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Abstract—Modern-day power systems have become increas-
ingly cyber-physical due to the ongoing developments to the grid
that include the rise of distributed energy generation and the
increase of the deployment of many cyber devices for moni-
toring and control, such as the Supervisory Control and Data
Acquisition (SCADA) system. Such capabilities have made the
power system more vulnerable to cyber-attacks that can harm the
physical components of the system. As such, it is of utmost impor-
tance to study both the physical and cyber components together,
focusing on characterizing and quantifying the interdependency
between these components. This paper focuses on developing an
algorithm, named CyberDep, for Bayesian network generation
through conditional probability calculations of cyber traffic flows
between system nodes. Additionally, CyberDep is implemented on
the temporal data of the cyber-physical emulation of the WSCC
9-bus power system. The results of this work provide a visual
representation of the probabilistic relationships within the cyber
and physical components of the system, aiding in cyber-physical
interdependency quantification.

Index Terms—Cyber-Physical Interdependencies, Cyber-
Physical Power Systems, Graph Theory, Bayesian Networks,
Dependency Graphs, Temporal Data

I. INTRODUCTION

Over the past decade, power systems have become increas-
ingly recognized as cyber-physical systems. The importance of
understanding the interdependency between cyber and physical
components is highlighted by the many new developments
in the grid, such as, but not limited to, renewable energy
integration, distributed energy generation monitoring and con-
trol, and new cyber-security technology. Specifically, a power
grid’s Supervisory Control and Data Acquisition (SCADA)
system allows for the monitoring and control of physical
components in the system and communicates with devices
through a variety of protocols, such as the Distributed Network
Protocol 3 (DNP3) [1]. This protocol is one of the most widely
used in electric power utilities. Such developments have made
the power grid more vulnerable to cyber-attacks that target
the physical components of the system at the generation,
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transmission, and distribution levels. Two infamous threats
are the Industroyer and Industroyer2 malware that affected
Ukraine in 2016 and 2022, respectively [2]. Both of these
threats targeted electrical substations in the country, with the
Industroyer malware sending SCADA commands to the field
devices resulting in an hour-long power outage across Ukraine.

As such, it is now of utmost importance to analyze and study
the power system as both a cyber and physical system, while
taking into account how the cyber and physical components
of the system are interdependent. There is a lot of emerging
literature focused on understanding cyber-physical power sys-
tem interdependencies [3]–[6]. In [3], the authors study the
interdependency relationship between the physical power grid
and its corresponding communication network when dealing
with and mitigating cascading failures. Through numerical
simulations of a cyber-attack on a cyber-physical power system
model, the authors found that power systems divide into
clusters when facing cascading failures. These results showed
that there is a correlation between system robustness and
cluster size, proving that these cyber-physical clusters are
still interdependent of each other, but operating separately.
In [4], the authors claim that “interdependence is an intrin-
sic feature of cyber-physical systems.” The authors back up
this claim by characterizing cyber-physical interdependencies
using correlation metrics aimed at predicting the propagation
of failure following a cyber-attack on the network. Huang et al.
[5] also study interdependencies concerning cascading failures
following a mathematical estimation approach using concepts
of graph theory. Other applications that utilize cyber-physical
interdependency analysis in power grids include improving
power system reliability modeling [6] and developing cyber-
physical resiliency metrics [7], [8].

In addition to the literature detailed above, Bayesian Net-
works have also been used in cyber-physical power systems
for many applications including, but not limited to, attack
graph generation [9], cyber threat mitigation [10], scalable
anomaly detection [11], and risk analysis and assessment
[12], [13]. Sahu et al. [9] focused on developing a Bayesian
attack graph and updating it through the use of constraint-
based structural learning methods that focus on scalability and979-8-3503-7240-3/24/$31.00 ©2024 IEEE



accuracy. In [10], the authors develop a quantitative framework
using Bayesian networks to define all possible vulnerabilities
and optimize this framework to achieve mitigation of cyber-
physical attacks, while Krishnamurthy et al. [11] focused on
creating Bayesian networks of power systems to study the
different cyber-physical relations between the nodes to achieve
anomaly detection focused on power system scalability.

It is also important to note that this work is part of a
larger effort aimed at characterizing and quantifying cyber-
physical power system interdependencies [14]–[16]. Much of
the ongoing work is focused on the development and use
of a variety of graph clustering methods that aid in charac-
terizing cyber and physical disturbances and cyber-physical
interdependencies. Therefore, the work in this paper focuses
on continuing these efforts through the development of a
Bayesian network generation algorithm that inputs temporal
data generated from the earlier work in [17] and outputs
graph visualizations of the probabilistic relationship between
different nodes in a cyber-physical power system model.

