industrial control systems, intrusion
detection systems (IDS) such as Snort, BRO, or Suricatta,
are increasingly used [4]. They offer a pure cyber-centric
approach that results in high false alarms [5]. Traditional
physical measurements are not sufficient to reflect the accu-
rate state of the cyber-physical system, e.g., to classify it
as cyber-secure, cyber-insecure, physical-secure, physical-
insecure, physical-abnormal. Thus, data fusion can fill these
gaps and improve situational awareness of the whole sys-
tem. Combining the benefits of visibility of both cyber and
physical systems, cross-domain data fusion has the poten-
tial to methodically and accurately detect mis-operation and
measurement tampering in power systems caused by cyber
intrusions.

In power system operations, the telemetry used for col-
lecting wide area measurements may have errors due to
sensor damage or cyber-induced compromise; if undetected,
applications that rely on these data can become unreliable
and untrustworthy. Sensor verification based on multi-source
multi-domain measurement collection and fusion solves such
problems. It is a valuable mechanism for detection and
detailed forensics of cyber intrusions targeting physical
impact. While offering numerous potential benefits, fusion
for attack detection in real-world utility-scale power sys-
tems presents challenges that hinder adoption, including the
creation, storage, processing, and analysis of the associated
large datasets. Fortunately, with the proliferation of afford-
able computing capability for processing high-dimensional
data, it is becomingmore feasible to deploy fusion techniques
for accurately detecting intrusions. Thus, research is needed
to take advantage of these data and computing capabilities
and create fusion-based detection techniques that solve this
problem.

Cyberattacks often progress in multiple stages, e.g., start-
ing with a reconnaissance phase, executing intrusions and
vulnerability exploitations, and culminating in actions target-
ing the physical system such as manipulating measurements
and commands. The events that comprise these incidents and

forensics about what occurred are not reflected using only
coarse cyber-side features. For example, an intruder may take
months in the reconnaissance phase, but during this period,
none of the physical side features reflect any abnormality.
Similarly, later when an intruder is injecting false commands
or tampering measurements, most of the cyber side features
do not reflect any abnormality, assuming the adversary is
stealthy. Additionally, the system dynamics in both cyber and
physical space vary considerably; this causes challenges in
merging data. The homogenization of cyber and physical data
with preservation of temporal information and appropriate
handling of inconsistent data fields is addressed in this work.

Sensor time resolution varies across domains and within
domains, which challenges merging the data. The time res-
olution of physical measurements depends on polling rates
and specifications of the field device. For example, phasor
measurement units (PMUs) provide GPS synchronized data
at subsecond data rates, SCADA systems provide data on
the seconds tominutes time frame, and smart meters deployed
residentially may have hourly resolution [6]. Relays monitor-
ing system transients have a time resolution on the order of
milliseconds. Similarly, the network logs and alerts from IDS
such as Snort have a resolution of milliseconds. Data fusion
solutions for cyber-physical power systems must effectively
handle varying data rates.

The use of machine learning (ML) and deep learning (DL)
for intrusion detection faces the problem that the trained
model’s effectiveness depends on the data collected [7] ; it is
a challenge to obtain a realistic baseline and to use realistic
data to validate the solution for a real-time cyber-physical
system [8]. A natural problem that arises with fusion for ML
is feature expansion, selection, and cyber-physical state space
explosion, which results in the curse of dimensionality [9].
This problem can be handled through feature reduction. How-
ever, detection is affected by the choices of data processing
techniques applied (e.g., feature reduction, balancing, scal-
ing, encoding) [10]. The impact of such factors on detection
accuracy must therefore be quantified before the techniques
can be trusted for securing critical infrastructure.

This work hypothesizes that the use of fused data from
cyber and physical domains can enable better attack detec-
tion performance than either domain separately if the afore-
mentioned challenges are addressed. Hence, a multi-sensor
multi-domain platform is presented, that fuses data and
detects cyber intrusions. First, interfaces for collecting data
sources from cyber and physical side emulators are provided.
Then, these interfaces are used to collect real-time data from
cyber, physical, and security domains; finally, the datasets
are fused before detecting cyber intrusions. Aggregation
of real-time sensor data from multiple sources, including
Elasticsearch [11], TShark [12], raw packet captures with
Distributed Network Protocol 3 (DNP3) traffic, and Snort
logs [13] is performed, that is extracted during the emulation
of Man-in-The-Middle (MiTM) attacks on a synthetic elec-
tric grid, modeled in the Resilient Energy Systems Labora-
tory (RESLab) testbed [14]. Fig. 1 gives an overview of the
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FIGURE 1. Top down approach for designing testbed, incorporating
cyberattacks, aggregating real-time sensor alerts, leveraging data fusion
engine for intrusion detection, followed by intrusion detection,
cyber-physical situation awareness (CyPSA), and state estimation (CyPSE).
The white highlighted blocks indicate the components incorporated in
this work.

multi-source data fusion presented. The major contributions
of the work in this paper are the following:

1) A cyber-physical intrusion detection solution is pro-
posed based on a data-driven hybrid information
fusion algorithm that leverages real-time data from
cyber and power-based sensors. The solution utilizes
the cyber-physical logical interconnections and allows
accurate detection of malicious misbehaviors in either
cyber controllers or power system components in a
timely manner.

2) A machine learning-based approach is proposed to
improve the scalability of the detection framework for
large-scale platforms. Moreover, the proposed tech-
niques can cope with different levels of data hetero-
geneity from various low-level cyber-physical security
probes.

3) The proposed solution is deployed and validated
against cyber-physical attacks on a real-world power
grid testbed that included several types of distributed
and commonly-used host- and network-based detection
probes. Furthermore, a working visualization proto-
types is developed for online cyber-physical situational
awareness during the attack progress in real-time.

4) An end-to-end data fusion engine from multiple
sources is developed and presented for cyberattack
detection in a real-time testbed emulation of a synthetic
electric grid.

5) Data pre-processing techniques such as balancing, nor-
malization, encoding, imputation, feature reduction,

and correlation are evaluated to address feature explo-
sion and tackle data inconsistencies, before training the
machine learning models.

6) Improvement in cyberattack detection capability of the
trained supervised, unsupervised and semi-supervised
models, built from the fused dataset performance, com-
pared to pure cyber or physical feature based IDS mod-
els is demonstrated.

7) An orchestration application is designed to visualize
each stage of data pipelining, pre-processing, followed
by training IDSes for different attack use cases.

The paper proceeds as follows. Section II provides a back-
ground on the types of multi-sensor data fusion and their
applications in cyber-physical systems and power systems in
particular. In Section III, the RESLab architecture, the attack
types considered, and the data fusion procedure is discussed.
The details on the data sources, the data fusion types, and
the dataset transformations used in this work are presented in
Sections IV, V, and VI respectively. Finally, intrusion detec-
tion based on unsupervised, supervised, and semi-supervised
learning methods are presented in Section VII. Experiments
are performed for four use cases, and results are analyzed in
Section IX. Section X concludes the paper with a discussion
of the results.

II. DATA FUSION BACKGROUND
A. CYBER-PHYSICAL THREAT OVERVIEW
The cyber-physical threats motivating this work constitute
a diversity of potential mechanisms that can compromise
the confidentiality, integrity, and availability of the system,
targeting power system impact such as by exploiting a series
of vulnerabilities to compromise the normal operation of the
system.

As prevalent types of attack, Denial of Service (DoS)
cyberattacks exhaust target networks with random traffic to
disrupt the normal operation, while Distributed DOS attacks
leverage botnets to exhaust links at multiple locations to cause
more severe damage [15]. A Telephony DoS attack hit three
distribution utilities blocking incoming and outgoing calls
from customers [16], which contributed to power loss for a
quarter-million people in Ukraine.

Authors in [17] provide a taxonomy of cyberattacks in
ICS networks based on timeliness, confidentiality, integrity,
availability. The risk of an attack variant will vary under dif-
ferent power system scenarios. For example, latency caused
by DoS can delay restorative actions post-compromise. Data
and command poisoning can disrupt situational awareness,
mislead state estimation, and misoperate devices, where cer-
tain actions can have the potential to cause further contingen-
cies (outages) or blackouts.