With that being said, the contributions of this paper are as
follows:

1) Development of a Bayesian network generation algo-
rithm through the use of temporal data and conditional
probability calculations of cyber traffic flows between
system nodes.

2) Application of this algorithm on the temporal data
of the cyber-physical emulation of the WSCC 9-bus
system [18] under physical, cyber, and cyber-physical
disturbances.

3) Visualization of the probabilistic relationships between
the different system nodes, aiding in cyber-physical
interdependency quantification.

II. METHODOLOGY

In this section, we first describe the temporal dataset gener-
ated by the earlier work in [17] and list the physical, cyber, and
cyber-physical threat vectors that make up the different distur-
bance scenarios. Then, we focus on conceptualizing Bayesian
networks and detailing the development of the generation of
such networks, specifically known as Dependency Graphs.

A. Disturbances and Dataset Description

The HARMONIE [17] project focused on developing a
cyber-physical response engine that generates real-time cyber-
physical power system mitigations through a machine learn-
ing classification framework and automated remedial action
schemes (RAS). The techniques developed were tested in a
cyber-physical emulation environment built using a real-time
digital simulator (RTDS) and SCEPTRE™ [19]. SCEPTRE™
[19] is a modeling and emulation platform developed by
Sandia for emulating Industrial Control Systems (ICS). It
allows for the modeling and emulation of different virtual and
hardware devices, such as, but not limited to, switches, servers,
and relays. It also supports power system simulations and ICS
communication protocols such as DNP3.

Fig. 1: Cyber-physical mapping of the WSCC 9-bus system
[17].

Fig. 2: Network diagram of the WSCC 9-bus emulation
environment [17].

The data used in this paper was generated as part of the
different experiments that were run in the emulation environ-
ment on the WSCC 9-bus power system [18], where the cyber-
physical mapping of the 9-bus system is shown in Figure 1 and
the network diagram is shown in Figure 2. In Figure 1, it can
be observed that the WSCC 9-bus system is divided into three
substations, with Substation A containing Bus 2, Substation
B containing Bus 1 (slack bus), and Substation C containing
Bus 3. The fourth substation in the cyber-physical emulation
is the control center, which contains the SCADA system that
sends commands to the field devices. In the environment, the
WSCC system is emulated as a 4-substation network, with a
router connecting each substation to the rest of the network,
as shown in Figure 2.

The three disturbances that were tested in this environment
are [17]:



1) Cyber: The cyber disturbance consisted of a Denial-of-
Service (DOS) intrusion. The mitigation implemented
for this threat included using firewall rules to block
adversary communication.

2) Physical: The physical disturbance included the loss of a
generator and a branch that led to line overloading. The
mitigation implemented is load shedding at two differ-
ent buses using an automated remedial action schemes
(AutoRAS) algorithm [17], [20], [21].

3) Cyber-Physical: This disturbance is a combination of
the above disturbances with both mitigation strategies
implemented.

The dataset contains four cyber-physical disruption sce-
narios based on the three disturbances listed above. These
scenarios are run three times each and are as follows:

1) Baseline: Normal system operations.
2) DOS: This scenario includes only the cyber disturbance

with no physical disruptions.
3) No Mitigation: This scenario includes a physical distur-

bance as well as a cyber one that affects load shedding.
4) Mitigation: This is the same as the No Mitigation

scenario with an addition of the firewall rules put in
place to block the cyber-attack.

B. Dependency Graph Generation

Dependency graphs (DGs) are a type of Bayesian network
that helps represent the different cyber and physical system
characteristics during normal operating conditions and under
threats. Dependency graph (DG) conceptualization is provided
in [22], where the authors focused on developing a cyber-
physical resiliency metric using graph theory concepts. For this
paper, we will focus on DGs to help quantify cyber-physical
interdependencies. DGs are generated through the conditional
probability calculations of the frequency of communication
between the different nodes using the following formula [22]:

P (x|P (x)) = 1−
∏

pi
x∈P (x)

(
1− 1(pi

x)
× P (pix → x)

)
where,

P (x|P (x)) : Probability of x given P(x)

1(pi
x)

: Indicator function, which is 1 if the condition

in parentheses holds and 0 otherwise

P (pix → x) : Probability of information flow from pix to x

A DG captures the relationships between the different files
and processes in a network, which depend on whether there is
data flow between two nodes. As such, a DG implies that if
there is traffic moving from object oi to oj , then object oj is
dependent on object oi. This dependency is represented by an
edge on the graph, oi → oj . In this example, the dependency
relationship is characterized by three components, which are
the source, oi, the sink, oj , and the security contexts, cyber
traffic information between nodes oi and oj . The nodes of
a DG are modeled as binary random variables, and the edges

Fig. 3: Sample dependency graph obtained from [22].

are labeled with the frequency of communication between two
different nodes, which is the calculated probability dependent
on the number of system calls between each of the nodes.