A quantitative assessment of risk and situational aware-
ness requires cyber-physical state estimation that is both
accurate and timely, which must be inferred using data
fusion from both cyber and physical sensors. Prior works on
cyber-physical situational awareness that leveraged Markov
Decision Process (MDP) [18], Attack Graphs [19], and
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Bayesian Attack Graphs [20], were based on the exploration
of static vulnerabilities in the system to construct attack graph
models for ranking critical assets, contingencies, as well as
learning graph structure. Similarly, [21], proposes a stochas-
tic Bayesian network model for calculating cyber-physical
security index for risk management. An expected load cur-
tailment index against cyber attacks on protection devices
and their control logic is presented in [22]. Reference [23]
models Stuxnet attack, using a Boolean Logic Driven MDP,
that leverages estimated values of the success probabilities
and rates of the elementary attack steps. Dynamic updates on
these models, which enable them to be useful for applications
such as risk quantification and targeted system restoration and
response, require aggregation of real-time data from multiple
sensors. The data collected in sensor logs will depend on the
attack and sensor types. Hence, a complex attack affecting a
collection of sensors requires the fusion of data frommultiple
sensors.

The threat model this paper focuses on, targets the integrity
of critical devices. Specifically, it emulates multi-stage
attacks on a large-scale synthetic electric grid, where the
intruder first gains Secure Shell (SSH) access to a device
within the substation LAN, then performs coordinated
MiTM attacks targeting different combinations of FCI and
FDI attacks sequentially on multiple DNP3 outstations
to cause transmission line overloading. To accomplish it,
the intruder performs Address Resolution Protocol (ARP)
spoofing to impersonate the DNP3 master for the outstation
and vice-versa, compromising the integrity, then further sniffs
the measurement and commands within the two end-points.
The details of the attack scenarios are elaborated in the
testbed paper [14] and the MiTM attack paper [24].

B. MULTI-SENSOR DATA FUSION
Multi-sensor data fusion aims to make better inferences than
those that could be accrued from a single source or sen-
sor. According to Mathematical Techniques in Multisensor
Data Fusion [25], multi-sensor data fusion is defined as
‘‘a technique concerned with the problem of how to combine
data from multiple (and possibly diverse) sensors to make
inferences about a physical event, activity, or situation.’’
A data fusion process is modeled in three ways: a) functional,
b) architectural, and c) mathematical [25]. A functional
model illustrates the primary functions, relevant databases,
and inter-connectivity to perform the fusion. It involves pri-
marily filtering, database creation, and pre-processing such
as scaling and encoding. An architectural model specifies
hardware and software components, associated data flows,
and external interfaces [26]. For example, it models the loca-
tion of the fusion tool in a testbed. There are three types of
fusion architecture: centralized, autonomous, or hybrid [25].
In centralized architectures, either raw or derived data from
multiple sensors are fused before they are fed into a classifier
or state estimator. In autonomous architectures, the features
extracted are fed to the classifiers or estimators for deci-
sion making before they are fused. The fusion techniques

used in the second case involve Bayesian [27] and
Dempster Shafer inference [28] because these fusion algo-
rithms are fed with the probability distributions computed
from the classifiers or the estimators. The hybrid type
mixes both centralized and autonomous architectures. The
mathematical model describes the algorithms and logical
processes.

A holistic data fusion method must consist of all
three: functional, architectural, and mathematical models.
The functional model defines the objective of the fusion.
Since the work aims to detect intrusions, determining which
data are due to cyber compromise is essential. Functional
goals may also include estimating the position of the intruder
in the system or estimating the state of an electric grid,
where the pre-processing techniques vary based on the goal.
The architecture model defines the sequence of operations.
The proposed fusion technique follows the centralized archi-
tecture. Finally, the mathematical model defines how these
features are processed and merged. Section IV details the
proposed fusion models.

C. MULTI-SENSOR FUSION APPLICATIONS
Recently, multi-sensor fusion has been adopted in computer
vision, automatic vehicle communication, and it is entering
power systems. The authors in [29] review multi-sensor data
fusion technology, including the benefits and challenges of
different methods. The challenges are related to data imper-
fection, outliers, modality, correlation, dimensionality, oper-
ational timing, and inconsistencies. For example, without
the usage of specific estimation method such as Kalman
filtering, sensors with multiple time resolutions requires
under-sampling or over-sampling. The response time of cer-
tain sensors also varies depending on the sensor age and type.
Data received from multiple sensors must be transformed to
a common spatial and temporal reference frame [25]. Imper-
fection is dealt with using fuzzy set theory, rough set theory,
or Dempster Shafer theory.

Multi-sensor data fusion is used in military applications for
automated target recognition, battle-field surveillance, and
guidance and control of autonomous vehicles [30]. Further,
the idea has been expanded to non-defense areas such as
medical diagnosis, smart buildings, and automatic vehicular
communications [31]. Authors in [32], explore techniques in
multi-sensor satellite image fusion to obtain better inferences
regarding weather and pollution. Data fusion has also been
proposed to accurately detect energy theft from multiple sen-
sors in advancedmetering infrastructure in power distribution
systems [33].

Data fusion is expanded in [34] from cyber-physical
systems (CPS) to cyber-physical-social systems with the
use of tensors. Algorithms proposed for mining hetero-
geneous information networks cannot be directly applied
to cross-domain data fusion problems; the fusion of
the knowledge extracted from each dataset gives better
results [35].
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D. DATA FUSION IN POWER SYSTEMS
The data from diverse domains play a major role in power
system operation and control. Weather data is vital for fore-
casting, e.g., solar, wind, and load, to schedule generation.
Data in cyberspace include data that provide for automation in
power system ICS and play a crucial role in wide-area control
and operation in the electric grid. However, to proceed with
multi-domain data fusion, the following question must first
be answered: To what measurable quantities do cyber data
and physical data refer?

A simple example of cyber data in ICS is a spool log
of a network printer in the control network. It is crucial to
question, could the attack on the centrifuge in the Natanz
Uranium Enrichment plant be prevented, if it had a logger
to record the events of a machine with a shared printer,
to prevent the exploitation of remote code execution on this
machine? The answer is no because there were many other
vulnerabilities such asWinCCDBexploit, network share, and
server service vulnerability, in parallel to print server vulner-
ability that compromised the Web Navigation Server which
was connected to the Engineering Station that configured the
S7-315 PLCs which over-speeded the centrifuge [36]. Hence,
the deployment of cyber telemetry in every computing node in
an ICS network is a solution that seems attractive but results in
numerous false alarms. Then, the question arises, can alerts be
reduced by amalgamating such data with data from physical
sensors?

Data fusion proposed in the areas of power systems is
mainly intra-domain. Existing works do not consider the
fusion of cyber and physical attributes for intrusion detec-
tion together. A probabilistic graphic model (PGM) based
power systems data fusion is proposed in [37], where the
state variables are estimated based on the measurements from
heterogeneous sources by belief propagation using factor
graphs. These PGM models require the knowledge of the
priors of the state variables, and also assume the measure-
ments to be trustworthy. Hence, such solutions cannot detect
cyber-induced stealth false data injection attacks. Several
works on false data injection detection are based on machine
learning [38]–[41] and deep learning [42]–[47] tech-
niques. The authors in [48] address stealthy attacks using
multi-dimensional data fusion by collecting information from
the power consumption of physical devices, control opera-
tion, and system states feed to the cascade detection algo-
rithm to identify stealthy attacks using Long Short Term
Memory. Machine learning techniques including clustering
are used in power system security for grouping similar oper-
ating states (emergency, alert, normal, etc.) to automatically
identify the subset of attributes relevant for the prediction of
the security class. A decision tree-based transient stability
assessment of the Hydro-Quebec system is presented in [49].
Techniques of fusion for fault detection [2] and real-time
intrusion detection using PCA [3] are specific to the physical
domain. The design of such models requires data fusion and
must consider impending system instabilities caused by cyber
intrusions.

Cymbiote [50] multi-source sensor fusion platform is sim-
ilar to this work, that has leveraged fusion from multiple
cyber and physical streams and trained with only supervised
learning-based IDS. Moreover, their work does not clearly
describe the features extracted from different sources.

E. MULTI-DOMAIN FUSION TECHNIQUES
Techniques such as co-training, multiple kernel learning,
and subspace learning are used for data fusion problems.
Co-training-based algorithms [51] maximize the mutual
agreement between two distinct views of the data. This tech-
nique is used in fault detection and classification in trans-
mission and distribution systems [52] and network traffic
classification [53]. To improve learning accuracy, Multiple
kernel learning algorithms [54] are also considered, which
utilize kernels that implicitly represent different views and
combines them linearly or non-linearly. Subspace learning
algorithms [55] aim to obtain a latent subspace shared by
multiple views, assuming that the input views are generated
from this latent subspace. DISMUTE [56] performs feature
selection for multi-view cross-domain learning. Multi-view
Discriminant Transfer [57] learns discriminant weight vec-
tors for each view to minimize the domain discrepancy and
the view disagreement simultaneously. These techniques can
be used for cross-domain data fusion.

Coupled matrix factorization and manifold alignment
methods are used for similarity-based data fusion [35]. These
methods can be implemented intra-domain with multiple data
sources. Manifold alignment is another technique that gener-
ates projections between disparate data sources but assumes
the generating process shares a common manifold. Since
the primary goal in this work is to fuse datasets from inter-
domain, such methods may not be effective enough. Still,
manifold learning is explored for the purpose of feature
reduction to train the supervised learning classifier.

To the best of our knowledge, co-training has not yet
been implemented in an intrusion detection system that uses
inter-domain fusion. Hence, in this work, co-training is per-
formed in inter-domain fused datasets by splitting the dataset
into cyber and physical views.

F. DATA CREATION, STORAGE, AND RETRIEVAL
The storage and retrieval of multi-sensor data play a major
role in fusion and learning. A relational database manage-
ment system is predominantly used in traditional Energy
Management System (EMS) applications. For example, B.C.
Hydro proposes a data exchange interface in a legacy EMS
and populates a relational database with the schematic of the
common information model defined in IEC 61970 [58]. With
the proliferation of multiple protocols and data from diverse
sources, it is not easy to construct the Entity-Relationship
model of a relational database management system, since the
schema cannot be fixed. Since NoSQL stores unstructured or
semi-structured data, usually in the key-value pairs or Java
Script Object Notation documents, NoSQL is highly encour-
aged to make use of databases such as Elasticsearch [11],
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MongoDB [59], or Cassandra [60], for multi-sensor fusion
with heterogeneous sources.

Creating multi-domain datasets to advance the research
is a challenging task since it requires the development of a
cyber-physical testbed that processes real-time traffic from
different simulators, emulators, hardware, and software. Cur-
rently, few datasets are publicly available that provide fea-
tures from diverse domains and sources. Most of the datasets
are simulator-specific, which restricts the domain to either
purely physical or cyber. The widely-known KDD [61] and
CIDDS [62] datasets used in developing ML-based IDS
for bad traffic detection and attack classification are cen-
tric to features in the cyber domain [63]. Tools such as
MATPOWER [64] and pandapower [65] provide datasets
for physical-side bad data detection. Datasets that include
measurements related to electric transmission systems,
including normal, disturbance, control, and cyberattack
behaviors are presented in [66]–[69]. The datasets contain
PMUmeasurements, data logs from Snort, and also data from
a gas pipeline and water storage tank plant. The features in
these datasets lack fine-grained details in the cyber, relay,
and control spaces, as all the features are binary in nature.
A cyber-physical dataset is presented in [70] for a subsystem
consisting of liquid containers for fuel or water, with its auto-
mated control and data acquisition infrastructure showing
15 real-world scenarios; while it presents a useful way of
framing the data fusion problem and approaches for CPS, it is
not power system-specific.

A problem in training ML or DL models for intrusion
detection through classification, clustering, and fine-tuning
hyperparameters is that its effectiveness depends on the data
collected. That is, a practical challenge is to obtain a baseline
that needs to come from realistic data. Emulation is preferred
to simulation for CPS networks since a simulator demon-
strates a network’s behavior while an emulator functionally
replicates its behavior and produces real data. Using real data
is important to validate that ML or DL solutions address
the actual challenges faced in the data from a real-time
cyber-physical system.

The performance of ML and DL models is impacted by
the choice of data processing techniques applied to the inputs
such as balancing, scaling, or encoding before training the
models. The effect of these preprocessing techniques needs
to be quantified on the outputs of such ML models before
they can be trusted for use in industry.

III. DATA FUSION ARCHITECTURE
Before discussing the data fusion procedures, it is essential
to understand the architecture of the RESLab testbed that
produces the data during emulation of the system under study.

A. TESTBED ARCHITECTURE
The RESLab testbed consists of a network emulator, a power
system emulator, an OpenDNP3 master and an RTAC based
master, an intrusion detection system, and data storage,
fusion, and visualization software. A brief overview of

each component is given below. A detailed explanation of
RESLab including its architecture and use cases is provided
in [14].
• Network Emulator - Common Open Research Emula-
tor (CORE) is used to emulate the communication net-
work that consists of routers, Linux servers, switches,
firewalls, IDSes, and bridges with other components
emulated with other virtual machines (VMs) in the
vSphere environment.

• Power Emulator - Power World Dynamic Stu-
dio (PWDS) is a real-time simulation engine for oper-
ating the simulated power system case in real-time as a
DS server [71]. It simulates the substations in the Texas
2000 case as DNP3 outstations [72].

• DNP3Master - DNP3Masters are incorporated using an
open DNP3 based application (both GUI and console-
based) and an SEL-3530 Real-Time Automation Con-
troller (RTAC) that polls measurements and operates
outstations, sending its traffic through CORE to the
emulated outstations in PowerWorld DS.

• Intrusion Detection System - Snort is used in the
testbed as the rule-based, open-source IDS. It is con-
figured to generate alerts for DoS, MiTM, and ARP
cache poisoning-based attacks. Currently, Snort is run-
ning as a network IDS in the router in the substation
network.

• Storage and Visualization - The Elasticsearch, Logstash,
and Kibana (ELK) stack is used to probe and store all
virtual and physical network interface traffic. In addition
to storing all Snort alerts generated during each use case,
this data can be queried using Lucene queries to perform
in-depth visualization and cyber data correlation.

• Data Fusion - A different VM is dedicated to oper-
ating the fusion engine that collects network logs
and Snort alerts from ELK stack using an Elastic-
search client and raw packet captures from CORE
using pyshark. This engine constructs cyber and phys-
ical features and merges them using the timestamps
from different sources to ensure correct information
alignment. Further, it pre-processes them using impu-
tation, scaling, and encoding before training them
for intrusion detection using supervised, unsupervised,
and semi-supervised learning techniques. This VM is
equipped with resources to utilize ML and DL based
library such as Scikit, Tensorflow, and Keras to train
the engine for classification, clustering, and inference
problems.

There are three broad kinds of IDS for Industrial Con-
trol Systems: protocol analysis based IDS, traffic mining
based IDS, and control process based IDS [73]. The fusion
engine in RESLab combines all these types. It performs
protocol-specific feature extraction from data link, network,
transport layers along with DNP3 layer, control and measure-
ment specific information through DNP3 payload and head-
ers, traffic mining by extracting network logs from multiple
sources.
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B. ATTACK EXPERIMENTS
Now that the testbed architecture is discussed, the utilization
of the testbed to demonstrate a few cyberattacks targeting
the grid operation is presented. The threat model considered
here is based on emulating multi-stage attacks in a large-scale
power system communication network. In the initial stage,
the adversary gains access to the substation Local Area
Network (LAN) through SSH access, further performing
DoS and ARP cache poisoning based MiTM attack to cause
FDI and FCI.

Usually, in the Man-in-the-Middle attacks, the adversary
secretly observes the communication between sender and
receiver and sometimes manipulates the traffic between ends.
There are different ways to perform MiTM, such as IP
spoofing, ARP spoofing, DNS spoofing, HTTPS spoofing,
SSL hijacking, stealing browser cookies, etc. In this current
work, MiTM using ARP spoofing is focussed. ARP spoof-
ing or poisoning is an attack-type, in which an adversary
sends false ARP messages over a LAN. This results in the
linking of an adversary’s MAC address with the IP address
of a legitimate machine on the network (here, the DNP3
outstation VM). This attack enables the adversary to receive
packets from the master, as an impersonator for the outstation
and modify commands and forward them to the outstation.
In this way, the adversary can cause contingencies such as
misoperation of the breakers. The attack is not only to modify
but also to sniff the current state of the system since it can
receive the outstation response to the master.