System calls, syscalls in short, are the communication
requests and responses made between each node. For the
DNP3 communication protocol, the syscalls under consid-
eration are Request Link Status, Read, Respond, and Direct
Operate commands, explained in more detail in the DNP3
protocol primer [1]. A sample of a dependency graph can be
seen in Figure 3 [22]. The conditional probability that File
F4 would be affected if a cyber-attack were to affect either
Process P1 or P9 is given by [22]:

P (F4|P1, P9) = 1− (1− 0.3)× (1− 0.8) = 0.86

Similarly, the probability that File F2 would be affected if
Process P9 is affected is 0.2, and the probability that File F7
would be affected if Process P1 is affected is 0.7.

Algorithm 1 shows the steps for generating the DGs. The
datasets collected from the emulation are in JSON file format.
The first step is to load the files, and then filter the traffic out
for DNP3 data. DNP3 traffic is selected because it collects
information on the physical components of the network as well
as cyber information, thus providing a better insight into cyber-
physical interdependencies. Once the input data is processed,
the IP addresses are then mapped to the device names using
the network topology information. The frequency of commu-
nication is then counted, and the conditional probability is then
calculated. Four graphs for each of the runs are generated, as
a result, for each of the four scenarios.

III. RESULTS AND DISCUSSIONS

In this section, we will discuss the results for each of
the three experimental runs and their respective four cyber-
physical disruption scenarios. Figures 4, 5, and 6 display the
results for runs 1, 2, and 3, respectively.

Across all three experimental runs, the baseline graphs ex-
hibited similar patterns of behavior in which the probabilities
of all the edges were equal. The probabilities amounted to 0.1
for each edge in run 1 and run 2 and 0.17 for each edge in run
3. A crucial observation is that the DOS Only, No Mitigation,
and With Mitigation scenarios behaved similarly across runs



(a) Baseline results for Run 1. (b) DOS results for Run 1.

(c) No mitigation results for Run 1. (d) Mitigation results for Run 1.

Fig. 4: Results for all four scenarios for the first run of the experiments in the dataset. The edges are labeled with the
probabilities calculated using the temporal data.

Algorithm 1: Dependency Graph Generation
Data: Raw temporal data collected in [17].
Result: Four graphs per experiment run that visualize

the probabilistic relationship between the
different nodes in the system.

1 Load JSON files of temporal data.
2 Filter for DNP3 traffic data.
3 Convert JSON files to CSV format.
4 Map IP addresses with device names using the

network topology.
5 Count the number of times each component

communicated with the control center’s SCADA
system.

6 Calculate the conditional probability to quantify the
frequency of communication between the nodes.

7 Plot the graphs for each of the four scenarios for all
three runs and label the edges with the probabilities.

1 and 2; however, the DOS Only scenario in run 3 behaved
differently. For runs 1 and 2, the DOS Only scenario shows
that the highest probabilities are for the edges connecting each
of loads 5 and 6 to the SCADA node. This result makes
sense as this scenario consists of a DOS threat through DNP3
increasing the amount of packets traveling between the objects
affected. It is also important to note that while this intrusion
was cyber in nature, we were able to see the relation and the
effect of a purely cyber-attack on two physical components in
the network, loads 5 and 6. For the DOS Only scenario for run
3, the opposite is observed. The edges connecting loads 5 and
6 to the SCADA node have the lowest probabilities. This could
be due to the fact that the DOS threat in this scenario was not
implemented for the same duration of time as the other two
runs. As such, further analysis of the network topology and
experimental setup would be required to interpret this result.

Moving onto the No Mitigation and With Mitigation scenar-
ios for all three runs, similar patterns and probabilities were
observed for the edges in the graphs. Specifically, an important



(a) Baseline results for Run 2.

(b) DOS results for Run 2.

(c) No mitigation results for Run 2.

(d) Mitigation results for Run 2.

Fig. 5: Results for all four scenarios for the second run of
the experiments in the dataset. The edges are labeled with the
probabilities calculated using the temporal data.