The MiTM attacks are performed considering the four
use cases targeting a different part of the Texas synthetic
grid following different strategies presented in detail in [14].
The use cases are combinations of FDI and FCI attacks per-
formedwith different polling rates from theDNP3Master and
the number of master applications considered. In previous
work, a Snort IDS-based detection [24] method is demon-
strated, which resulted in many false positives. In this work,
we employ fusion techniques, and machine learning tech-
niques, to enhance the accuracy of detection by evaluating
them using F1-scores, Recall, and Precision values.

C. DATA FUSION PROCEDURE
The steps followed in the data fusion engine, from extract-
ing the features from different sources, with their merge of
pyshark, snort, packetbeat, raw packet capture to form cyber
table, and the final fusion of cyber and physical table, with the
steps of imputation, encoding and visualization is presented
in Alg. 1. The details of the sensor sources and the data
processing are discussed in details in the next sections.

D. FUSION CHALLENGES
The most challenging task in data fusion is to perform merge
operations, because of the different time stamps generated
at different sensors. An event will trigger the time-stamped
measurements at the sensors. Hence, each sensor’s location
impacts the time at which the event is recorded. Domain

Algorithm 1 Data Fusion Procedure
1. Load JSON from raw pcaps.
2. Extract cyber features: network, transport, datalink layer
information and store as raw cyber data.
3. Extract features using pyshark.
4. Merge pyshark to the raw cyber data.
5. Extract snort alert.
6. Merge snort to the raw cyber data.
7. Extract features from packetbeat index in elasticsearch.
8. Merge packetbeat features to raw cyber data.
9. Extract DNP3 features (DNP3 points and headers) from
raw packet capture.
10. Fuse cyber data with physical data.
11. Imputate missing values.
12. Encode categorical features.
13. Visualize the merged table.

knowledge has been used to write the algorithm to merge
different sources meticulously. For example, Elasticsearch’s
Packetbeat index stores each record reflecting the traffic
between a given small time interval. Each record has an event
start and end time. While merging Elasticsearch features,
such as flow count attribute, a comparison of the raw packet
timestamp and event start and end time of Elasticsearch is
required, to calculate the flow counts. Moreover, the number
of records on the power system side will be less than the cyber
side, as events on the power system side are triggered based
on the polling frequency as well as on the time at which an
operator performs a control operation. Hencemissing data for
the records are filled using data imputation.

IV. MULTI SENSOR DATA
A sensor’s data is the output or readings of a device that
detects and responds to changes in the physical environment.
Every sensor has a unique purpose that helps create crucial
features that can assist in intrusion detection. In RESLab [14],
the cyber sensors are deployed as Wireshark instances at dif-
ferent network locations for raw packet capture. Additionally,
monitoring tool such as Packetbeat is integrated for extract-
ing network flow-based information. For security sensors,
Snort IDS logs and alerts are considered. Since the physical
system is emulated with PWDS acting as a collection of
DNP3 outstations, the real-time readings provided by phys-
ical sensors are extracted from the observed measurements
at the DNP3 master, from the application layer of the raw
packet captured at the DNP3 master. The extractions of these
multiple sensors are explained in detail:

A. RAW PCAPS FROM JSON
The packet captures fromWireshark are packet dissected and
saved in the JSON format, which is loaded using the panda
data frame. Further, from the JSON, around 12 features from
the physical, datalink, network, and transport layer of the
OSI stack are extracted, as shown in Table 1. The features
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TABLE 1. Description of the features used in data fusion.

primarily consist of the source and destination IP and MAC
addresses, along with the port numbers, flags, and lengths in
these layers.

B. ELASTICSEARCH
Real-time traffic collection is performed from network
interfaces in CORE, using the Packetbeat plugin in the
ELK stack. The Packetbeat plugin helps us extract the
flow-based information such as Flow Count, Flow Count
Final, Packets shown in Table 1. Elasticsearch queries are
based on Lucene, the search library from Apache. Kibana is
used to visualize the graphs and real-time data visualization
for the Packetbeat index. An example query is shown below:

The above query returns the records with event start time
2020 − 01 − 22T00 : 00 : 00.000Z and end time 2020 −
01− 26T00 : 00 : 00.000Z , and the event duration is within
0 − 300000 ms, and the source or destination port is 20000
(port number associated with DNP3), and the flow is a final
flow. The keywordmust designate an AND operation, should
is an OR operation, and match is an equals to operation.
A logstash index is also created in Elasticsearch to store the
logs of Snort alerts, which is also extracted along with the
packetbeat index.

There are two operations on the response from Elas-
ticsearch: a) Extraction of essential features b) Merge of
features to the existing cyber features data frame cb_table
from raw packet captures. Each record in the packetbeat
index is stored in the form of an event with start and end
times. In the extraction phase, the source.packets, flow.id ,
flow.final, event.end , event.start , flow.duration features are
extracted and stored in a new data frame pb_table. The
merge operation of pb_table into the existing cyber features
is non-trivial due to different timestamps in existing fea-
tures and features from packetbeat. The features in Table 1
flow.count , flow.final_count , and packets, using the fea-
tures of event.end(end), event.start(start) in pb_table and
Time in the cb_table based on the logical OR of three
conditions:
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1) Condition1 : add counters if the event start is within the
range of current and next records in the cyber_table

cb_table[i][t]≤start ∧ cb_table[i+1][t]≥start (1)

2) Condition 2 : if the event end is within the range of
current and next records in the cyber_table.

cb_table[i][t]≤end ∧ cb_table[i+1][t]≥end (2)

3) Condition 3 : if the event start is less than the current
record and event end is greater than the next record in
the cyber_table.

cb_table[i][t]≥start ∧ cb_table[i+1][t] ≤ end (3)

The ∨ and ∧ are the logical or and and operators respec-
tively. In this manner, the three features from pb_table to the
cb_table are merged.

C. PYSHARK
Pyshark is a Python wrapper for tshark, allowing python
packet parsing using Wireshark dissectors. Using Pyshark
features such as Retransmissions and RoundTripTime(RTT )
is obtained. The RTT is the time duration for a signal or
message to be sent plus the time it takes to acknowledge that
signal to be received. It has been observed that if congestion is
created in any location in between the source and destination
such as router or switch, the RTT increases. It also increases
due to DoS attacks on the servers or any intermediary nodes
in the path between source and destination. The TCP based
packet follows different retransmission policies based on
the TCP congestion control flavor. Hence, the number of
retransmission packets observed within a given time frame
is an indicator of loss of communication or increased delay.
Usually, a sender retransmits a request if it did not receive an
acknowledgment after somemultiples of anRTT , whosemul-
tiplicity is dependent on the TCP flavor. The retransmission
and RTT features are selected, as features are correlated and
directly related to attacks targeting availability and integrity.

D. SNORT
The router inside the CORE emulator runs the Snort daemon
based on the specific rules, pre-processors, and decoders
enabled in the configuration file to create logs. Snort oper-
ates in three modes: packet sniffer, packet logger, and
IDS modes. In this work Snort is primarily operated in the
IDS mode. The alerts generated at the router in the substa-
tion network are continuously probed during the simulation.
The alerts are recorded in the form of the unified2 format
as well as pushed to the Logstash index created in Elas-
ticsearch. Unified2 works in three modes, packet logging,
alert logging, and true unified logging. Snort runs in alert
logging mode to capture the alerts, timestamped with alert
time. Further, the idstools python package is utilized to extract
these unified2 formatted logs. The Snort configuration deter-
mines which rules and preprocessor are enabled. The features
extracted are the alert ,alert_type, and timestamp. The merge

into the cb_table is performed based on the timestamp of each
Snort record. The record is inserted based on the condition:

cb_table[i][t] ≥ timestamp ≤ cb_table[i+ 1][t] (4)

E. PHYSICAL FEATURES FROM DNP3
The Distributed Network Protocol version 3 is widely used
in SCADA systems for monitoring and control. This protocol
has been upgraded to use TCP/IP in its transport and network
layer. It is based on the master/outstation architecture, where
field devices are at outstations and the monitoring and control
are done by the master. DNP3 has its own three layers:
a) Data Link Layer, to ensure the reliability of physical
link by detecting and correcting errors and duplicate frames,
b) Transport Layer, to support fragmentation and reassem-
bly of large application payload, and c) Application Layer,
to interface with the DNP3 user software that monitors and
controls the field devices. Every outstation consists of a
collection of measurements such as breaker status, real power
output, etc., which are associated with a DNP3 point and clas-
sified under one of the five groups: binary inputs (BI), binary
outputs (BO), analog inputs (AI), analog outputs (AO), and
counter input. The physical features consist of the informa-
tion carried in the headers in the three layers of DNP3, along
with the values carried by the DNP3 points in the application
layer payload. Every DNP3 payload’s purpose is indicated
by a header in the application layer called function code (FC).
For simulations, the features with FCs: 1(READ), 5(DIRECT
OPERATE), 20 (ENABLE spontaneous message), 21(Dis-
able spontaneous message), and 129 (DNP3 RESPONSE) are
extracted. The details of the features are in Table 1.