(a) Baseline results for Run 3.

(b) DOS results for Run 3.

(c) No mitigation results for Run 3.

(d) Mitigation results for Run 3.

Fig. 6: Results for all four scenarios for the third run of the
experiments in the dataset. The edges are labeled with the
probabilities calculated using the temporal data.



observation can be seen where the edges with the highest
probabilities are the ones connecting generator 1 (the slack
bus) and load 5 to the SCADA node. These results are also
justified as this scenario consists of both a cyber-attack and a
physical disturbance to the system affecting load shedding.
What can be understood from this graph is that the DOS
cyber-attack is implemented on load 5 in the network, and
the physical disruption affected the load shedding setup in the
power system that the SCADA node needed to send more
commands to change the generation values at the slack bus
(generator 1) to make up for the loss or increase in power
generation. These are all valid points to discuss as, once again,
the cyber-physical interdependencies can be understood from
the dependency graphs (DGs).

Last but not least, observing the With Mitigation results for
all runs shows us that the edges with the highest probabilities
are the ones connecting loads 5 and 6 to the SCADA node
with generator 1 having the second highest probability on
the edge connecting it to the SCADA node. These results
also make sense as there are firewall rules set up now that
prevent the cyber-attack from occurring, hence the increased
communication between the SCADA node and the rest of the
objects to prevent the attack from occurring.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, CyberDep was developed to generate de-
pendency graphs using the temporal data of the WSCC 9-
bus system and perform conditional probability calculations
of cyber traffic flows between system nodes. Additionally, we
can observe from the results above that the work on CyberDep
aided in providing insight into cyber-physical interdepen-
dencies through quantifying and visualizing the probabilistic
relationships between the different system nodes.

Future work includes the consideration of bi-directional
traffic flows, integration of more datasets to include additional
cyber and physical devices, such as routers and switches, and
expansion to larger power systems. CyberDep can be utilized
to infer and build access paths for cyber-physical threat models
and generate cyber-physical kill chains.

V. ACKNOWLEDGMENTS

The authors would like to thank Christopher Goes at Sandia
National Laboratories for his efforts in generating the datasets
used in this work and the members of Sandia Laboratory
Directed Research and Development Project #229324 for
their collaborative discussions. This work was supported by
the Sandia Laboratory Directed Research and Development
Project #229324 and the US Department of Energy under
award DE-CR0000018.

REFERENCES

[1] “DNP3 Protocol Primer,” DNP Users Group, 2005. [Online].
Available: https://www.dnp.org/Portals/0/AboutUs/DNP3%20Primer%
20Rev%20A.pdf

[2] “Cyber attacks on the power grid,” IronNet Threat Re-
search, 2022. [Online]. Available: https://www.ironnet.com/blog/
cyber-attacks-on-the-power-grid

[3] L. Chen, D. Yue, C. Dou, Z. Cheng, and J. Chen, “Robustness of cyber-
physical power systems in cascading failure: Survival of interdependent
clusters,” International journal of electrical power & energy systems,
vol. 114, p. 105374, 2020.

[4] K. Marashi, S. S. Sarvestani, and A. R. Hurson, “Identification of
interdependencies and prediction of fault propagation for cyber–physical
systems,” Reliability Engineering & System Safety, vol. 215, p. 107787,
2021.

[5] Z. Huang, C. Wang, A. Nayak, and I. Stojmenovic, “Small cluster
in cyber physical systems: Network topology, interdependence and
cascading failures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 8, pp. 2340–2351, 2014.

[6] K. Marashi, S. S. Sarvestani, and A. R. Hurson, “Consideration of cyber-
physical interdependencies in reliability modeling of smart grids,” IEEE
Transactions on Sustainable Computing, vol. 3, no. 2, pp. 73–83, 2017.

[7] V. Venkataramanan, A. Srivastava, A. Hahn et al., “Cp-tram: Cyber-
physical transmission resiliency assessment metric,” IEEE Transactions
on Smart Grid, vol. 11, no. 6, pp. 5114–5123, 2020.

[8] A. Clark and S. Zonouz, “Cyber-physical resilience: Definition and
assessment metric,” IEEE Transactions on Smart Grid, vol. 10, no. 2,
pp. 1671–1684, 2017.

[9] A. Sahu and K. Davis, “Structural learning techniques for bayesian
attack graphs in cyber physical power systems,” in 2021 IEEE Texas
Power and Energy Conference (TPEC). IEEE, 2021, pp. 1–6.
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