V. FUSION
As presented in Fig. 2, the Fusion block involves dif-
ferent types of fusion. Intra-domain and inter-domain are
considered for training the IDS using supervised and unsu-
pervised learning techniques. A location-based fusion and
visualization for causal inference of the impact of the intru-
sion in different locations of the network is explored. Finally,
co-training with feature split is used to train the IDS using
semi-supervised learning with labeled and unlabeled data.

A. INTRA-DOMAIN AND INTER-DOMAIN FUSION
The fusion of cyber sensor information from different sources
is homogeneous source fusion. For example, fusing Elastic-
search logs with pyshark or raw packet capture to form the
cyber_table is intra-domain fusion.

The fusion of cyber and physical sensor information from
different sources is heterogeneous source fusion. For exam-
ple, the operation of fusing cyber_table with physical_table
is inter-domain fusion.

B. LOCATION-BASED FUSION
In multi-sensor data fusion, sensor location plays a
major role. For example, the military uses location-based
multi-sensor fusion to estimate the location of enemy troops
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FIGURE 2. Centralized fusion architecture. In the autonomous architecture, the Fusion and Learning blocks will be
interchanged with another Learning block post fusion.

FIGURE 3. Testbed architecture with data fusion.

by amalgamating sensor information from multiple radars
and submarines. The challenges associated with different
locations stem from time differences in event recognition.
A radar can pick up a signal with a different latency than
a submarine due to the difference in communication medium
as well as its location relative to the enemy troop. Similarly,
sensors such as IDS, firewall alerts, and network logs are
positioned at different network locations. It is essential to
correlate events among different locations before merging
them for inferring any attacks.

C. CO-TRAINING BASED SPLIT AND FUSION
There exist scenarios where labels cannot be captured. The
co-training algorithm [51] uses feature split when learning
from a dataset containing a mix of labeled and unlabeled
data. This algorithm is usually preferred for datasets that
have a natural separation of features into disjoint sets [74].
Since the cyber and physical features are disjoint, feature
split based co-training is adopted. The approach is to incre-
mentally build classifiers over each of the split feature sets.
Here, the fused features are splitted into cyber and physical
features. Each classifier, cy_cfr (first 17 features in Table 1)
and phy_cfr(last 9 features in Table 1), is initialized using a

few labeled records. Each classifier chooses one unlabeled
record per class at every loop of co-training to add to the
labeled set. The record is selected based on the highest classi-
fication confidence, as provided by the underlying classifier.
Further, each classifier rebuilds from the augmented labeled
set, and the process repeats. Finally, the two classifiers cy_cfr
and phy_cfr obtained from the co-training algorithm gives a
probability score against the classes for each record, which
is added and normalized to determine the final class of
the record [74]. The classifiers selected in the experiments
are Linear Support Vector Machine (SVM) and Logistic
Regression.

VI. DATA TRANSFORMATION
Real-time testbed data is usually insufficient, conflicting,
in diverse formats, and at times lacks in certain pattern or
trends. Hence, data pre-processing is essential in transform-
ing raw data into an understandable format. The raw data
extracted from multiple sensors are processed through three
steps: a) data imputation, b) data encoding, c) data scaling,
and d) feature reduction.

A. DATA IMPUTATION
Imputation is a statistical method of replacing the missing
data with substituted values. Substitution of a data point is
unit imputation, and substituting a component is item impu-
tation. Imputation tries to preserve all the records in the data
table by replacing missing data with an estimated value based
on other available information or feeds from domain experts.
There are other forms of imputation such as mean, stochastic,
regression imputation, etc. Imputation can introduce a sub-
stantial amount of bias and can also impact efficiency. In this
work, discrepancies of bias introduced due to imputation is
not addressed. Since data is merged from different sources
with unique features, the chances of missing data are high.
Hence, imputation is performed in the dataset based on the
default values in the Def column of Table 1.
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FIGURE 4. Location-based fusion from the master, outstation, and substation router. The high-density traffic observed in the places marked with red
rectangles is an indicator of DoS attack. This fusion assists in causal analysis for determining the initial victim of the DoS intrusion as well as inferring the
pattern of impact across other devices in the network.

B. DATA ENCODING
There are numerous features in the fused dataset which are
categorical. These categorical features are encoded using the
preprocessing libraries in Scikit-learn, so that the predictive
model can better understand the data. There are different
types of encoders such as an ordinal encoder, label encoder,
one hot encoder, etc. Label encoding is preferred over one
hot encoding when the cardinality of the categories in the
categorical feature is quite large as it results in the issue of
high dimensions. An ordinal encoder is also not considered,
as it is processed on the 2D dataset (samples*features). Since
cross-domain features are processed, encoding on individual
features is performed separately using label encoding.

C. SCALING AND NORMALIZATION
Scaling and normalizing the features is essential for various
ML and DL techniques such as PCA, Multi-Layer Percep-
trons (MLP), SVM, etc. Though certain techniques such as
Decision Trees or Random Forest are scale-invariant, it is still
essential to normalize and train. Before performing normal-
ization, log transformation and categorical encoding are per-
formed for the features with high variance and varied range of
values, respectively. Hence, both log transformation as well
as scaling are evaluated. Additionally, Min-Max scaling is
performed as considered in prior works on intrusion detection
on KDD and CIDDS datasets [63].

D. FEATURE REDUCTION
Once the features from multiple sensors are merged, dimen-
sion reduction (inter-feature correlation) is performed to
remove the trivial features using PCA. PCA is a linear
dimensionality reduction method that uses Singular Value
Decomposition on the data to project it to a lower-dimensional
space [75]. The inter-feature correlation for the fused dataset
from RESLab is based on the Pearson Coefficient [76],
shown in as shown in Fig. 6, where it can be observed that
intra-domain features have higher correlation amongst each
other. There is also some correlation observed across the
cyber and physical features. Features with higher correlation

FIGURE 5. Co-training based fusion for labeled and unlabeled datasets.
The fused dataset is split into cyber and physical views and trained in the
cyber and physical classifiers separately, finally fusing and normalizing
the probability scores for final classification.

FIGURE 6. Inter-feature correlation based on Pearson Coefficient.

are more linearly dependent and thus have a similar effect on
dependent variables. For example, if two features have a high
correlation, one of the two features can be eliminated.

VII. INTRUSION DETECTION POST FUSION
After the features are extracted, merged, and pre-processed,
we design IDS using different ML techniques. We have
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considered manifold learning and clustering as the unsu-
pervised learning techniques, a few linear and non-linear
supervised learning techniques, and co-training-based
semi-supervised learningmethods for training the IDS. In this
section, ML techniques are briefly explained.

A. MANIFOLD LEARNING
PCA for feature reduction does not perform well when there
are nonlinear relationships within the features. Manifold
learning is adopted in the scenarios where the projected data
in the low dimensional planar surface is not well represented
and needs more complex surfaces. Multi-featured data are
described as a function of a few underlying latent parameters.
Hence, the data points can be assumed to be samples from a
low-dimensional manifold embedded in a high-dimensional
space. These algorithms try to decipher these latent param-
eters for low-dimensional representation of the data. There
are many approaches to solve this problem, such as Locally
Linear Embedding, Spectral Embedding, Multi-Dimensional
Scaling, IsoMap, etc.

1) LOCALLY LINEAR EMBEDDING (LLE)
LLE computes the lower-dimensional projection of the
high-dimensional data by preserving distances within local
neighborhoods. It is equivalent to a series of local PCA
which are globally compared to obtain the best non-linear
embedding [77]. The LLE algorithm consists of 3 steps [78]:
a) Compute k-nearest neighbor for a data point. b) Construct
a weight matrix associated with the neighborhood of each
data point. Obtains the weights that best reconstruct each
data from its neighbors, minimizing the cost. c) Compute the
transformed data point Y best reconstructed by the weights,
minimizing the quadratic form.

2) SPECTRAL EMBEDDING
Spectral embedding builds a graph incorporating neighbor-
hood information. Considering the Laplacian of the graph,
it computes a low dimensional representation of the data
set that optimally preserves local neighborhood informa-
tion [79]. Minimization of a cost function, based on the graph
ensures that points closer on the manifold are mapped closer
in the low dimensional space, preserving local distances [77].
The Spectral Embedding algorithm consists of 3 steps:
a) Weighted Graph Construction in which raw data are
input into a graph representation using an adjacency matrix.
b) Construction of unnormalized and a normalized graph
Laplacians as L = D−A and L = D−0.5(D − A)D−0.5,
respectively. c) Finally, partial eigenvalue decomposition is
done on the graph Laplacian.

3) MULTI DIMENSIONAL SCALING (MDS)
MDS performs projection to lower dimensions to improve
interpretability while preserving ‘dissimilarity’ between the
samples. It preserves the dissimilarity by minimizing
the square difference of the pairwise distances between all
the training data between the projected, lower-dimensional

and the original higher-dimensional space,

DiffP (X1, . . . ,Xn) =

 n∑
i=1

n∑
j=1|i6=j

(∥∥xi − xj∥∥− δi,j)2
1/2

(5)

where δi,j is the general dissimilarity metric in the original
higher dimensional space and

∥∥xi − xj∥∥ is the projected/
lower dimensional dissimilarity pairwise between training
samples i and j. The model can be finally validated by a
scatter plot of pairwise distance in projected and original
space. There are two types of MDS: Metric and Non-Metric
based. In Metric MDS, the distances between the two points
in projection are set to be as close as possible to the dissimi-
larity (or distance) in original space. Non-metricMDS tries to
preserve the order of the distances and hence seeks a mono-
tonic relationship between the distances in the embedded and
original space.

4) T-SNE VISUALIZATION
The manifold learning technique called t-distributed
Stochastic Neighbor Embedding is useful to visualize
high-dimensional data, as it reduces the tendency of points to
crowd together at the center. This technique converts similar-
ities between data records to joint probabilities and then tries
to minimize the Kullback-Leibler divergence (a technique
used to compare two probability distributions) between the
joint probabilities of the low-dimensional embedding and the
high-dimensional data using gradient descent. The only issue
with this technique is that it is computationally expensive
and is limited by two or three embeddings in some methods.
In the intrusion detection methods, the purpose is to evaluate
if in the low-dimensional embedding one can find some
correlation of the data points with the labels.

5) IsoMap EMBEDDING
IsoMap stands for isometric mapping and is an extension to
the MDS technique discussed earlier. It uses geodesic paths
instead of euclidean distance for nonlinear dimensionality
reduction. MDS tries to preserve large pairwise distance
over the small pairwise distance. IsoMap first determines
a neighborhood graph by finding the k-nearest neighbor of
each point, further connecting these points in the graph, and
assigns weights. Then, it computes the shortest geodesic path
between all pairs of points in the graph, to use this distance
measure between connected points as weights to apply MDS
to the shortest-path distance matrix [80].

B. CLUSTERING
One of the fundamental problems in multi-sensor data fusion
is data association, where different observations in the
dataset are grouped into clusters [25]. Hence, various clus-
tering techniques are considered for data association.

1) K-MEANS CLUSTERING
The k-means algorithm clusters data by separating samples
in n groups of equal variance, minimizing a criterion known
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as inertia. The algorithm starts with a group of randomly
selected centroids, which are used as the beginning points for
every cluster, then performs iterative calculations to optimize
the positions of the centroids by minimizing inertia. The
process stops when either the centroids have stabilized or the
number of iterations has been achieved.

2) SPECTRAL CLUSTERING
The main concept behind spectral clustering is the graph
Laplacian matrix. The algorithm takes the following
steps [81]:

1) Construct a similarity graph either based on an
ε-neighborhood graph, a k − nearest neighbor graph,
or a fully connected graph.

2) Compute the normalized Laplacian L.
3) Compute the first k eigen-vectors u1, u2 . . . , uk of L.

The first eigen-vectors are related to the k smallest
eigen values of L.

4) Let U ∈ Rn∗k be the matrix containing the vectors
u1, u2 . . . , uk as columns.

5) For i = 1, , , , n, let yi ∈ Rk be the vector corresponding
to the ith row of U .

6) Cluster points (yi) in Rk with k-means algorithm into
clusters C1, . . .Ck .

3) AGGLOMERATIVE CLUSTERING
Agglomerative clustering is done in a bottom-up man-
ner, where at the beginning, each object belongs to one
single-element cluster, which are the leaf clusters of a dendo-
gram. At each step of the algorithm, the two clusters that are
most similar (based on a similarity metric such as distance)
are combined into a larger cluster. The procedure is followed
until all points are members of a single big cluster. The steps
form a hierarchical tree, where a distance threshold is used
to cut the tree to partition the data into clusters. As per scikit,
this algorithm recursivelymerges the pair of clusters that min-
imally increases a given linkage distance [82]. The parameter
distance_threshold in the scikit-learn implementation is used
to cut the dendrogram.

4) BIRCH CLUSTERING
The Balanced Iterative Reducing and Clustering Using Hier-
archies (BIRCH) [83] algorithm is more suitable for the
cases where the amount of data is large and the number
of categories K is also relatively large. It runs very fast,
and it only needs a single pass to scan the data set for
clustering.

C. SUPERVISED LEARNING
Though manifold learning and clustering techniques help
visualize and cluster the data samples in the intrusion
time-interval from the non-intrusion ones, still the results of
these techniques are hard to validate without any labels, hence
various supervised learning techniques are also considered in
designing the anomaly-based IDS.

1) SUPPORT VECTOR CLASSIFIER
Support vector machine builds a hyperplane or set of hyper-
planes in a higher dimensional spacewhich are further used as
a decision surface for classification or outlier detection. It is
a supervised learning based classifier which performs better
even for scenarios with higher feature size than the sample
size. The decision function, or support vectors, defined using
the kernel type such as sigmoid, polynomial, linear or radial
basis function plays a major impact on the classifier perfor-
mance. Different variants of SVCs have been predominantly
proposed in intrusion detection solutions [84], [85].

2) LOGISTIC REGRESSION (LR) CLASSIFIER
LR is a classification algorithm, used mainly for discrete set
of classes. It is a probability-based classification technique
which minimizes the error cost using the logistic sigmoid
function. It uses the gradient descent technique to reduce the
error cost function. Industries make a wide use of it, since it
is very efficient and highly interpretable [86].

3) NAIVE BAYES (NB) CLASSIFIER
NB is a supervised learning technique using Bayes Theorem,
with the naive assumption of independent features, condi-
tioned on the class. Based on feature likelihood distribution,
they possess different forms: Gaussian, Bernoulli, Categori-
cal, Complement, etc. Though it is computationally efficient,
the selection of feature likelihood may alter results. In spam
filtering, text classification, and also network intrusion detec-
tion, it is used profusely [87]. An NB based solution was
proposed for IDS in a smart meter network [88].

4) DECISION TREE (DT) CLASSIFIER
The advantage of using DT is that it requires the least data
transformation. Fundamentally, it creates internal models that
predict the target class by learning decision rules inferred
from the features. This technique sometimes meets with
over-fitting issues while learning complex trees that are hard
to generalize. Hence, it adopts pruning techniques such as
reducing the tree max-depth to deal with over-fitting. If data
in the samples are biased, it may be highly likely to create
biased trees. The computation cost of using this classifier is
logarithmic in the number of data records. It has been used in
the protocol classification problem [89], [90] for classifying
anomalous packets.

5) RANDOM FOREST (RF) CLASSIFIER
Basically, RF creates decision trees on randomly picked data
samples, and further computes a prediction from each tree
and selects the best solution through voting. More trees
result in a more robust forest. It is an ensemble-based clas-
sifier in which a diverse collection of classifiers (decision
trees) is constructed by incorporating randomness in tree
construction. Randomness decreases the variance to address
the overfit issues prevailing in DT. Compared with SVMs,
RF is fast and works well with a mixture of numerical and
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FIGURE 7. Left figures illustrate features extracted from multiple stages such as after connection with the Packetbeat server and the Snort IDS. Right-side
figure illustrates the imputed and encoded features graphically.

FIGURE 8. Left figures illustrate precision, recall, F1-score as well as the raw probability scores from the classifiers. Right-side figure visualizes the
probability scores for each technique graphically.

categorical features. It has a variety of applications, such as
in recommendation engines, image classification, and feature
selection. Due to its variance-reduction feature and its low
need for data pre-processing, it is also preferred in the cyber
security area [91], [92].

6) NEURAL NETWORK (NN) CLASSIFIER
Neural networks are effective in the case of complex
non-linear models. In the IDS classification problem,
MLP is used as the supervised learning algorithm. It learns
a non-linear function approximator whose inputs are the
features for a record and outputs the class. Unlike a logistic
regressor, it comprises multiple hidden layers. A major issue
with NN models is they require a large set of hyper tuning
parameters such as the number of hidden neurons, layers,
iterations, dropouts, etc., that can affect the hyper-parameter
tuning process for improving accuracy. Additionally, NNs are
quite sensitive to feature scaling. Following Occam’s razor,
security professionals tend to avoid neural networks in intru-
sion detection, wherever possible. Still, NNs can be explored

to capture temporal patterns with the use of Recurrent Neural
Networks and spatial patterns with Graph Neural Networks.

VIII. DATA FUSION SOFTWARE APPLICATION
A desktop application as a data fusion framework is devel-
oped for data aggregation, feature extraction, transformation,
fusion, and learning purposes, as illustrated in Fig. 2. The
purpose of the application is to extract sensor information for
different use cases and visualize features at different stages.
In Fig. 7 and 8, the application visualizes the features
extracted from multiple sources and the results of supervised
learning techniques, respectively. In the application, the user
can also select features based on correlations to infer the
timing and cause of the attack.

This application is scalable and re-usable for different
use-cases and is currently deployed in the Data Fusion block
in the testbed (Fig. 3). This application will be further aug-
mented to provide cyber network reconfiguration under dif-
ferent types of attacks detected. For example, a classifier
detecting an ARP spoof attack will trigger an ARP-tables
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based filtering in the firewall to regulate ARP cache poison-
ing traffic from the intruder.

IX. RESULTS AND ANALYSIS
In this section, the improvement of the detection perfor-
mance of the IDS, when a fused dataset is considered in
comparison to the use of only cyber or physical features,
is studied. The IDS is designed as a classifier when training
with supervised and semi-supervised based ML techniques.
The IDS’s performance is analyzed based on the different
types of MiTM attack carried out in the RESLab testbed. For
supervised learning techniques, the impact of labeling and
feature reduction on the detection accuracy is investigated.
For unsupervised learning techniques, comparison of the per-
formance of the clustering techniques is based on different
metrics. In most of the experiments, the highest scores for
either 2 or 3 clusters were expected, since the objective was
to cluster attacked traffic from non-attacked, with the third
cluster being undetermined. Additionally, a co-training-based
semi-supervised learning technique is tested, by assuming a
loss of labels for some experiments and comparing them with
supervised learning techniques.

A. SUPERVISED TECHNIQUE INTRUSION DETECTION
WITH SNORT ALERT AS LABEL
1) METRICS FOR EVALUATION
The IDS performance is evaluated by classifier accuracy
computed using metrics such as Recall, Precision, and
F1-score. A recall is the ratio of the true-positives to the sum
of true-positives and false-negatives. Precision is the ratio
of the true-positives to the sum of true-positives and false-
positives. High precision is ensured by a low false-positive
rate. A high recall is an indication of low false-negative rate.
False negatives are highly unwanted in security, since an
undetected attackmay result inmore privilege escalations and
can impact a larger part of network. False positives are expen-
sive, as time and money is invested for security professionals
to investigate a non-critical alert. Hence, harmonic mean of
recall and precision, called F1-score, is a preferred metric for
a balanced evaluation.

2) LABELS EVALUATION
The performances are compared, considering labels from
Snort alerts and labels based on the intruders’ attack win-
dows, to train the supervised learning-based IDS classifiers.
The intruders’ attack window is the difference between the
attack script end and start time. Every record is labeled in this
window belonging to the compromised class. It is interesting
to observe from Table 2 that the classifier trained using the
attack window label performed better than the Snort labels,
based on the average F1-score, Recall, and Precision. These
metrics are computed by taking the average of all the metrics
from different use cases. This analysis indicates that train-
ing a model from well-known IDS may not act as an ideal

TABLE 2. Comparison of the labels using a different classifier based on
the evaluation metrics.

classifier for intrusion detection. Hence, for further studies,
the classifier is trained using the attack window-based label.

3) USE CASE SPECIFIC EVALUATION
The datasets constructed from four use cases is analyzed
based on different strategies of FDI and FCI attacks (mea-
surement and control, respectively). These cases use dif-
ferent polling rates and DNP3 masters on the synthetic
2000-bus grid case illustrated in the RESLab paper [14].
Use Case 1 and 2 are FCI attacks on binary and mixed
binary/analog commands from the control center to some
selected outstations, selected from prior work on graph-based
contingency discovery [93]. Use Case 3 and 4 are a mix of
FCI and FDI attacks. These use cases differ based on the type
and sequence of modifications done by the intruder, as shown
in Table 3.

Due to the variation of attempts an intruder needs to take to
implement the use cases, the number of samples collected for
every scenario differs. In the MLP-based classifier, the num-
ber of samples plays a vital role; hence, MLP performs better
for scenarios with the number of DNP3 masters equal to
10 versus 5 and with a DNP3 polling interval of 30 s ver-
sus 60 s. The DT and RF classifiers outperform the other
classifiers in almost all the scenarios. The NB classifiers,
both Gaussian and Bernoulli, need the features to be inde-
pendent for optimal performance. Since most of the features
are strongly correlated based on Fig. 6, the performance of
NB is relatively weak compared to other classifiers. Usually,
Gaussian Naive Bayes (GNB) is considered for features that
are continuous and Bernoulli Naive Bayes (BNB) for discrete
features. In fused dataset, since both types of features exist,
both techniques are considered for evaluation. In the majority
of the scenarios, GNB performed better than BNB, indicating
the physical features have more impact on the detection com-
pared to categorical cyber features. Table 4 shows the compar-
ison of classifiers for different use cases, and Table 5 shows
the comparison using grid search cross-validation based tun-
ing of hyper-parameters for each classifier.

4) IMPACT OF FUSION
The classifier’s performance is evaluated by considering
pure physical and pure cyber-based intra-domain fusion as
well as cyber-physical inter-domain fusion. The pure physi-
cal and cyber physical based fusion outperforms pure-cyber
based fusion for all the classifiers shown in Table 6. Hence,
it indicates that the introduction of physical side features can
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TABLE 3. Use cases based on the type and sequence of modifications.

TABLE 4. Comparison of the classifier based on the scenarios i.e. use
cases, number of masters and the polling interval (PI) in sec.

TABLE 5. Optimal Hyper-parameter with GridSearch Comparison of the
classifier based on the scenarios i.e. use cases, number of masters and
the polling interval (PI) in sec.

improve the accuracy of conventional IDS that only considers
network logs in the communication domain. The pure phys-
ical features relatively performed better than cyber-physical
because, in the testbed, only a few features (i.e. measurements
for the impacted substation) are considered for extraction.
If all the measurements is considered from the grid simu-
lation, the detection accuracy will decrease due to feature
explosion. Feature reduction techniques such as PCA for the
physical features may not be an ideal solution for a huge
synthetic grid.

5) IMPACT OF FEATURE REDUCTION
In this subsection, feature reduction techniques such as PCA
and Shapiro ranking are considered for feature reduction
and feature filtering to evaluate the performance of the IDS.
Table 7 illustrates the performance scores for different clas-
sifiers with PCA transformed features and Shapiro features

TABLE 6. Comparison of the classifier with pure cyber fusion, pure
physical fusion, and cyber-physical fusion features.

TABLE 7. Comparison of the classifier with all features, reduced feature
with PCA transformation, and feature selection based on shapiro ranking.

selected for scores more than 0.7. It can be observed that
except for the DT and RF, other classifier’s performance
improved by both operations. DT and RF behave the best
when most of the features are kept intact. In most of the
cases, the selection of features based on Shapiro features
performed better than PCA transformation. Still, the total
variance threshold taken may impact the number of principal
components considered, which can affect the results.

B. UNSUPERVISED LEARNING TECHNIQUES
1) METRICS FOR EVALUATION
For evaluating the performance of the clustering techniques,
the Silhouette scores, Calinski Harabasz score, Adjusted
Rand score, and Davies Bouldin scores are considered. The
Silhouette score (S) is the mean Silhouette Coefficient of all
samples. The Silhouette Coefficient is calculated using the
mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample, using b−a

max(a,b) . The Calin-
ski Harabasz score (CH) is computed based on [94]. It is
the ratio between the within-cluster dispersion and the
between-cluster dispersion. The Rand Index computes a sim-
ilarity measure between two clusterings by considering all
pairs of samples and counting pairs assigned in the same
or different clusters in the predicted and true clusterings.
This index is further adjusted to be called the Adjusted Rand
Index (AR). The Davies Bouldin score (DB) is defined as
the average similarity measure of each cluster with its most
similar cluster, where similarity is the ratio of within-cluster
distances to between-cluster distances [95]. Thus, clusters
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FIGURE 9. Ranking feature importance for extracting features. Of all the
features, scores above 0.7 is selected for training.

that are farther apart and less dispersed will result in a better
score.

2) CLUSTERING
Prior to the clustering techniques, the datasets are sclaed
and normalized using scaler and normalize functions since
otherwise there will be feature-based bias. Four types of
clustering techniques: Agglomerative, k-means, Spectral, and
Birch clustering, are implemented, to evaluate the opti-
mal number of clusters based on the S, CH, AR, and DB
scores. For determining the clusters, the samples from all the
use-cases are merged, to form a larger dataset and then trained
the clustering methods by tuning the number of clusters
hyper-parameter (Nc) from 2 to 10. Fig 10 (a-e) show the clus-
tered plots using Agglomerative clustering with a different
number of clusters. The number of clusters, or centroids, are
selected for hyper-parameter tuning since it is found to be the
most important factor for the success of the algorithm [96].
Ideally, there need to be 3 clusters for un-attacked, attacked
with DNP3 alerts, and attacked with ARP alerts, but the dis-
tance metric considered results in a greater number of clusters
in some methods. Among all the clustering techniques pre-
sented in the previous section, the affinity propagation tech-
nique does not converge to obtain the exemplars with default
parameters (damping =50, convergence_iter =200). Hence,
the damping and maximum convergence iteration parame-
ters are increased to 0.95 and 2000 respectively, resulting
in 34 clusters. The S, CH, DB, and AR scores obtained are
0.605, 3658.1, 0.736, and 0.00085 respectively.

3) IMPACT OF FUSION
Considering only physical side features, most of the eval-
uation metrics computed very low or negative (in the case
of Adjusted Rand index) values, indicating inefficient clus-
ters. The scores of the optimal clusters with combined
cyber-physical features had an AR score of more than 0.8,
but its maximum is 0.01 for 6 clusters with only physical

TABLE 8. Comparison of Optimal clusters (Opt Nc ) using different
algorithm considering pure cyber and physical features separately.

TABLE 9. Optimal clusters (Opt Nc ) using different algorithm obtained
using four different evaluation metric with cyber and physical features
combined.

features. The pure cyber features performed similar to the
cyber-physical case, but the scores are less compared to the
merged features. Hence, it is essential to fuse cyber and
physical features prior to performing clustering-based unsu-
pervised learning. Table 8 shows the optimal cluster, based
on the scores, with considering cyber and physical features
separately. While, Table 9 shows the optimal cluster with
featuresmerged from cyber and physical domain. Using fused
feature, optimal cluster is found to be three in majority cases.

4) ROBUSTNESS
The robustness of the clustering techniques can be evaluated
based on the variance of these evaluation metrics with respect
to a) hyper-parameter tuning and b) dataset alterations.
In the first case, the mean, variance, and normalized variance
(NVar = sd

mean ) of the evaluation metric S, CH , AR, and DB
are computed by altering Nc from 2 to 10 and using the
complete dataset extracted for all the use cases. In the second
case, similar statistics are computed by keeping the number
of clusters fixed at Nc = 3 and altering the dataset i.e.
by using different use cases. A clustering technique with
lower normalized variance is more robust, and a better mean
score is more accurate. Based on the silhouette scores (S)
from Table 10, k-mean based clustering is found to be more
robust to varying data sources and has a better mean score,
but a main limitation of k-means is its strong dependence
on Nc. Still, k-means is used in many practical situations such
as anomaly detection [97] due to its low computation cost.

5) MANIFOLD LEARNING
Manifold learning is adopted for visualization. Classification
techniques need to be employed on the features projected in
the lower dimensions using these embeddings for quantitative
comparisons. The performance of manifold learning methods
are evaluated by testing them with the classifiers presented
in the previous subsection. Table 11 presents the comparison
of the LLE, MDS, spectral, t-SNE, and IsoMap [98] embed-
dings considered for classification using SVC, k-NN, DT,
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FIGURE 10. Agglomerative clustering with different number of clusters. Clustering with size 2 and 3 outperforms others, validating the detection accuracy
of a attacked traffic from a non-attacked one.

TABLE 10. Evaluation of the Robustness of the Clustering Algorithm by
varying hyper-parameters and data source.

TABLE 11. Comparison of the different manifold learning embeddings
considered with different classifiers.

RF, GNB, BNB, and MLP. Inter-domain fusion does not gain
much from manifold learning, but an interesting observation
is made on the decrease in the difference of F1 scores among
the high performing DT and RF classifiers, with the low per-
forming SVC and k-NN classifiers. Hence, it is inadvisable to
perform manifold learning for the datasets, if training using
Decision Tree or Random Forest. The IsoMap embedding
that preserves local features of the data by first determining
neighbor-hood graph and uses MDS in its last stage performs
better thanMDS for all the classifiers only with the exception
of SVC.

C. SEMI-SUPERVISED LEARNING
1) CO-TRAINING
For co-training, first the dataset is split into labeled and
unlabeled sets randomly in the ratio of 1:2. In the real world,

TABLE 12. Comparison of the classifier using supervised and co-training
based unsupervised learning.

this randomness may be caused due to accidental cessation of
the Snort application or if a network security expert cannot
make an inference of intrusion. Further, both the labeled and
unlabeled data are split into cyber and physical views con-
sisting of respective features. In these experiments, the super-
vised learning techniques are compared on the labeled dataset
with the co-training technique which uses supervised learn-
ing cyber and physical classifiers, as shown in Fig. 5. It is
expected to have a reduction in performance from supervised
learning techniques, due to lack of labels for some samples,
but it can be observed from Table 12, that the co-training
based classification outperforms supervised for some clas-
sifiers such as LR,GNB,BNB,MLP and performs at par with
other classifiers with a difference of a mere 8 percent in the
case of RF . The probable reason for improved performance
using co-training may be due to the training of two different
classifiers using intra-domain features.

X. CONCLUSION
A data fusion framework for detecting false command and
measurement injections due to cyber intrusion is presented
in this paper. To design an IDS that uses cyber and physical
features, features from cyber and physical sensors are aggre-
gated and the data aligned, then we perform pre-processing
techniques, followed by inter-domain fusion.

The results find that classifier performance improves on an
average of 15-20% (based on F1-score) when cyber-physical
features are considered instead of pure cyber features. Results
also show that the performance improves on an average
of 10-20% (based on F1-score) when labels from Snort
are replaced by the labels considered based on intrusion
timestamps. From the evaluations of the IDS, it is also
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found that scenarios with balanced and larger records result
in better performance. Additionally, the co-training-based
semi-supervised learning technique, which is realistic for
a real world scenario, is found to perform similarly to
supervised techniques and even better by 2-5% (based on
F1-score) using some classifiers. Among the unsupervised
learning techniques, the k-mean clustering technique is found
to be more robust and accurate. Moreover, training the clas-
sifier with the embeddings from manifold learning does not
improve the accuracy. Hence, manifold learning should only
be considered for visualization rather than relied on for
accuracy.

It is believed by us, that the fused dataset [99], the data
fusion engine [100], and results provided are one of the first
publicly available studies with cyber and physical features,
particularly for power systems, where the experimental data is
collected from a testbed that contains both cyber and physical
emulation. This benefits research in multi-disciplinary areas
such as cyber-physical security and data science.
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